
Computer Vision and Image Understanding 117 (2013) 1027–1035
Contents lists available at SciVerse ScienceDirect

Computer Vision and Image Understanding

journal homepage: www.elsevier .com/ locate/cviu
Graph cut segmentation with a statistical shape model in cardiac MRI
1077-3142/$ - see front matter � 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.cviu.2013.01.014

⇑ Corresponding author.
E-mail addresses: damien.grosgeorge@univ-rouen.fr (D. Grosgeorge), caroline.

petitjean@univ-rouen.fr (C. Petitjean), su.ruan@univ-rouen.fr (S. Ruan).
D. Grosgeorge a, C. Petitjean a,⇑, J.-N. Dacher b, S. Ruan a

a LITIS EA 4108, Université de Rouen, 22 bd Gambetta, 76183 Rouen Cedex, France
b INSERM U1096, Université de Rouen, 1 rue de Germont, 76031 Rouen Cedex, France
a r t i c l e i n f o

Article history:
Received 5 February 2012
Accepted 8 January 2013
Available online 30 April 2013

Keywords:
Image segmentation
Graph cut
Shape prior
MRI
Cardiac ventricle
a b s t r a c t

Segmenting the right ventricle (RV) in magnetic resonance (MR) images is required for cardiac function
assessment. The segmentation of the RV is a difficult task due to low contrast with surrounding tissues
and high shape variability. To overcome these problems, we introduce a segmentation method based on a
statistical shape model obtained with a principal component analysis (PCA) on a set of representative
shapes of the RV. Shapes are not represented by a set of points, but by distance maps to their contour,
relaxing the need for a costly landmark detection and matching process. A shape model is thus obtained
by computing a PCA on the shape variations. This prior is registered onto the image via a very simple user
interaction and then incorporated into the well-known graph cut framework in order to guide the seg-
mentation. Our semi-automatic segmentation method has been applied on 248 MR images of a publicly
available dataset (from MICCAI’12 Right Ventricle Segmentation Challenge). We show that encouraging
results can be obtained for this challenging application.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Magnetic resonance imaging (MRI) is increasingly used as a
standard tool in the evaluation of the right ventricle (RV) function
[14]. The segmentation of the RV cavity is a prerequisite to the
computation of clinical parameters. Although some relatively effi-
cacious methods are commercially available for segmenting the
left ventricle (LV) on MR images, such as MASS (Medis, Leiden,
The Netherlands) [40] and Argus (Siemens Medical Systems, Ger-
many) [24], the segmentation of the RV is currently performed
manually in clinical routine. This lengthy and tedious task requires
about 20 min by a clinician and is also prone to intra and inter-ex-
pert variability. An automatic segmentation method would avoid
these drawbacks, but has to deal with the following issues: (i) fuzz-
iness of the cavity borders due to blood flow and partial volume ef-
fect, (ii) the presence of trabeculations (wall irregularities) in the
RV, which have the same grey level as the surrounding myocar-
dium, (iii) the complex crescent shape of the RV, which varies
according to the imaging slice level (see Fig. 1). This is probably
one of the reasons why RV functional assessment has long been
considered secondary compared to that of the LV, leaving the prob-
lem of RV segmentation wide open [27].

The literature of RV segmentation is thus much less abundant
than the one of LV segmentation. Most of RV segmentation meth-
ods are based on a joint segmentation of both ventricles. These
methods take benefit from the relative positions of the ventricles
and the similarity of the gray levels in their respective blood cavi-
ties. For example, this information is used within active contours
[29], or within a framework combining thresholding, clustering
and morphological operations [4]. Another possibility is to use
higher-level prior anatomical information to guide the segmenta-
tion process, such as a biomechanical model [33] or statistical
shape models. In this latter case, the statistical shape model maybe
a Point Distribution Model (PDM), obtained by a principal compo-
nent analysis (PCA) on the set of aligned shapes, and integrated
into the well-known active shape and appearance modeling frame-
work [6]. This technique ensures to have a realistic solution since
only shapes similar to the training set are allowed, but at the ex-
pense of building a training data set with manually generated seg-
mentations. It has been applied to the segmentation of both LV and
RV in [23,25]. Statistical prior information may also take the form
of an heart atlas. An atlas describes the different structures present
in a given type of image. The segmentation of the ventricles is ob-
tained by registering a single [19] or multiple atlases [15] onto the
image to be segmented.

