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Abstract This paper introduces a new method of cluster-
ing algorithm based on interval-valued intuitionistic fuzzy
sets (IVIFSs) generated from intuitionistic fuzzy sets to ana-
lyze tumor in magnetic resonance (MR) images by reducing
time complexity and errors. Based on fuzzy clustering, dur-
ing the segmentation process one can consider numerous
cases of uncertainty involving in membership function, dis-
tance measure, fuzzifier, and so on. Due to poor illumination
of medical images, uncertainty emerges in their gray lev-
els. This paper concentrates on uncertainty in the allotment
of values to the membership function of the uncertain pix-
els. Proposed method initially pre-processes the brain MR
images to remove noise, standardize intensity, and extract
brain region. Subsequently IVIFSs are constructed to uti-
lize in the clustering algorithm. Results are compared with
the segmented images obtained using histogram threshold-
ing, k-means, fuzzy c-means, intuitionistic fuzzy c-means,
and interval type-2 fuzzy c-means algorithms and it has been
proven that the proposed method is more effective.
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1 Introduction

Brain tumor is a region having a mass of abnormal tissues in
the brain and is categorized as benign and malignant tumors
according to their growth. Benign tumors are slow grow-
ing and do not disseminate to their neighboring tissues, but
malignant tumor grows aggressively and spreads quickly in
the nearby areas.

Magnetic resonance imaging (MRI) is one of the most
common brain imaging techniques. Some other imaging
techniques are also available such as computed tomography
(CT), positron emission tomography (PET). CT provides the
hard tissues like bones and MRI renders only soft tissues of
the imaging organ but is more efficient than CT because of
its contrast.

Treatment for the brain tumor relies on the ability of the
physician to identify the position, size, character, and edges
of the tumor. The direct analysis provided by the radiologist
to the physician furnishes less accurate results due to various
limitations like existence of noises in the images and the
pattern of human races. In recent decades, computer is used
as an aid for locating such tumors through the process of
image segmentation.

Segmentation is a basic building block in image analy-
sis. It is a process of dividing an image into significant
regions. There are numerous techniques available for image
segmentation, namely gray level thresholding, edge detec-
tion, histogram thresholding, texture, clustering algorithm
(Huang et al. 2015; Li and Shen 2010), region, segmenta-
tion based on fractals, wavelets (Farias et al. 2010), and so
on. Clustering technique is generally employed in the fields
such as image processing, data mining, pattern recognition,
and so on. Most of the algorithms in image processing are
prone to several uncertainties, for example, grayness ambi-
guity (uncertainty in the input information itself). The main
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aim of this work is to reduce uncertainty while clustering
images using powerful uncertainty absorbent.

Zadeh (1965) initiated the concept of fuzzy sets (FSs) in
1965. Later in 1986, Atanassov (1986) introduced intuition-
istic fuzzy sets (IFSs) as a generalization of FSs by adding a
new parameter called hesitation degree. It is not suitable to
use an IFS which has a constant degree of membership and
non-membership function for all the time but a range of val-
ues vary within an interval, see Bustince et al. (2009). This
leads to the innovation of a new fuzzy setwith itsmembership
function defined as an interval to detect edges. It is utilized in
a number of various domains such as medicine, data process-
ing, and mining. Atanassov and Gargov (1989) generalized
IFS by defining membership and non-membership function
as an interval value instead of an exact number. Nowadays,
the extended FSs such as interval-valued fuzzy set (IVFS),
IFS, and interval-valued intuitionistic fuzzy set (IVIFS) are
utilized in a great extent to handle the problem of uncertain
data, seeBustince et al. (2009), Chaira (2014), Ji et al. (2014),
and references therein.

There are two main strategies in clustering technique
namely crisp and fuzzy clustering technique. Due to various
situations, for images, issues like small scale of spatial resolu-
tion, poor illumination, presence of noise, intensity imbrica-
tion leads crisp segmentation a hard task. Among numerous
clustering techniques, fuzzy c-means (FCM) (Zhou andZhou
2014) algorithm ismore significant because of its robustness.
Although it is robust it works only on the images without
noise. In order to overcome these drawbacks, the image is
pre-processed before commencing the clustering process.
Skull stripping is one of the pre-processing step concerned
with brain images. Brain extraction is a pre-processing
intracranial segmentation in which brain tissue is segmented
from skull and non-brain tissue region in MR brain images
(Galdames et al. 2012). Performance of tumor extraction
methods also depends upon the intensity and contrast of the
image, which is influenced mainly by image intensity inho-
mogeneity (Hou 2006). Standardization of global intensity
scale to a local intensity scale is necessary for further segmen-
tation process (Zhung and Udupa 2009). Many researchers
have analyzed brain MRI segmentation using FSs, see Zhao
et al. (2013), Agrawal et al. (2014). But these algorithms still
have problems due to various situations, for example, captur-
ing brain images under poor illumination make it uncertain.
After the introduction of IFS, Chaira (2011) showed that
IFSs have the ability to remove much uncertainty than FSs
by introducing a novel intuitionistic fuzzy c-means (IFCM)
clustering algorithm. Bustince and Burillo (1995) have ini-
tiated the way for building IVIFS from IFS in a theoretical
point of view and fail to explain about the type of uncer-
tainty and how it can be modeled for applications. But in
2010, Xu and Wu (2010) have extended FCM algorithm for
clustering IVIFSs and they illustrated with various datasets.

