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A traditional approach to segmentation of magnetic resonance (MR) images is the fuzzy c-means (FCM)

clustering algorithm. The efficacy of FCM algorithm considerably reduces in the case of noisy data. In

order to improve the performance of FCM algorithm, researchers have introduced a neighborhood

attraction, which is dependent on the relative location and features of neighboring pixels. However,

determination of degree of attraction is a challenging task which can considerably affect the

segmentation results.

This paper presents a study investigating the potential of genetic algorithms (GAs) and particle

swarm optimization (PSO) to determine the optimum value of degree of attraction. The GAs are best at

reaching a near optimal solution but have trouble finding an exact solution, while PSO’s-group

interactions enhances the search for an optimal solution. Therefore, significant improvements are

expected using a hybrid method combining the strengths of PSO with GAs, simultaneously. In this

context, a hybrid GAs/PSO (breeding swarms) method is employed for determination of optimum

degree of attraction. The quantitative and qualitative comparisons performed on simulated and real

brain MR images with different noise levels demonstrate unprecedented improvements in segmenta-

tion results compared to other FCM-based methods.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Magnetic resonance imaging (MRI) is a technique that uses a
magnetic field and radio waves to create cross-sectional images of
organs, soft tissues, bone, and virtually all other internal body
structures (Haacke et al., 1999). MRI possesses good contrast
resolution for different tissues and has advantages over computer-
ized tomography (CT) for brain studies due to its superior contrast
properties. In this context, brain MRI segmentation has become an
increasingly important image processing step in many applications,
including: (i) automatic or semiautomatic delineation of areas to be
treated prior to radiosurgery, (ii) delineation of tumors before and
after surgical or radiosurgical intervention for response assessment,
and (iii) tissue classification (Bondareff et al., 1990).

Several techniques have been developed for brain MR image
segmentation among which thresholding (Suzuki and Toriwaki,
1991), edge detection (Canny, 1986), region growing (Pohle and
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Toennies, 2001), and clustering (Clarke et al., 1995) are the most
well-known ones. Thresholding is the simplest segmentation
method, where the classification of each pixel depends on its own
information such as intensity and color. Thresholding methods
are efficient when the histograms of objects and background are
clearly separated. Since the distribution of tissue intensities in
brain MR images is often very complex, these methods fail to
achieve acceptable segmentation results. Edge-based segmenta-
tion methods are based on detection of boundaries in the image.
These techniques suffer from incorrect detection of boundaries
due to noise, over- and under-segmentation, and variability in
threshold selection for the edge image. These drawbacks of early
image segmentation methods, has led to region growing algo-
rithms. Region growing is the extension of thresholding by
considering the homogeneity and connectivity criteria. However,
only well-defined regions can be robustly identified by region
growing algorithms (Clarke et al., 1995). Since the above
mentioned methods are generally limited to relatively simple
structures, clustering methods are utilized for complex pathology.
Clustering is a method of grouping data with similar character-
istics into larger units of analysis. Expectation–maximization
(EM) (Wells et al., 1996), hard c-means and its fuzzy equivalent,
fuzzy c-means (FCM) algorithms (Li et al., 1993) are the typical

www.elsevier.com/locate/engappai
dx.doi.org/10.1016/j.engappai.2009.10.002
mailto:mforo040@site.uottawa.ca
mailto:n_forghani@ee.kntu.ac.ir
mailto:n_forghani@ee.kntu.ac.ir
mailto:teshnehlab@eetd.kntu.ac.ir
mailto:teshnehlab@eetd.kntu.ac.ir


ARTICLE IN PRESS

M. Forouzanfar et al. / Engineering Applications of Artificial Intelligence 23 (2010) 160–168 161
methods of clustering. A main drawback of the EM algorithm is
that it is based on a Gaussian distribution model for the intensity
distribution of brain images, which is not true, especially for noisy
images. Since Zadeh (1965) first introduced fuzzy set theory
which gave rise to the concept of partial membership, fuzziness
has received increasing attention. Fuzzy clustering algorithms
have been widely studied and applied in various areas. Among
fuzzy clustering techniques, FCM is the best known and most
powerful method used in image segmentation. FCM was first
conceived in 1973 by Dunn (1973) and further generalized by
Bezdek (1981). It is based on minimization of an objective
function and is frequently used in pattern recognition. Unfortu-
nately, FCM does not consider the spatial information in the
image space and is highly sensitive to noise and imaging artifacts.
Since medical images contain significant amount of noise caused
by operator, equipment, and the environment, there is an
essential need for development of less noise-sensitive algorithms.