Shape prior based segmentation: More generally, automatic
organ segmentation can benefit from the use of information
regarding shape and/or gray levels, to increase its robustness and
accuracy [8]. This especially applies if the nature of the shape does
not change much from an example/individual to another. Making
use a shape prior for object segmentation involves two steps:

(i) The definition of a mathematical shape representation. In
the literature, shapes are usually represented by an explicit
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Fig. 1. Typical cardiac MR images. The RV is outlined in red (hand drawn by an expert). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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model such as a point distribution model (PDM) [6] or an
implicit one e.g. signed distance function [16]. We discuss
both representations, the PDM vs. the SDF in Section 2;

(ii) The definition of the segmentation framework. Initially pro-
posed in the deform models framework, the PDM represen-
tation has been mostly used in the active shape and
appearance modeling approaches [6]. The SDF representa-
tion allowed to easily extend the use of a shape prior into
variational frameworks [16,7], and more recently, the graph
cut framework [35,11]. In this paper, our aim is to take
advantage of the versatility and the low computational cost
of the graph cut, in order to propose an efficient prior-based
segmentation approach for the RV in cardiac MRI as
described in Section 3.

Graph cut with shape prior: The graph cut approach is based
on the global optimization of a cost function and is very computa-
tionally efficient in 2D [1]. It is also flexible enough to easily take
into account shape information. As of today, its use in medical im-
age segmentation has been restricted to a few applications. In [12],
a ‘‘blob’’ is created to constraint the segmentation of the entire
heart in Computer Tomography (CT) cardiac scans. The shape mod-
el may be either an arbitrary fixed template [11], or a parametric
curve: an elliptical mask is used for segmenting circular structures
(blood vessel) in MRI [35], and circles are used for the LV segmen-
tation in cardiac MRI [46]. But the object to be segmented might
not be easily described with a parametric shape. Statistical shape
models take into account the variabilities of the shape, at the ex-
pense of building a set of manually segmented shapes [36,45].
The use of a specific shape model often imposes an iterative pro-
cess, with alternates between shape model registration and
graph-cut based segmentation, which can be computationally
expensive. For example, in [45], the method consists in alterna-
tively searching the PCA, GMM and the pose parameters using gra-
dient descent (maximization step) and segmenting by graph cut
using the current shape from the PCA (estimation step), as in an
EM framework. Our idea is to design a statistical shape model
and to design a graph cut based segmentation framework without
the need for an iterative process.

In the remainder of the article, we introduce in Section 2 statis-
tical shape models and two possible representations: point-wise
based and signed distance function-based. We propose a shape
representation, that will be used for the shape prior. We then recall
graph cut basics for image segmentation and introduce our method
in Section 3. Experiments provided in Section 4 include a compar-
ison to a state of the art, namely Freedman and Zhang’s approach
[11]. Conclusion and future works are drawn in Section 5.
2. Representation of statistical shape models

There has been a lot of work on the building and the
use of statistical shape models for image segmentation
[13,3,31,34,44,17,10]. The use of such models can indeed be of
great help when the boundaries of the objet are ill-defined with
occlusions. Point-distribution model (PDM) is one of the most
widely used representation, used in the ASM framework. The
PDM is an explicit shape representation: objects are represented
by a finite number of landmarks [5,43,20]. The PDM requires to
have point correspondences before performing an analysis. A prob-
lem arises in practice when dealing with PDM. The number of
available shapes in the training set is often insufficient, where a
manual labeling of medical data can be very tedious while estab-
lishing correspondences can also be very challenging. This process
is prone to variability if manual, and prone to detection error if
automatic.

To address this problem, another representation consists in
considering the shape as a zero-level set and the values of the
remaining voxels by their shortest (usually Euclidian) distance
to the boundary [16,7]. This shape representation does not re-
quire point correspondences, the shape variability being implic-
itly represented by the distance variability. Eigenshape
decomposition using SDF implicit representation provides toler-
ance to slight misalignment of object features, since slightly mis-
aligned pixels in a SDF are generally highly correlated. But using a
linear (Euclidean) vector space to compute and combine eigen-
shapes might be an invalid space [30]. However, as point out in
[16], the surfaces generally still have advantageous properties of
smoothness, local dependence, and zero level sets consistent with
the combination of original curves with the use of SDF
representation.