These existing methods have not dealt with proper uncer-
tainty regarding their source dataset. To overcome the issue,
in the proposed method uncertainty is considered according
to its source dataset.

This paper concernswith the segmentation of brain tumors
in brain MR images using new c-means algorithm based on
IVIFS. Initially, images are enhanced using median filter to
reduce noise and brain is extracted using the skull stripping
method. Then IVIFS for the enhanced brain MR image is
generated from the IFS, which is obtained from an FS. Then
IVIFS is clustered by utilizing the proposed interval-valued
intuitionistic fuzzy c-means (IVIFCM) clustering algorithm.
Experimental results are provided to render the performance
of the proposed algorithm and are compared with threshold-
ing (HT), k-means (KM), FCM, IFCM, and interval type-2
fuzzy c-means (ITFCM) clustering algorithms. Quantitative
performance of the proposed algorithm is found by calcu-
lating Dice coefficient of the clustered results to show the
accuracy of the segmentation process. Area of the tumors is
calculated from the clustered outputs, which helps the physi-
cian to find the severeness of the tumor and the way to treat
that particular person.

This paper is framed as follows. Section 2 explains some
basic concepts of FSs, IFSs, and IVIFSs. In Sect. 3, IVIFS is
constructed from IFS. Steps of the IVIFCM clustering algo-
rithm along with some pre-processing works are drawn in
Sect. 4. Section 5 describes briefly about the performance
metrics utilized for quantitative analysis of the algorithm.
Experimental results are discussed in Sect. 6. Finally, the
conclusion is depicted in Sect. 7.

2 Basic concepts of FSs and their extensions

This section explains roughly about FSs and their extensions
such as IFSs and IVIFSs.

2.1 Fuzzy sets (FSs)

Let X = {x1, x2, . . . , xn} be a non-empty finite set. A fuzzy
set (Zadeh 1965) F of X can be defined as

F = {〈x, μF (x)〉|x ∈ X
}
,

where μF (x) : X → [0, 1] expresses the degree of belong-
ingness of x in X and the degree of non-belongingness of x
in X can be simply obtained using the equation 1 − μF (x).

2.2 Intuitionistic fuzzy sets (IFSs)

An IFS F in X can be formulated as

F = {〈x, μF (x), νF (x)〉|x ∈ X
}
,
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where μF (x), νF (x) : X → [0, 1] represent the degree of
belongingness andnon-belongingness of x in X , respectively,
with the essential condition 0 ≤ μF (x) + νF (x) ≤ 1.

As this paper concerns with segmentation of tumors in
uncertain brainMR image, so there arises hesitation in deter-
mining the membership function of the uncertain pixel due
to lack of knowledge. For this reason, Atanassov (1986)
proposed an IFS having a third parameter called hesitation
degree which is then utilized for eliminating uncertainty and
is calculated as πF (x) = 1 − μF (x) − νF (x), further the
equality μF (x) + νF (x) + πF (x) = 1 holds for all x ∈ X .
Hence, IFS F in X can be reformulated as

F = {〈x, μF (x), νF (x), πF (x)〉|x ∈ X
}
.

2.3 Interval-valued intuitionistic fuzzy sets (IVIFSs)

An IVIFS F̃ over X is mathematically formulated as

F̃ = {〈x, MF̃ (x), NF̃ (x)〉|x ∈ X
}
,

where MF̃ (x) and NF̃ (x) ⊂ [0, 1] are membership and
non-membership intervals, respectively, and supMF̃ (x) +
sup NF̃ (x) ≤ 1, for all x ∈ X .

3 Construction of IVIFS for the brain MR image

This section constructs an IVIFS from an IFS which is gen-
erated from a FS.

3.1 Generating IFS from FS

The source images are initially fuzzified. Then what is fuzzy
in the brain MR images will become an immediate question.
In general, most of the medical images are not properly illu-
minated, which lead pixel uncertainty related to the levels of
brightness and is considered as fuzzy throughout this paper.
Clearly, fuzzy domain is a subset of a spatial domain. So,
membership function of gray level is utilized directly by opt-
ing normalized gray level of the particular brain MR image.

The brain MR image I of S × T dimension is considered
as an array of fuzzy singletons. A fuzzy singleton is a FS
whose support is a single point where the support of a FS F
in X is defined as Supp(F) = {x ∈ X |μF (x) > 0}.

The brain MR image I is fuzzified using the following
equation:

μI
(
I (i, j)

) = gl − glmin

glmax − glmin
, (1)

where gl is the intensity value of (i, j)th pixel, and glmax

and glmin denote the highest and least intensity value of the
image I .

Hence FS IA of the image I is defined as

IA = {〈I (i, j), μI
(
I (i, j)

)〉| 0 ≤ i ≤ S − 1,

0 ≤ j ≤ T − 1, 0 ≤ I (i, j) ≤ L − 1,

0 ≤ μI (I (i, j)) ≤ 1
}
.