Many modifications of the FCM algorithm have been proposed
to alleviate the effects of noise, such as noisy clustering (NC)
(Dave, 1991), possibilistic c-means (PCM) (Krishnapuram and
Keller, 1993), robust fuzzy c-means (RFCM) algorithm (Pham,
2001), and so on. These methods generally modify most equations
along with modification of the objective function. Therefore, they
lose the continuity from FCM, which inevitably introduce
computation issues.

Yu and Yang (2005) proposed a generalized FCM (GFCM)
model to unify some variations of FCM and then studied its
optimality test with parameter selection. However, the variations
of the FCM in this method may not have two kinds of optimality
test, i.e., one based on the cluster prototypes and another one
based on membership functions. It was shown in Yu and Yang
(2005) that the GFCM has only the optimality test with the cluster
prototype. In Yu and Yang (2007), an alternative model of GFCM,
called a generalized fuzzy clustering regularization (GFCR) was
proposed that can have the optimality test with membership
functions. Recently, Shen et al. (2005) introduced a new extension
of FCM algorithm, called improved FCM (IFCM). They introduced
two influential factors in segmentation that address the neighbor-
hood attraction. The first parameter is the feature difference
between neighboring pixels in the image and the second one is
the relative location of the neighboring pixels. Therefore,
segmentation is decided not only by the pixel’s intensity but also
by neighboring pixel’s intensities and their locations. However,
the problem of determining optimum parameters constitutes an
important part of implementing the IFCM algorithm for real
applications. The implementation performance of IFCM may be
significantly degraded if the attraction parameters are not
properly selected. It is therefore important to select suitable
parameters such that the IFCM algorithm achieves superior
partition performance compared to the FCM. In Shen et al.
(2005), an artificial neural network (ANN) was employed for
computation of these two parameters. However, designing the
neural network architecture and setting its parameters are always
complicated which slow down the algorithm and may also lead to
inappropriate attraction parameters and consequently degrade
the partitioning performance.

In this paper, we extend the IFCM algorithm to overcome the
mentioned drawbacks in segmentation of the intensity MR
images. Same as in Shen et al., (2005), a neighborhood attraction
is considered to exist between neighboring pixels of the intensity
image. The degree of attraction depends on pixel intensities and
the spatial position of the neighbors. Two parameters l(0olo1)
and x(0oxo1) will adjust the degree of the neighborhood
attractions. We will then investigate the potential of genetic
algorithms (GAs) and particle swarm optimization (PSO) to
determine the optimum values of the neighborhood attraction
parameters. We will show that both GAs and PSO are superior to
the ANN algorithm especially in segmentation of noisy MR
images. However, unprecedented improvements are achieved
using a hybrid method combining the strengths of PSO with GAs,
simultaneously. The achieved improvements of the hybrid GAs/
PSO, breeding swarm (BS), method is validated both quantita-
tively and qualitatively on simulated and real brain MR images at
different noise levels.

This paper is organized as follows. In Section 2, the traditional
FCM algorithm and its improved extension called IFCM are
introduced. Section 3 presents three new parameter optimization
methods based on GAs, PSO, and BS. Section 3 compares our
proposed algorithms with other published techniques. Section 4
contains conclusions and addresses future work.
FCM and IFCM clustering algorithms

Let X={x1, y, xn} be a data set and let c be a positive integer
greater than one. A partition of X into c clusters is represented by
mutually disjoint sets X1, y, Xc such that X1 [?[ Xc=X or
equivalently by indicator function m1, y, mc such that mi(x)=1 if
x is in Xi and mi(x)=0 if x is not in Xi for all i=1, y, c. This is known
as clustering X into c clusters X1, y, Xc using {m1, y, mc}. A fuzzy
extension allows mi(x) taking values in the interval [0, 1] such thatPc

i ¼ 1 miðxÞ ¼ 1 for all x in X. In this case, {m1, y, mc} is called a
fuzzy c-partition of X. Thus, the FCM objective function JFCM is
defined as (Bezdek, 1981)