In the following section, a statistical shape model based on dis-
tance map is proposed, derived from SDF as previously introduced
in [16,32]. A comparison with the PDM is carried out to show the
similarity of both models.

2.1. Shape representation based on distance function

PDM is an efficient model to represent shape variability. Our
idea is to build a statistical shape model which does not need to
match corresponding points, but can represent the shape in a sim-
ilar way as PDM does, as initially proposed in [16]. Consider a set of
n two-dimensional binary aligned images of size H �W composed
of shapes of the same class of object. The SDF to each curve is clas-
sically defined as H �W samples encoding the distance to the
nearest point on the curve, with for example negative values inside
the object. Let Z be the matrix of SDF of each curve, where each col-
umn vector are the H �W distance samples to the corresponding
curve and where each row are the distances for the same location
point for each curve of the training set. The objective is to extract
shape variations of this matrix Z. The average distance map is con-
sidered as the reference by averaging each row of Z:

q ¼ 1
n

Xn

i¼1

Z:;i ð1Þ
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qis a vector of length H.W. To capture the variability, we propose a
different approach for distance function representation from the
one used in the literature [16,37]. Usually, a mean signed distance
map is chosen as the reference, which implies that the PCA is per-
formed in the distance function space. As the mean of signed dis-
tances is not a signed distance, we reset this map to the distance
values. We thus propose to calculate first the mean shape from
the mean signed distance maps and then compute its signed dis-
tance map. Let p be a point of the image domain included in R2.
The binary mean shape is defined as:

vqðpÞ ¼
�1 if qðpÞP 0
þ1 if qðpÞ < 0

8><
>: ð2Þ

Let C be the set of the curve points of the binary mean shape vq(p).
The reference l is computed by determining distances to the
contour:

lðpÞ ¼ vqðpÞ � inf
q2C
jp� qj ð3Þ

Individual shapes are centered:

M ¼ ðZ:;1 � lÞ � � � ðZ:;n � lÞ ð4Þ

In this way, PCA is performed in the space of shape variations. The
variability in shape is captured using a PCA. Using Singular Value
Decomposition (SVD), the covariance matrix, defined by 1

n MMT , is
decomposed to find orthogonal modes of shape variation and corre-
sponding singular values:

1
n

MMT ¼ URUT ð5Þ

where U is a matrix whose column vectors represent the set of
orthogonal modes of shape variation, namely eigenvectors, and R
is a n � n diagonal matrix of corresponding singular values, or
eigenvalues. Note that dimension of 1

n MMT is large and belong num-
ber of pixels, H.W � eH.W. Eigenvectors and eigenvalues computa-
tion of this matrix is computationally expensive. A solution exists
to deal with large sample size in PCA [38].

In the following, we consider eigenvalues and eigenvectors have
been sorted according to size of eigenvalues. Let k 6 n be the num-
ber of modes to consider, which defines the amount of retained
shape variation. Let z be a novel shape of the same class of object,
and ẑ an estimation from z, computed with:

ẑ ¼ lþ
Xk

i¼1

aiUk:;i ð6Þ
Fig. 2. Binary database of 12 alig

Fig. 3. Shape variability of the fighter jet when using the SDF and the PDM. (a) Overlap i
principal mode. The black part is common to both the SDF and the PDM representation. Th
figure is best viewed in color. (For interpretation of the references to colour in this figu
where ai are obtained with:

a ¼ UT
kðz� lÞ ð7Þ

with UT
k being a matrix consisting of the first k columns of U that is

used to project z into the subspace.

2.2. Shape model comparison

An empirical comparison to illustrate the difference between
both representations has been carried out on a dataset of 12 jet
images of size 114 � 114 [37] (Fig. 2). All images are first aligned
to the one of them. Both models are then constructed from the
aligned images, the PDM being computed on ‘ landmarks. The
superposition of both mean shapes and their two principal modes
of variation is shown in Fig. 3, that illustrates a similarity of the
both mean shapes. Both models do not represent the shape vari-
ability in the same space but axes of variation look similar.