For instance, consider an imageC of size 3×3, whose inten-
sity values are represented in a matrix as follows:

C =
⎡

⎣
25 191 25
191 127 191
25 191 25

⎤

⎦

Fuzzification is a process of transformation of gray-level
range [0, 255] to the interval [0, 1]. In this paper fuzzifi-
cation has been chosen as the normalization of the intensity
values, for more details about fuzzification reader can refer
Balasubramaniam and Ananthi (2014). Fuzzified matrix IC
of the image C is given below

IC =
⎡

⎣
〈25, 0〉 〈191, 1〉 〈25, 0〉
〈191, 1〉 〈127, 0.6145〉 〈191, 1〉
〈25, 0〉 〈191, 1〉 〈25, 0〉

⎤

⎦

Power of FSs mainly depends on the membership function
that is being used in it. Even though FSs depend on the mem-
bership function, there arises hesitation in defining brightness
quantity of the chosen pixel in an image due to poor illumi-
nation of brain images. This leads to grayness ambiguity.
The main aim of this work is to remove uncertainty in quot-
ing membership values of the pixels of the uncertain brain
MR image. Hence fuzzified image is again transformed to an
image in intuitionistic fuzzy domain having three parameters.
It should be clearly noted that one can select the membership
function intuitively. We use IFS to develop IVIFS to remove
ambiguity in allocation of membership values to each pixel.

Mostly, intuitionistic fuzzy generators are employed to
construct IFS. The degree of membership of IFS is computed
as

μF
(
I (i, j)

) = 0.582
(
exp

(
1 − |μI (I (i, j)

) − mI |
) − 1

)
,

(2)

where μI (I (i, j)) is obtained from Eq. (1) and mI denotes
the mean intensity value of μI (constructed using restricted
equivalence function).

The degree of non-membership function is defined as

νF
(
I (i, j)

) = 1 − μF
(
I (i, j)

)

1 + λ × μF
(
I (i, j)

) , λ > 0. (3)
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For more details about non-membership function, see
Bustince et al. (2000). Finally, an IFS is formulated as

{
F = {〈I (i, j), μF (I (i, j)), νF (I (i, j)), πF (I (i, j))〉},
I (i, j) ∈ {

0, 1, . . . , L − 1
}
,

where

πF
(
I (i, j)

) = 1 − μF
(
I (i, j)

) − νF
(
I (i, j)

)
. (4)

For illustration, the image C in IFS domain is described as
follows, which is obtained using the membership function of
the fuzzy image IC into Eq. (2). Let FC denote the IFS of the
image C with membership function μFC , non-membership
function νFC , and the hesitation degreeπFC . Hence the image
in IFS domain is represented as

FC =
⎡

⎢
⎣

〈25, 0.3654, 0.4910, 0.1435〉 〈191, 0.3898, 0.4651, 0.1451〉 〈25, 0.3654, 0.4910, 0.1435〉
〈191, 0.3898, 0.4651, 0.1451〉 〈127, 0.8470, 0.0912, 0.0618〉 〈191, 0.3898, 0.4651, 0.1451〉
〈25, 0.3654, 0.4910, 0.1435〉 〈191, 0.3898, 0.4651, 0.1451〉 〈25, 0.3654, 0.4910, 0.1435〉

⎤

⎥
⎦

3.2 Construction of IVIFS from IFS

Even though the value of membership function is assigned
by reducing hesitation in allotting the exact value, still there
exists some uncertainty whether the chosen value is appro-
priate. Hence one can opt a range of values rather than an
exact value. For this reason, IVIFS is utilized to remove
such vagueness that exist in IFS. IVIFS is constructed as
in Bustince and Burillo (1995) by defining a mapping as fol-
lows.
Consider the mapping

φ : IFS(X) → IVIFS(X)

defined as

φ(F) = {〈x, Mφ(F)(x), Nφ(F)(x)〉|x ∈ X
} = F̃,

where Mφ(F) and Nφ(F) are split into the following lower
and upper intuitionistic fuzzy interval elements.

(1) Mφ(F)L(x) = MF̃L(x) = μF (x)− p ·πF (x), 0 ≤ p ≤
μF (x)
πF (x) .

(2) Mφ(F)U (x) = MF̃U (x) = μF (x) + α · πF (x), 0 ≤
α ≤ 1.

(3) NF̃L(x) = νF (x) − q · πF (x), 0 ≤ q ≤ νF (x)
πF (x) .

(4) NF̃U (x) = νF (x) + β · πF (x), 0 ≤ β ≤ 1,
with 0 ≤ α+β ≤ 1, 0 < α+ p ≤ 1 and 0 < β +q ≤ 1.

Define WMF̃ (x) = MF̃U (x) − MF̃L(x) = (α + p) · πF (x)
andWN F̃ (x) = NF̃U (x)−NF̃L(x) = (β+q)·πF (x), then it
is clearly seen that IVIFSs are constructed in such a way that
the membership and non-membership interval’s width does
not surmount its intuitionistic fuzzy index (πF ). Suppose if
F ∈ FSs(X), then

φ(F) = {〈x, Mφ(F)(x), Nφ(F)(x)〉|x ∈ X
}
with πF (x) = 0,

which implies
MF̃L(x) = MF̃U (x) = μF (x)
NF̃L(x) = NF̃U (x) = νF (x)
and hence φ(F) = F . Therefore, if F ∈ FSs(X) then
φ(F) = F .