JFCMðm;vÞ ¼
Xc

i ¼ 1

Xn

j ¼ 1

mm
ij d2ðxj; viÞ; ð1Þ

where m={m1, y, mc} is a fuzzy c-partition with mij=mi(xj), the
weighted exponent m is a fixed number greater than one
establishing the degree of fuzziness, v={v1, y, vc} is the c cluster
centers, and d2(xj,vi)=99xj�vi99

2 represents the Euclidean distance
or its generalization such as the Mahalanobis distance. The FCM
algorithm is an iteration through the necessary conditions for
minimizing JFCM with the following update equations:

vi ¼

Pn
j ¼ 1 mm

ij xjPn
j ¼ 1 mm

ij

ði¼ 1;. . .;cÞ ð2Þ

and

mij ¼
1

Pc
k ¼ 1

dðxj ;viÞ

dðxj ;vkÞ

� �2ðm�1Þ
:

ð3Þ

At each iteration, QUOTE m and v are updated using (2) and (3).
The FCM algorithm iteratively optimizes JFCM(m, v) until
9m(l+1)�ml9re is the number of iterations.

From (1), it is clear that the objective function of FCM does not
take into account any spatial dependence among X and consider
each image pixel as an individual point. Also, the membership
function in (3) is determined by d2(xj, vi), which measures the
similarity between the pixel intensity and the cluster center.
The closer the intensity values to the cluster center the higher the
value of the membership. Therefore, the membership function is
highly sensitive to noise. If an MR image is affected by noise or
other artifacts, the intensity of the pixels would change which
results in an incorrect membership and improper segmentation.

There are several approaches to reduce sensitivity of FCM
algorithm to noise. The most direct technique is low pass filtering
of the image and then applying the FCM algorithm. However, low
pass filtering may lead to loss of some important details. Different
extensions of FCM algorithm have been proposed by researchers
in order to solve sensitivity to noise. Dave clustered the noise
into a separate cluster which is unique from signal clusters
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(Dave, 1991). This method is not proper for image segmentation
since noisy pixels are separated from other pixels while they
should be assigned to the most appropriate cluster. Pham (2001)
modified the FCM objective function by including a spatial
penalty on the membership functions. The penalty term leads to
an iterative algorithm called as RFCM that allows the estimation
of spatially smooth membership functions. However, this method
is only slightly different from the original FCM and the new
objective function results in the complex variation of the
membership function. Krishnapuram and Keller (1993) consid-
ered clustering as a possibilistic partition and called their new
approach PCM. The drawback of PCM is that it limits the
clustering to only one or two classes (Shen et al., 2005).

To overcome these drawbacks, Shen et al., 2005 presented an
improved algorithm. They found that the similarity function
d2(xj, vi) is the key to segmentation success. In their approach, a
kind of relationship named neighborhood attraction is considered
to exist between neighboring pixels. During clustering, each pixel
attempts to attract its neighboring pixels toward its own cluster.
This neighborhood attraction depends on two factors; the pixel
intensities or feature attraction l(0olo1), and the spatial
position of the neighbors or distance attraction x(0oxo1),
which also depends on the neighborhood structure. Considering
this neighborhood attraction, they defined the similarity function
as below

d2ðxj;vjÞ ¼ 99xj � vi99
2
ð1� lHij � xFijÞ ð4Þ

where Hij represents the feature attraction and Fij represents the
distance attraction. The parameters l and z adjust the degree of
the two neighborhood attractions. Hij and Fij computed in a
neighborhood containing S pixels as follows:

Hij ¼

PS
k ¼ 1 mikgjkPS

k ¼ 1 gjk

ð5Þ

Fij ¼

PS
k ¼ 1 mik

2qjk
2

PS
k ¼ 1 gjk

2
ð6Þ

with

gjk ¼ 9xj � xk9; qjk ¼ ðaj � akÞ
2
þðbj � bkÞ

2:

where (aj, bj), and (ak, bk) denote the coordinate of pixel j and k,
respectively. It should be noted that a higher value of l results in a
stronger feature attraction and a higher value of x results in a
stronger distance attraction. Optimized values of these para-
meters lead to the best segmentation results while inappropriate
values degrade the results. Therefore, parameter optimization is
an important issue in IFCM algorithm that can significantly affect
the segmentation results.
2. Parameter optimization of IFCM algorithm