In the following, we try to quantify the difference between both
models, when used to describe a novel shape instance. Each shape
of the jet dataset is being reconstructed with both a SDF and a PDM
representation, on a leave-one-out basis: n � 1 shapes are used to
build both shape models and the last one being used for estima-
tion. Note that the PDM consists of ‘ corresponding landmarks
on easily identifiable points. Two standard metrics are then com-
puted to compare the estimated shape and the real one: (i) the Dice
coefficient DM(A, B), an overlap measure between two shapes A
and B defined by:

DMðA;BÞ ¼ 2jA \ Bj
jAj þ jBj ð8Þ

and (ii) the average point-to-curve (P2C) error between two con-
tours, defined by:

P2CðA;BÞ ¼ 1
jAj
X
a2A

min
b2B

dða; bÞ ð9Þ

where jAj denotes the number of points of contour A. Results, shown
in Table 1, provide the overlap rates and P2C error in pixels with a
varying number of points ‘ and a varying number of eigenvectors k
used for the reconstruction. Not surprisingly, reconstruction errors
decrease as k increases. Note as well that the PDM seems to capture
details slightly better than the SDF representation, whatever the
number of points. This can also be observed in Fig. 4, where the
reconstruction of two sample shapes by the two representations
PDM and SDF are illustrated. Although slightly less accurate, in
terms of reconstruction, results obtained by the SDF show that a
ned jet images (from [37]).

mage, (b) ±2r variations of the first principal mode, (c) ±2r variations of the second
e red part is part of the PDM only (‘ = 37). The green part is part of the SDF only. This

re legend, the reader is referred to the web version of this article.)



Table 1
Mean Dice metric (DM) and P2C (P2C) errors (in pixels) between reconstructed shape
and real shape for both the PDM and the SDF representations. DM varies from 0 (total
mismatch) to 1 (perfect match). ‘ is the number of points of the PDM. k is the number
of modes considered for reconstruction.

k = 3 k = 6 k = 10

DM SDF 0.89 ± 0.04 0.91 ± 0.02 0.93 ± 0.02
PDM ‘ = 16 0.92 ± 0.03 0.94 ± 0.02 0.96 ± 0.01
PDM ‘ = 28 0.92 ± 0.03 0.94 ± 0.02 0.96 ± 0.01
PDM ‘ = 38 0.93 ± 0.03 0.94 ± 0.02 0.96 ± 0.01

P2C SDF 1.76 ± 0.49 1.35 ± 0.33 1.02 ± 0.26
PDM ‘ = 16 1.41 ± 0.57 1.06 ± 0.36 0.74 ± 0.23
PDM ‘ = 28 1.38 ± 0.56 1.10 ± 0.42 0.71 ± 0.19
PDM ‘ = 38 1.34 ± 0.51 1.08 ± 0.40 0.79 ± 0.19

Fig. 5. Example of weak constraint imposed on the graph cut segmentation with
calculation of the angle a, allowing the contour (red) to move to a convex shape
(green) (from [12]). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 4. Two sample shapes reconstructed with a PDM (red curve) and a SDF (green
curve). This figure is best viewed in color. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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correct reconstruction of shape can be obtained, without the need
for a costly landmark detection and matching process. In summary,
the SDF representation has the following advantages over the PDM
representation:

� It does not require the positioning of several landmark points, a
process prone to variability if manual, and prone to detection
error if automatic;
� It does not require landmark matching, a prerequisite before

shape analysis, that is difficult to establish;
� It it more robust than the PDM to initial misalignment of the

shapes [16].

This SDF representation is thus retained in our segmentation
method, described in the next section.

3. Graph cut segmentation with shape prior

In this section, we first outline the graph cut segmentation
framework as described in [1]. Then, we introduce the construction
of the shape model based on a PCA and show how it can be inte-
grated into the graph cut cost function.