For example, IVIFS F̃C of the image C is constructed
with the parameters α = β = p = q = 0.1 using the
membership function μFC and the hesitation degree πFC of
IFS of the image C and it is presented as follows:

FC =

⎡

⎢
⎢
⎣

〈
25, [0.3511, 0.3798], [0.4767, 0.5054]〉 〈191, [0.3753, 0.4043], [0.4506, 0.4796]〉 〈

25, [0.3511, 0.3798], [0.4767, 0.5054]〉
〈
191, [0.3753, 0.4043], [0.4506, 0.4796]〉 〈127, [0.8408, 0.8532], [0.0850, 0.0974]〉 〈

191, [0.3753, 0.4043], [0.4506, 0.4796]〉
〈
25, [0.3511, 0.3798], [0.4767, 0.5054]〉 〈191, [0.3753, 0.4043], [0.4506, 0.4796]〉 〈

25, [0.3511, 0.3798], [0.4767, 0.5054]〉

⎤

⎥
⎥
⎦

4 Segmentation process

Each and every brain MR slice needs to be pre-processed
before segmentation. This section describes the pre-process-
ing first and then depicts the steps of the segmentation
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Fig. 1 Flowchart of the proposed algorithm

process. Flow chart of the proposed segmentation process is
depicted in Fig. 1.

4.1 Pre-processing

Extraction of brain region is one of the main pre-precessing
tasks required for the source brain MR image dataset shown
in Fig. 2 earlier to the segmentation of tumor.

4.1.1 Filtering to reduce noise

Each brainMR image is filtered to enhance the image quality.
Presence of noise in images masks some important charac-
teristics of the MR image and this makes image analysis a
difficult task. Here, median filter is used to remove noise. But
this filter smooths the image edges, so unsharp masking is
done after filtering and is executed using 2D Laplacian, for
more detail, see Gonzalez and Woods (2008).

4.1.2 Intensity inhomogeneity correction
and standardization

Variation in magnetic field causes non-uniformity in the
intensities of the images. There are numerous methods avail-
able in literature (Hou 2006; Wells et al. 1996) to correct
intensity inhomogeneity. Standardization is a pre-processing
technique that relates nonlinear gray-scale intensity levels
of an image into a standard gray-scale intensity levels by
training and transformation. This process helps during reg-
istration and segmentation. Segmentation algorithm works
better when global intensity patterns are related to a cer-
tain scale of local patterns (Zhung and Udupa 2009). Before
extracting the brainMR image dataset, intensity ofMR slices
is standardized by adopting the method which is given in
Nyul and Udupa (1999) with [s1, s2] = [0, 255].

4.1.3 Brain region extraction

Extraction of the brain portion from brain MR image is an
essential part in segmentation. Generally, MR image com-
prises brain and non-brain regions (skull, fat). Due to high
intensity of non-brain parts, misclassification in clustering
occurs, see Roslan et al. (2011). Hence it is necessary to
remove skull and non-brain tissues from brain MR images
by a process of skull stripping. Many algorithms are avail-
able in the literature to extract brain region. Brain extraction
tool introduced in Smith (2002) is utilized in this paper for
the removal of non-brain regions. Extracted brain portions
of the source image after standardization and intensity inho-
mogeneity correction are shown in Fig. 3.

4.2 Clustering brain MR image using IVIFCM
algorithm

Basically a MR brain image with tumor is divided into
four regions (white matter (WM), gray matter (GM), cere-
brospinal fluid (CSF), and abnormal region). The steps of
IVIFCM algorithm for segmenting tumor are as follows.
Step 1

Let I be a brain MR image received after pre-processing
the given image of size n (= S × T ). Then model the image
I in IVIFS domain as illustrated previously. Fix the cluster
class c = 4, fuzzification index m > 0, end limit ε > 0, and
iteration counter t .
Step 2

Initialize the cluster center V (t) at t = 0.
Step 3

For t th iteration, compute the membership matrix U by
adopting the following expression:
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Fig. 2 Source brain MR image dataset
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Fig. 3 Pre-processed brain MR image dataset
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u(t)
ik =

⎧
⎪⎪⎨

⎪⎪⎩

1

∑c
i=1

(
d(t)(xk ,vi )

d(t)(x j ,vi )

) 2
m−1

, if d(t)(x j , vi ) > 0;

1, if d(t)(x j , vi ) = 0,

(5)

where d(xk, vi ) = 1
2

√
dist with

dist =
n∑

k=1

{[
MF̃L(xk) − MF̃L(vi )

]2 + [
MF̃U (xk)

−MF̃U (vi )
]2 + [

NF̃L(xk) − NF̃L(vi )
]2

+[
NF̃U (xk) − NF̃U (vi )

]2 + [
WMF̃ (xk)

−WMF̃ (vi )
]2 + [

WN F̃ (xk) − WN F̃ (vi )
]2}

Step 4
AnewmembershipmatrixU∗ is computed for t th iteration

using the formula

U∗ = U (t) + W (t)
MF̃

, (6)

whereW (t)
MF̃

is computed as in the Sect. 3.2 by implementing
the membership values obtained in step 3 into Eq. (1).
Step 5

Update cluster center V (t+1) by utilizing the following
expression:

v
(t+1)
i =

n∑

i=1

(
u∗(t+1)

ik

)m × xk

∑
ik

(
u∗(t+1)

ik

)m (7)

Step 6
If distance between the membership matrix got from the

present (t + 1)th and previous (t)th iteration is less than ε,
then stop the process. Else go to step 3 by fixing t as t + 1.

It is observed that the new membership matrices acquired
are selected in such a way to minimize the objective function
Jm defined as

Jm =
c∑

i=1

n∑

k=1

(
u∗
ik

)m
d2ik +

c∑

i=1

W ∗
MF̃

(xi ) × e1−W ∗
MF̃

(xi ),

(8)

where W ∗
MF̃

(xi ) = 1
n

∑n
i=1 WMF̃ (xi ).