As mentioned earlier, the problem of determining optimum
attraction parameters constitutes an important part of imple-
menting the IFCM algorithm. Shen et al. computed these two
parameters using an ANN through an optimization problem (Shen
et al., 2005). However, designing the ANN architecture and setting
its parameters are always complicated tasks that slow down the
algorithm and may lead to inappropriate attraction parameters.
This consequently degrades the partitioning performance. In this
Section, we introduce three new algorithms, namely GAs, PSO,
and BS for optimum determination of the attraction parameters.
The performance evaluation of the proposed algorithms is carried
out in the next Section.
2.1. Structure of genetic algorithms (GAs)

Like neural networks, GAs are based on a biological metaphor,
however, instead of the biological brain, GAs view learning in
terms of competition among a population of evolving candidate
problem solutions. GAs were first introduced by Holland in the
early 1970s (Holland, 1992) and have been widely successful in
optimization problems. The algorithm is started with a set of
solutions (represented by chromosomes) called population.
Solutions from one population are taken and used to form a
new population. This is motivated by a hope, that the new
population will be better than the old one. Solutions which are
selected to form new solutions (offspring) are selected according
to their fitness; the more suitable they are the more chances they
have to reproduce. This is repeated until some condition is
satisfied. The GAs can be outlined as follows:
1.
 [Start] Generate random population of P chromosomes
(suitable solutions for the problem).
2.
 [Fitness] Evaluate the fitness of each chromosome in the
population with respect to the cost function J.
3.
 [New population] Create a new population by repeating
following steps until the new population is complete:
3.1. [Selection] Select two parent chromosomes from a

population according to their fitness (the better fitness,
the bigger chance to be selected).

3.2. [Crossover] With a crossover probability, cross over the
parents to form a new offspring (children). If no crossover
was performed, offspring is an exact copy of parents.

3.3. [Mutation] With a mutation probability, mutate new
offspring at each locus (position in chromosome).

3.4. [Accepting] Place new offspring in a new population.

4.
 [Loop] Go to step 2 until convergence.

For selection stage a roulette wheel approach is adopted.
Construction of roulette wheel is as follows (Mitchel, 1999):
1.
 Arrange the chromosomes according to their fitness.

2.
 Compute summations of all fitness values and calculate the

total fitness.

3.
 Divide each fitness value to total fitness and compute the

selection probability (pk) for each chromosome.

4.
 Calculate cumulative probability (pk) for each chromosome.

In selection process, roulette wheel spins equal to the number
population size. Each time a single chromosome is selected for a
new population in the following manner (Gen and Cheng, 1997):
1.
 Generate a random number r from the rang [0, 1].

2.
 If rrP1, then select the first chromosome, otherwise select the

kth chromosome such that qk�1oroqk.

The mentioned algorithm is iterated until a certain criterion is
met. At this point, the most fitted chromosome represents the
corresponding optimum values. The specific parameters of the
introduced structure are described in Section 4.

2.2. Structure of particle swarm optimization (PSO)

The PSO is a member of wide category of swarm intelligence
methods (Kennedy and Eberhart, 2001). Kennedy originally
proposed PSO as a simulation of social behavior and it was
initially introduced as an optimization method (Kennedy and
Eberhart, 1995). The PSO algorithm is conceptually simple and
can be implemented in a few lines of code. A PSO individual also
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retains the knowledge of where in search space it performed the
best, while in GAs if an individual is not selected for crossover or
mutation, the information contained by that individual is lost.
Comparisons between PSO and GAs are done analytically in
Eberhart and Shi (1998) and also with regards to performance in
Angeline (1998). In PSO, a swarm consists of individuals, called
particles, which change their position xiðtÞ with time t. Each
particle represents a potential solution to the problem and flies
around in a multidimensional search space. During flight each
particle adjusts its position according to its own experience, and
according to the experience of neighboring particles, making use
of the best position encountered by itself and its neighbors. The
Fig. 1. Segmentation results on a synthetic square image with a uniformly distribute

(c) ANN-IFCM. (d) GAs-IFCM. (e) PSO-IFCM. (f) BS-IFCM.
effect is that particles move towards the best solution. The
performance of each particle is measured according to a pre-
defined fitness function, which is related to the problem being
solved.