3.1. Graph cut segmentation

Let us consider the image I as a graph G ¼ hV; Ei, where V is the
set of nodes (pixels) and E the set of edges. Each pair of nodes
ðp; qÞ 2 E in a neighborhood N is connected by a segment called
n-link and weighted by Bp,q, a regularization or boundary term, de-
signed to provide spatial coherence in a neighborhood of pixels.
Bp,q is typically defined as:

Bp;q / exp �ðIp � IqÞ2

2r2

 !
:

1
distðp; qÞ ð10Þ

where Ip and Iq are the gray levels of pixels p and q, dist(p, q) the
Euclidean distance between p and q, and r a constant usually
related to acquisition noise. Consider two additional nodes, called
terminal nodes: the source S representing the object O (in our case,
the RV cavity), and the sink T representing the background B. Each
node p 2 V is connected to the terminal nodes S and T by two
respective segments called t-links and weighted by the so-called re-
gion term, denoted Rp and defined by:

RpðxÞ ¼ � ln PrðIpjxÞ ð11Þ

where Pr(Ipjx) is the likelihood of observing Ip given that pixel p be-
longs to class x.

A cut C in the graph consists in cutting t-links and n-links to
attribute a label O or B to each pixel p of the image, which boils
down to segmenting the image. The energy of a cut C is defined by:

EðCÞ ¼
X
p2V

RpðxpÞ þ k
X

p;q2N
Bp;q:dðxp – xqÞ ð12Þ

where d(xp – xq) is 0 if p and q have the same label, 1 otherwise.
The optimal segmentation is obtained by searching for the cut of
minimal energy. This global search can be very efficiently per-
formed due to mincut-maxflow algorithms, in polynomial time [2].

3.2. Adding the shape prior into the graph cost function

To guide the segmentation process, constraints or models for
the object can be introduced through an additional term in the en-
ergy formulation of Eq. (12). How to incorporate this prior informa-
tion depends on the available information: either the constraints
are weak and are simple assumptions about the general shape of
the object (e.g. convex) or the constraints are strong and concern
a precise shape to find in the image.

Weak constraints. In the literature, the constraints on rough
shapes are specified through the n-links, changing the labeling of
the neighboring pixels under the assumption made. In [9], the val-
ues of the boundary energy Bp, q are modified by prohibiting certain
relative positions of p and q, thus promoting compact shapes. The
same methodology is used in [41] for more general shapes than
convex shapes: it requires that if C is the center of the shape and
p a point in the shape, any point q on the line (C, p) after p be also
inside the shape. Note that this method has an interesting effect
countering shrinkage typically seen in the graph cut segmentation,
but implies significant discretization problems. Requiring that the
result of segmentation is convex can also be done through an addi-
tional energy term as 1 � cos (a), where a is the angle between (p,
q) and (p, C) where C is the center of the object designated by a user
click [12]. This shows how important angles are penalized by high
values of energy, encouraging roughly convex cuts in the graph
(Fig. 5).

Strong constraints. When a model of the object is available, it
is generally imposed on segmentation through the t-links, includ-
ing an additional term in the energy formulation of the graph
which may be similar to the regional term Rp. The classical Rp for-
mulations are changed by replacing the intensity models of the
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object by labels of the shape prior [35] or a map of probability
[36,21], in which case the energy associated with the prior takes
the form:

EsðxpÞ ¼ � lnðPrAðxpÞÞ

where PrA(xp) is the probability of a pixel p belongs to the class xp

depending on the model. Note that the use of a shape prior implies a
difficult problem of matching the model with the image. The regis-
tration can be done iteratively and therefore computationaly expen-
sive: the pose parameters estimation and the segmentation
calculation are alternated [45,46,42,21]. When registration is a
prequisite for the segmentation, process is based on a user interac-
tion [11,36]. The model is defined in this case by a distance map or
an atlas. Note that these models are limited to represent judiciously
variability in shape.

3.3. Our graph cut segmentation framework using shape prior

A shape model is constructed via a PCA, and summarized in a
single map. This map is registered to the image via light user input
and is incorporated in the graph cost function. An overview of the
method is presented in Fig. 6.

Let us consider N binary shapes of the RV endocardium, ob-
tained by manually segmenting the RV on N cardiac MR images.
Fig. 7. Computation steps of the prior map. (a) The binary mean shape, (b) and (c) extrem
variation for the second axis, (e)–(g) distances to the mean shape for the 3 first axis, (h) fin

Fig. 6. Overview of the proposed method with shape prior.
For each binary shape, a signed distance map /i to the RV contour
is computed. Shapes are rigidly aligned on an arbitrary reference
shape and averaged into a mean shape �U (Fig. 7a):

�U ¼ 1
N

XN

i¼1

/i ð13Þ

Since averaging does not ensure to obtain a distance function,
we propose to reset �U to a SDF to the RV contour. A PCA is then
performed on the set of centered shapes and yields eigenshapes
denoted by Ui, with i = 1. . .N, and their associated eigenvalues, de-
noted ki [37]. A number k 6 N of eigenshapes is retained, with k
chosen large enough to account for the most important shape vari-
ations present in the training set.