The process of IVIFCM clustering algorithm to cluster a
3 × 3 image C is explained as follows:
Step 1
Let c = 3, m = 2, and ε = 0.001. For a 3 × 3 image
C, n = 9. Randomly select initial centroid V (0) from the
image. For instance, the centers are considered as

V (0) =
⎡

⎣
0.9711
0.9767
0.9483

⎤

⎦

Step 2
Calculate the upper and lower membership degrees, non-
membership degrees, and the width of the membership and
non-membership degrees of the image by generating IVIFS
from IFS as defined in the Sect. 3. Using Eq. (5), one can
have the extended membership matrix as

U (0) =
⎡

⎣
0.7232 0.4324 0.7232 0.4324 0.7497 0.4324 0.7232 0.4324 0.7232
0.6603 0.8176 0.6603 0.8176 0.9216 0.8176 0.6603 0.8176 0.6603
0.4430 0.5646 0.4430 0.5646 0.8191 0.5646 0.4430 0.5646 0.4430

⎤

⎦

Step 3
A newmembership matrix is computed according to Eq. (6),
we have

U∗(0) =
⎡

⎣
0.7435 0.4615 0.7435 0.4615 0.7685 0.4615 0.7435 0.4615 0.7435
0.6838 0.8320 0.6838 0.8320 0.9283 0.8320 0.6838 0.8320 0.6838
0.4721 0.5917 0.4721 0.5917 0.8335 0.5917 0.4721 0.5917 0.4721

⎤

⎦

Step 4
Update the centers for t = 1 according to equation Eq. (7)
as follows:

V (1) =
⎡

⎣
0.9550
0.9382
0.8949

⎤

⎦

Step 5
Calculate the membership matrix for t = 1 according to
equation Eq. (5) by utilizing the centers obtained from step
4 as
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U∗(1) =
⎡

⎣
0.5805 0.2939 0.5805 0.2939 0.6300 0.2939 0.5805 0.2939 0.5805
0.5794 0.6231 0.5794 0.6231 0.8332 0.6231 0.5794 0.6231 0.5794
0.2556 0.5859 0.2556 0.5859 0.7759 0.5859 0.2556 0.5859 0.2556

⎤

⎦

Step 6
Check the distance between membership matrices obtained
during iterations there by minimizing the objective function
defined in Eq. (8). Let D denote the distance, then we have

D
(
U∗(1),U∗(0)

) = 0.0063 > 0.001

Since this distance is not small enough, so the iteration is
continued as follows:
When t = 2

V (2) =
⎡

⎣
0.9892
0.8646
0.8547

⎤

⎦

U∗(2) =
⎡

⎣
0.5793 0.2672 0.5793 0.2672 0.6510 0.2672 0.5793 0.2672 0.5793
0.5790 0.5825 0.5790 0.5825 0.3237 0.5825 0.5790 0.5825 0.5790
0.2544 0.5923 0.2544 0.5923 0.5958 0.5923 0.2544 0.5923 0.2544

⎤

⎦

D
(
U∗(2),U∗(1)

) = 0.0051 > 0.001

Since this distance is not small enough, so the iteration is
continued when t = 3

V (3) =
⎡

⎣
0.9892
0.8646
0.8547

⎤

⎦

U∗(3) =
⎡

⎣
0.5790 0.2542 0.5790 0.2542 0.5790 0.2542 0.5790 0.2542 0.5790
0.5790 0.5790 0.5790 0.5790 0.2542 0.5790 0.5790 0.5790 0.5790
0.2542 0.5790 0.2542 0.5790 0.5790 0.5790 0.2542 0.5790 0.2542

⎤

⎦

D(UL∗(3),UL∗(2)) = 0.0001 < 0.001

Hence one can stop the iterations. Then defuzzification
is applied by inverting the fuzzification process. The new
defuzzified membership matrix is given by

U =
⎡

⎣
0 0.9389 0 0.9389 0 0.9389 0 0.9389 0
0 0 0 0 0.9389 0 0 0 0
0.9389 0 0.9389 0 0 0 0.9389 0 0.9389

⎤

⎦

Ifwe assume that ui j ≥ 0.75, the clustered result of the image
C is shown in the Table 1.

Table 1 Clustering result of the
image C by IVIFCM

Image pixels Cluster ID

c12, c21, c23, c32 1

c22 2

c11, c13, c31, c33 3

4.3 Separation of tumor region from appropriate cluster

From the four clustered output, cluster center with tumor
region is determined by choosing cluster center with maxi-

mum value. Let us discuss about why one should select an
image with maximum cluster center and whether this hap-

pens for all the cases of images? T1-weighted, T2-weighted,
and proton density-weighted images are the three main types
ofMR images. For example, in T2-weightedMR slices,WM

appears as dark gray, GM as gray, and CSF and tumor cells
appear as bright pixels. Hence one can consider a cluster
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which is having maximum cluster center that corresponds to
bright pixels in the image and this region represents the CSF
and the tumor. Then it is necessary to separate tumor from
the CSF, for such purpose H-max transformation has been
applied. The tumor region will have brightest pixel value in
T2-weighted MR images, but this does not happen in the
case of T1-weighted MR images. For such cases, contrast-
enhanced brain MR images can be utilized for clustering.
In the contrast-enhanced images tumor regions have enough
brightness, so in this case also one can find the clustered
image with tumor by searching a cluster with maximum
cluster center. After choosing an appropriate cluster, it is
necessary to segment exact tumor region. For this, maxima
transform is used to find tumor position. H-maxima trans-
form Soille (1999) determines the peaks having h intensity
rates greater than the background in that region. It is robust
but highly relies on contrast.

H-maxima transform for an image is generated usingmor-
phological operations such as iterated dilations of an image
and later it is masked. Koh et al. (2009) have defined H-
maxima transform as

Hmaxh (I ) = RI (I − h),

where RI (I − h) is the retraced image by dilating I
with respect to I − h. This inhibits all pixels whose
intensity rate is lesser than the threshold when the value
is compared to their neighbors. Then find all regional
maximum of image and separate the pixels of constant
intensity. Maxima operation is carried out using the equa-
tion

Tmaxh (I ) = Rmax
(
Hmaxh (I )

)
(9)

Regional maxima of H-maxima transformed cluster image
having tumor is used to eliminate local pixels of inten-
sity less than h from the background. Using Eq. (9),
final exact tumor region is extracted without edema and
other non-tumor region. For the brain MR slice numbered
040, the clustered image with tumor and the extracted
tumor region using H-maxima transform are shown in
Fig. 4.

5 Qualitative metrics

Evaluation metrics are used to access the performance of
segmentation algorithm (Sokolova and Lapalme 2009) and
one of the commonly used metrics is Dice coefficient.
Various performance metrics are also available in litera-
ture.

Fig. 4 H-maxima transformation of the brain MR slice 040

5.1 Dice coefficient

Dice similarity coefficient is used to show the similarity level
of extracted tumor region with respect to the manually seg-
mented tumor region. It is mathematically formulated as

Dice = 2|A⋂
B|

|A| + |B| ,

where A is manually segmented tumor region and B is the
extracted tumor region obtained using the proposed method.
If the Dice coefficient value is 1, then it shows the perfect
overlap between A and B. Else if its value is 0, then there is
no overlap between A and B.

5.2 Precision

It computes the percentage of positive prediction made by
the classifier that are correct.

Precision = tp

tp + fp
,

where true positive (tp) is the number of positive classes
correctly classified as positive and false positive (fp) is the
number of positive classes incorrectly classified as positive.

5.3 Recall

It computes the percentage of positive patterns that are cor-
rectly detected by the classifier.

Recall = tp

tp + fn
,

where true positive (tp) is the number of positive classes
correctly classified as positive and false negative (fn) is the
number of positive classes incorrectly classified as negative.
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Fig. 5 Segmented results of
brain MR slices from 023 to 035
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Fig. 6 Segmented results of brain MR slices from 036 to 047
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Table 2 Dice coefficient
Brain MR slice HT KM FCM IFCM ITFCM IVIFCM

023 0.8624 0.9205 0.9280 0.9795 0.9621 0.9957

024 0.8522 0.9064 0.9104 0.9709 0.9705 0.9871

025 0.8408 0.8959 0.8948 0.9486 0.9478 0.9661

026 0.8428 0.8915 0.8930 0.9383 0.9377 0.9548

027 0.8387 0.8727 0.8717 0.9242 0.9266 0.9420

028 0.8361 0.8701 0.8685 0.9268 0.9317 0.9415

029 0.8225 0.8731 0.8674 0.9280 0.9301 0.9432

030 0.8167 0.8876 0.8820 0.9319 0.9344 0.9478

031 0.8156 0.8747 0.8727 0.9174 0.9193 0.9344

032 0.8107 0.8713 0.8731 0.9199 0.9231 0.9478

033 0.8118 0.8678 0.8678 0.9117 0.9134 0.9330

034 0.8160 0.8774 0.8714 0.9168 0.9185 0.9326

035 0.8240 0.8785 0.8703 0.9194 0.9210 0.9298

036 0.8332 0.8877 0.8819 0.9301 0.9315 0.9364

037 0.8238 0.8838 0.8733 0.9259 0.9286 0.9335

038 0.8245 0.8770 0.8767 0.9212 0.9229 0.9231

039 0.8419 0.8978 0.8980 0.9389 0.9418 0.9450

040 0.8523 0.8991 0.8941 0.9391 0.9413 0.9451

041 0.8605 0.9030 0.8968 0.9368 0.9403 0.9440

042 0.8669 0.9065 0.9046 0.9364 0.9381 0.9438

043 0.8807 0.9203 0.9288 0.9568 0.9568 0.9621

044 0.8974 0.9324 0.9366 0.9562 0.9573 0.9605

045 0.9072 0.9271 0.9309 0.9480 0.9482 0.9551

046 0.9304 0.9474 0.9432 0.9665 0.9370 0.9758

047 0.9473 0.9621 0.9574 0.9780 0.9760 0.9872

5.4 Precision–recall and ROC curves

Precision–recall curves show the relationship among preci-
sion and recall as segmentation threshold varies.

The receiver operating characteristic (ROC) is a graph,
which renders the relationship between true-positive rate
(TPR) and false-positive rate (FPR) as there is a variation in
threshold. For a classifier, it depicts that TPR cannot increase
without an increasing FPR.

TPR = Recall

FPR = fp

Total negative

5.5 Area of tumor

The dimension of each slice in the datasets is 256 × 256
pixels and slice thickness is 5 with 260 mm field of view.
Therefore, the pixel dimension is fixed to 1 mm × 1 mm.

Area of one pixel A = H × V, where H and V represent
the horizontal and vertical dimension of the pixel = 1mm×
1 mm = 1 mm2.