Let us now describe how a single prior map is computed from
the PCA. Our aim is to isolate areas of variation of the mean shape,
for each principal axis. We thus generate highly deformed shape
instances for each axis (Fig. 7b and c):

c�i ¼ �U� 3
ffiffiffiffi
ki

p
Ui; for all i ¼ 1 . . . k ð14Þ

Then, the areas of variation of the mean shape for eigenmode i may
be obtained with an exclusive OR between the binary mean shape
and the binarized c�i :

CiðpÞ ¼ Hð �UÞ � H cþi
� �

þHð �UÞ � H c�i
� �

; for all i ¼ 1 . . . k ð15Þ
al areas of variation of the mean shape for the second axis, (d) final mask for areas of
al prior map (the darker the higher the distance). This figure is best viewed in color.

For the prior map, the darker the higher the distance.



Fig. 8. Typical seeds from the user for object (green) and background (red), used for original graph cut method and Freedman and Zhang’s method. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

1 http://www.litislab.eu/rvsc.
2 Available online at http://pub.ist.ac.at/�vnk/software.html.
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where Hð�Þ is the Heaviside function. Ci is a binary map that con-
tains areas of variation of the mean shape, for eigenmode i
(Fig. 7d). This map is superimposed to the distance values of the
mean shape �U (Fig. 7e and g):

PMiðpÞ ¼ CiðpÞ � �U; for all i ¼ 1 . . . k ð16Þ

The k distance maps are averaged into a single distance map
(Fig. 7h):

PSðpÞ ¼
1
k

Xk

i¼1

PMiðpÞ ð17Þ

PS includes a distance based region where the contour is ex-
pected to be and the complementary region filled with null values.

Now how can this prior map be integrated into the graph cut
framework? In the literature, additional energy terms on the t-links
[36,21] or the n-links [11] are added to the graph cost function. In
any case, the shape prior must be rigidly registered onto the image
to be segmented (see Section 4). We suggest that the shape prior
contribute to weighting both t-links and n-links. The region term
Rp can straightforwardly be defined with:

RS
pðOÞ¼

� lnðPrðOjIpÞÞ if PSðpÞ– 0
þ1 if PSðpÞ¼0 andHð �UðpÞÞ¼1 ðBackgroundÞ
0 if PSðpÞ¼0 andHð �UðpÞÞ¼0 ðObjectÞ

8><
>:

ð18Þ

RS
pðBÞ¼

� lnð1�PrðOjIpÞÞ if PSðpÞ– 0
0 if PSðpÞ¼0 andHð �UðpÞÞ¼1 ðBackgroundÞ
þ1 if PSðpÞ¼0 andHð �UðpÞÞ¼0 ðObjectÞ

8><
>:

ð19Þ

with PrðOjIpÞ a posterior probability model computed from the im-
age gray level pixels p such as PSðpÞ ¼ 0 and Hð �UðpÞÞ ¼ 0.

Our shape prior is contour-based and may be added as a prior
term weighting n � links. We thus propose to add a new frontier
term denoted by BS

p;q and defined by:

BS
p;q ¼

PSðpÞ þ PSðqÞ
2

ð20Þ

The final energy of a cut C for a graph integrating a shape prior is
then:

EðCÞ ¼ k
X

p;q2N
Bp;q þ cBS

p;q

� �
:dðxp – xqÞ þ

X
p2V

RS
pðxpÞ ð21Þ

where Bp,q is defined with Eq. (10), k weights the relative contribu-
tions of the n � link and t � link terms and c weights the frontier
shape prior term BS

p;q and the image frontier term Bp,q.
4. Experimental results

4.1. Cardiac MR images

Our method has been applied to the datasets of the MICCAI
2012 Cardiac MR Right Ventricle Segmentation Challenge
(RVSC).1 Images have been collected at Rouen University Hospi-
tal, as part of the clinical routine. The image database includes
491 short-axis MR images acquired on 32 patients with diag-
nosed pathologies, who gave written informed consent. For each
patient, two volumes a total of 16 images (in average) are avail-
able at two time points: 9 images (or slices) at End Diastole (ED,
time of maximum filling) and 7 images at End Systole (ES, time
of greatest contraction). Training set and Test1 set include both
16 patients. Cardiac images have been zoomed and cropped to
a 256 � 216 (or 216 � 256) pixel ROI, leaving the LV visible for
joint ventricle segmentation, if necessary.