Area of tumor region in the 2D slice = A × Number of
(white) pixels in the segmented output image.

6 Experimental results and discussions

The datasets for experimental analysis were obtained from
KGS Advanced MR and CT Scan, Madurai, Tamil Nadu,
India. Tests are executed on numerous brain MR image
datasets having tumor.Among them, only one datasetwith 55
slices (given in Fig. 2) is presented in this paper to show the
performance of the proposed algorithm. After noise removal,
intensity inhomogeneity correction, and standardization of
intensities in the brain MR image dataset, the dataset is fed
into brain extraction process for removing non-brain regions.
Skull-stripped brain MR image dataset obtained after pre-
processing has shown in Fig. 3. Skull-stripped brain MR
image data are then fed into the clustering process by fix-
ing the cluster center c as 4.

For each slice four clustered outputs are obtained. In
order to find a cluster which is having tumor, find a clus-
ter class with maximum cluster center when compared to
other three cluster classes and that cluster class is consid-
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Table 3 Tumor area

Brain MR slice HT × 10−3 m2 KM × 10−3 m2 FCM × 10−3 m2 IFCM × 10−3 m2 ITFCM × 10−3 m2 IVIFCM × 10−3 m2

023 0.0011 0.1365 0.0776 0.0137 0.0250 0.0012

024 0.0047 0.1460 0.0919 0.0165 0.0157 0.0041

025 0.0112 0.1526 0.0970 0.0228 0.0229 0.0112

026 0.0294 0.1616 0.0897 0.0280 0.0300 0.0284

027 0.0385 0.1656 0.1021 0.0316 0.0301 0.0372

028 0.0437 0.1776 0.1080 0.0358 0.0304 0.0423

029 0.0353 0.1773 0.1076 0.0343 0.0342 0.0352

030 0.0364 0.1866 0.1152 0.0468 0.0424 0.0353

031 0.0362 0.1879 0.1206 0.0544 0.0504 0.0356

032 0.0307 0.1954 0.1277 0.0666 0.0621 0.0314

033 0.0537 0.1992 0.1311 0.0675 0.0504 0.0528

034 0.0502 0.1981 0.1209 0.0600 0.0559 0.0486

035 0.0533 0.1901 0.1202 0.0544 0.0552 0.0532

036 0.0539 0.1825 0.1137 0.0493 0.0462 0.0510

037 0.0522 0.1856 0.1109 0.0410 0.0423 0.0504

038 0.0497 0.1804 0.1089 0.0394 0.0391 0.0494

039 0.0449 0.1684 0.0979 0.0389 0.0385 0.0431

040 0.0462 0.1593 0.0943 0.0383 0.0323 0.0446

041 0.0433 0.1452 0.0859 0.0334 0.0280 0.0413

042 0.0354 0.1328 0.0759 0.0274 0.0283 0.0361

043 0.0233 0.1186 0.0717 0.0168 0.0220 0.0213

044 0.0200 0.0990 0.0577 0.0128 0.0112 0.0208

045 0.0235 0.0873 0.0542 0.0106 0.0110 0.0234

046 0.0119 0.0658 0.0434 0.0159 0.0334 0.0119

047 0.0058 0.0508 0.0341 0.0134 0.0145 0.0063

ered as a clustered tumor region in brain MR slice. Now
H-maxima transformation is applied to the resulting brain
MR slices with tumor for the extraction of tumor region.
Brain MR slices numbered from 023 to 047 in the given
source brain MR dataset are found to be having tumor and
are operated by H-maxima transformation. Figure 4 is drawn
to show how H-maxima transformation separates the tumor
from the clustered brain MR slices. The result of this trans-
formation mechanism is shown only for a single brain MR
slice numbered 040 and likewise this is done to rest of the
slices.

Figures 5 and 6 show the segmented results of the brain
MR slices with tumor obtained by various methods such as
HT Natarajan et al. (2012), KM Juang and Wu (2010), FCM
Chuang et al. (2006), IFCM Chaira (2011), ITFCM Hwang
and Rhee (2007), and the proposed IVIFCM method. First
column of Figs. 5 and 6 shows the numbers of brain MR
slices which have tumor. The results of manually segmented
source brain MR slices are shown in the second column of
Figs. 5 and 6. Third column of Figs. 5 and 6 portrays the seg-
mented tumor regions using the proposed IVIFCM method

from the brain MR slices with tumor. Fourth column of Figs.
5 and 6 depicts the segmented output obtained using HT.
Brain MR slices with tumor are segmented using KM algo-
rithm and are picturized in fifth column of Figs. 5 and 6.
One has to note that KM method takes much time for clus-
tering process than other five methods and also the resulting
images are over segmented when compared to manually seg-
mented tumor region. Sixth column of Figs. 5 and 6 shows
the segmented output obtained using FCM algorithm. From
the results obtained using FCM algorithm, it seems to be
better than HT and KM method of segmentation. Similarly,
brainMR slices with tumor in the given dataset are clustered.
Tumor regions are extracted using IFCM and ITFCM algo-
rithms which are depicted in seventh and eighth column of
Figs. 5 and 6, respectively.

Dice coefficient of the segmented results of the tumorous
brain MR slices is calculated with respect to their manually
segmented brain MR slices to show the accuracy of the seg-
mentation process of various methods and whose values are
given in Table 2. First column of Table 2 shows the slice
numbers which is having tumor in the given dataset. Second
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Fig. 7 Precision–recall graphs of brain MR slices from 023 to 034. a
Precision-recall graph of brain MR slice 023. b Precision-recall graph
of brain MR slice 024. c Precision-recall graph of brain MR slice 025.
d Precision-recall graph of brainMR slice 026. e Precision-recall graph
of brain MR slice 027. f Precision-recall graph of brain MR slice 028. g

Precision-recall graph of brain MR slice 029. h Precision-recall graph
of brain MR slice 030. i Precision-recall graph of brain MR slice 031.
j Precision-recall graph of brain MR slice 032. kPrecision-recall graph
of brain MR slice 033. l Precision-recall graph of brain MR slice 034

to seventh columns of Table 2 show the values of Dice coef-
ficient of the segmented image obtained by HT, KM, FCM,
IFCM, ITFCM, and the proposed IVIFCM method, respec-
tively. It is clearly seen that the values of Dice coefficient
obtained by the proposed method are high (quoted in bold
font) when compared to other five existing methods.

Tumor area of the segmented brainMRslices is computed.
Their areas are given in Table 3 for all the segmented outputs
obtained manually along with the other five methods and the

proposed method. The best area which is nearer to the area of
the tumor obtained through manual segmentation is casted in
bold font. Also table shows that the proposed method is the
best to find out the tumor region exactly and automatically
than the other five existing methods. Tables 2 and 3 quanti-
tatively show that the proposed IVIFCM algorithm is better
than other existing methods.

Precision–Recall graphs for the tumorous brainMR slices
numbered from 023 to 034 and from 035 to 047 in the given
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Fig. 8 Precision–recall graphs of brain MR slices from 035 to 047. a
Precision-recall graph of brain MR slice 035. b Precision-recall graph
of brain MR slice 036. c Precision-recall graph of brain MR slice 037.
d Precision-recall graph of brainMR slice 038. e Precision-recall graph
of brain MR slice 039. f Precision-recall graph of brain MR slice 040. g

Precision-recall graph of brain MR slice 041. h Precision-recall graph
of brain MR slice 042. i Precision-recall graph of brain MR slice 043. j
Precision-recall graph of brain MR slice 044. k Precision-recall graph
of brain MR slice 045. l Precision-recall graph of brain MR slice 046.
m Precision-recall graph of brain MR slice 047

dataset are picturized in Figs. 7a–l and 8a–m, respectively.
ROC curves of the brain MR slices numbered from 023
to 034 and from 035 to 047 are shown in Figs. 9a–l and
10a–m, respectively. The Precision–Recall and ROC curves
vividly describe the effectiveness of the proposed method in
all aspects than all other five existing methods.

The proposed clusteringmethod is not only tested on brain
MR image slices with tumor but it is also tested on normal
brain MR image for checking efficiency of clustering, which

contains three regions namely white matter, gray matter,
and cerebrospinal fluid. Precision–Recall and ROC graphs
of segmented white matter, gray matter, and cerebrospinal
fluid by five various methods are shown in the Fig. 11. Both
graphs show that IVIFCM algorithm classifies brain region
efficiently than other existing methods. Average dice coef-
ficient for 30 normal brain MR slices is shown in Fig. 12,
which also clearly portrays the performance of the proposed
clustering algorithm.
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Fig. 9 ROC curves of brain MR slices from 023 to 034. a ROC curve
of brain MR slice 023. b ROC curve of brain MR slice 024. c ROC
curve of brain MR slice 025. d ROC curve of brain MR slice 026. e
ROC curve of brain MR slice 027. f ROC curve of brain MR slice 028.

g ROC curve of brain MR slice 029. h ROC curve of brain MR slice
030. i ROC curve of brain MR slice 031. jROC curve of brain MR slice
032. k ROC curve of brain MR slice 033. l ROC curve of brain MR
slice 034
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Fig. 10 ROC curves of brain MR slices from 035 to 047. a ROC curve
of brain MR slice 035. b ROC curve of brain MR slice 036. c ROC
curve of brain MR slice 037. d ROC curve of brain MR slice 038. e
ROC curve of brain MR slice 039. f ROC curve of brain MR slice 040.

g ROC curve of brain MR slice 041. h ROC curve of brain MR slice
042. i ROC curve of brain MR slice 043. jROC curve of brain MR slice
044. k ROC curve of brain MR slice 045. l ROC curve of brain MR
slice 046. m ROC curve of brain MR slice 047
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Fig. 11 Precision–recall and ROC curves of normal brain MR image.
a Precision-recall graph of segmented white matter. b ROC curve of
segmented white matter. c Precision-recall graph of segmented gray

matter. dROC curve of segmented gray matter. e Precision-recall graph
of segmented CSF. f ROC curve of segmented CSF
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Fig. 12 Average dice coefficient of 30 normal brain MR images

7 Conclusion

A new c-means clustering algorithm has been presented to
deal the problem of choosing the values of membership func-
tion to symbolize imprecise data with application to medical
field. From the proposed method one can choose the value
of membership function as an interval instead of a single
value, which has obtained using IVIFSs constructed from
IFSs. Then IVIFSs generated from the brainMR slices of the
given dataset have been clustered by the proposed IVIFCM
algorithm. Then tumor region in the clustered output has
been found exactly using H-maxima transform. Experimen-
tal results have been provided to prove that the proposed
algorithm is better than other existing algorithms and tables
quantitatively reveal the efficiency of the proposed method.
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