Manual segmentation of the endocardium was performed by a
cardiac radiologist, with the convention that trabeculae and papil-
lary muscles were included in the RV cavity. For more information
on the data, please refer to [28].
4.2. Shape model construction and method parameterization

The shape models are built based exclusively on the Training
Set. There is one model per time point (ED or ES), and several
models describing the slice level from base to apex: 6 for ED, 5
for ES. Each of the 11 PCA is performed using between 16 and
32 images. Since size of each eigenvalue indicates the amount
of importance its corresponding eigenvector has in determining
the shape, we have empirically chosen k to keep 99% of mean
shape variations. This corresponds to 7–10 eigenvectors depend-
ing on the slice level. Preliminary registration is performed by
manually positioning two anatomical landmarks on the inter-
ventricular septum (Fig. 6). We have chosen our landmarks
based on two criteria, (i) a minimal user interaction, (ii) easily
identifiable anatomical landmarks by expert. Based on these cri-
teria, the choice of two points on the junction of the septum to
register the model on the 2D images seems to be consistent.
Parameters are derived empirically from the training set of 16
patients: r = 10 and k = 100 for both ED and ES, c = 0.001 for
ED and c = 0.005 for ES. The implementation of Boykov and Kol-
mogorov of the mincut-maxflow algorithm2 is used to compute
the cut of minimal cost in the graph [2].

http://www.litislab.eu/rvsc
http://pub.ist.ac.at/~vnk/software.html
http://pub.ist.ac.at/~vnk/software.html


Table 2
Mean (±standard deviation) Dice Metric (DM) and Point to Curve Distance (P2C, in mm) between automatic and manual delineation of the contour at ED and ES from base (B) to
Apex (A) for endocardium.

Our method Freedman’s method [11] Original graph cut [1]

Dice P2C (mm) Dice P2C (mm) Dice P2C (mm)

B 0.91 ± 0.09 2.25 ± 1.86 0.87 ± 0.12 4.37 ± 4.12 0.86 ± 0.12 10.99 ± 6.78
0.90 ± 0.10 2.31 ± 1.76 0.90 ± 0.09 3.80 ± 3.49 0.88 ± 0.09 10.34 ± 8.12
0.88 ± 0.12 2.11 ± 1.80 0.80 ± 0.18 7.55 ± 7.34 0.77 ± 0.19 15.29 ± 10.61

E 0.83 ± 0.10 2.55 ± 1.28 0.75 ± 0.19 9.87 ± 9.48 0.71 ± 0.20 20.01 ± 12.40
D 0.81 ± 0.12 2.39 ± 1.39 0.66 ± 0.23 12.73 ± 11.26 0.61 ± 0.24 23.62 ± 13.54

A 0.70 ± 0.18 2.27 ± 1.35 0.56 ± 0.21 12.24 ± 11.14 0.48 ± 0.22 29.62 ± 14.29
Mean 0.83 ± 0.15 2.32 ± 1.57 0.74 ± 0.22 8.77 ± 9.37 0.70 ± 0.24 19.22 ± 13.67

B 0.84 ± 0.14 2.89 ± 2.46 0.83 ± 0.12 7.12 ± 6.68 0.83 ± 0.08 16.97 ± 9.84
0.82 ± 0.15 2.85 ± 1.67 0.75 ± 0.17 9.06 ± 8.24 0.74 ± 0.21 16.47 ± 9.77
0.73 ± 0.19 3.59 ± 1.98 0.65 ± 0.24 9.67 ± 9.60 0.64 ± 0.23 18.07 ± 11.62

E 0.66 ± 0.19 2.96 ± 1.28 0.56 ± 0.21 11.62 ± 10.01 0.50 ± 0.21 23.59 ± 13.20
S A 0.52 ± 0.21 2.86 ± 1.57 0.39 ± 0.22 19.30 ± 18.79 0.40 ± 0.16 32.30 ± 16.43

Mean 0.70 ± 0.22 3.05 ± 1.82 0.61 ± 0.25 12.00 ± 12.98 0.60 ± 0.24 22.26 ± 14.28

Bold values indicate best values for each column.

Fig. 9. Segmentation results obtained with automatic algorithm (green) and manual ground truth (red) for Patient 20 of Test1 at ED (from base to apex). Top: our method,
middle: Freedman and Zhang’s method [11], bottom: original Graph Cut [1]. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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4.3. Segmentation results

Our segmentation algorithm is run on the Test1 Set which con-
tains 16 unseen patients. Our method is compared to one of the
first methods for graph cut segmentation with shape prior, as pro-
posed by Freedman and Zhang [11]. Their method consists of using
a single shape template described by an unsigned distance map �/.
We have also compared our method to the original graph cut [1].
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Note that both methods require object and background seeds for
shape model matching (only in [11]), object and background gray
level modeling, and are used as hard constraints in the graph. In
average, 5 landmarks have been used for the RV cavity and 10 land-
marks for the background (see Fig. 8). Note that parameters have
been set empirically from the training set.

For each image of each patient, the user is required to point out
two landmarks in order to register the shape prior for our method.
Segmentation results for each method are compared to manual
ground truth through the Dice Metric (DM) (see Eq. (8)) and the
Point to Curve Distance (P2C) (see Eq. (9)). Results are provided
in Table 2 and examples of segmentation are shown in Fig. 9.

Accurate segmentation results would be expected to reach in-
tra and inter-observer variability of manual segmentation, that is
in the range 1–2 mm [22,26,20,39].3 Our method yields encourag-
ing results which compare favorably to a state of the art method
and outperform the original graph cut approach. Our method pro-
vides better results than Freedman and Zhang’s, especially in api-
cal images, which are much more difficult to segment (see Fig. 9):
they exhibit small structures and are often fuzzy (due to partial
volume effect). Freedman and Zhang’s prior model might not be
specific enough for this kind of images. Regarding basal slices, re-
sults are comparable between our method and Freedman and
Zhang’s, at the cost of substantial user interaction for Freedman
and Zhang’s method.

Not surprisingly, segmentation results are better for ED images
than for ES images, for the three methods: ED images are easier to
process, as the heart is then the most dilated. Results are also bet-
ter for basal and mid-ventricular slices than apical ones. A poor
segmentation result in apical slices has little influence on the vol-
ume computation but can be a limiting factor in other fields such
as studies on the fiber structure. To a lesser extent, this is also true
for ES images. Regarding computational cost, our algorithm is
implemented in C++ without any particular optimization and re-
quires about 45 s by patient (including both ED and ES volumes)
on a Dell E6510 laptop with 4Go RAM and Intel (R) Core (TM) i7
CPU, M460 @ 2.80 GHz. This time is compatible with clinical
practice.
5. Conclusion and perspectives

In this paper, we have presented a graph cut based method to
segment the RV, using a shape prior. The shape model is con-
structed via a PCA from a set of representative shapes of the RV ob-
tained by manual segmentation. An original prior term is then
integrated into the graphcut cost function. Our segmentation
method has been validated on 248 images acquired on 16 patients.
It is shown to outperform the native graph cut approach and to
compare favorably to the state-of-the-art method. Note however
that if results are satisfying for basal and mid-ventricular slices,
room for improvement is left in apical slices.

Further investigation concerns a possible 3D extension of our
algorithm. Even if our method is scalable to 3D from a theoretical
and a memory consuming point of views, a problem arises from the
MR clinical data: the space between slices is quite large, typically
8.4 mm, as compared to a spatial resolution of 0.7 mm per pixel
in the short-axis view. This raises the general question of the cre-
ation of a 3D neighborhood when resolution is anisotropic. One
possible solution could be to use a hierarchical approach to de-
crease time and memory consumption, such as in [18] where a
multilevel banded graph cut method is presented. Further investi-
gation will also concern making the registration step automatic.
3 1.5 mm and 1.8 mm for endo and epi LV [22], in the range of 1–2 mm on the LV in
[26], 1.75 mm for LV and RV in [20] and 1.27 mm and 1.14 mm for LV in [39].
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