To implement the PSO algorithm, we have to define a
neighborhood in the corresponding population and then
describe the relations between particles that fall in that
neighborhood. In this context, we have many topologies such
as: star, ring, and wheel. Here we use the ring topology. In ring
topology, each particle is related with two neighbors and
attempts to imitate its best neighbor by moving closer to the
best solution found within the neighborhood. The local best
d noise in the interval (0, 120). (a) Noise-free reference image. (b) Noisy image.
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Segmentation evaluation of synthetic square image.
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algorithm is associated with this topology (Eberhart et al., 1996;
Corne et al., 1999):
Metrics Methods
1.

FCM PCM RFCM ANN-IFCM GAs-IFCM PSO-IFCM BS-IFCM

UnS(%) 9.56 25.2 6.42 0.0230 0.0210 0.0110 0.0059
[Start] Generate a random swarm of P particles in D-
dimensional space, where D represents the number of
variables (here D=2).
OvS(%) 23.79 75.00 16.22 0.0530 0.0468 0.0358 0.0181
2.
InC(%) 14.24 43.75 9.88 0.0260 0.0220 0.0143 0.0084
[Fitness] Evaluate the fitness f ðxiðtÞÞ of each particle with
respect to the cost function J.
3.
 [Update] particles or moved toward the best solution by
repeating the following steps:
If f ðxiðtÞÞ QUOTE then pbesti ¼ f ðxiðtÞÞ and xpbesti

¼ xiðtÞ, where
pbesti is the current best fitness achieved by the ith particle
and xpbesti

is the corresponding coordinate.
3.1. If f ðxiðtÞÞo lbesti QUOTE then lbesti ¼ f ðxiðtÞÞ, where lbesti is

the best fitness over the topological neighbors.
3.2. Change the velocity vi of each particle:

viðtÞ ¼ viðt � 1Þþr1ðxpbesti
� xiðtÞþr2ðxlbesti � xiðtÞÞ ð7Þ

where r1 and r2 are random accelerate constants
between 0 and 1.

3.3. Fly each particle to its new position xiðtÞþviðtÞ.

4.
Fig. 2. Performance comparison of IFCM-based methods using the SI metric at
[Loop] Go to step 2 until convergence.

The above procedures are iterated until a certain criterion is
met. At this point, the most fitted particle represents the
corresponding optimum values. The specific parameters of the
introduced structure are described in Section 4.
different noise levels
2.3. Structure of breeding swarm (BS) optimization

Both GAs and PSO have strengths and weaknesses. The PSO
algorithm is theoretically simple and can be implemented in a few
lines of code. A PSO individual also keeps the knowledge of where
in the search space it performed the best (a memory of the past
experience). In GAs, if an individual is not selected for crossover or
mutation, the information by that individual is lost. However,
without a selection operator PSO may waste resources on poor
individuals. A PSO’s group interaction enhances the search for an
optimal solution, whereas GAs have trouble finding an exact
solution (Settles and Soule, 2005).

In this context, our goal is to introduce a hybrid GAs/PSO
method, combining the strengths of PSO with GAs, simulta-
neously. The hybrid algorithm combines the standard velocity and
position update rules of PSO with the ideas of selection, crossover
and mutation from GAs. The algorithm is designed so that the GAs
facilitate a global search and the PSO performs the local search.
The structure of BS algorithms can be summarized as follows:
1.
 [Start] Generate a random population of size P.

2.
 [Fitness] Evaluate the fitness of each particle with respect to

the cost function J.

3.
 [Selection] Select P best particles using the roulette wheel

algorithm (in the first iteration this step is needless).

4.
 [New population] Perform step 3 of the GAs and PSO in parallel

and create a new population gathering the output of both GAs
and PSO.
5.
2 www.bic.mni.mcgill.ca/brainweb/
3 http://www.cma.mgh.harvard.edu/ibsr/
[Loop] Go to step 2 until convergence.

Although the BS algorithm seems to be more complicated than
GAs and PSO, it is able to locate an optimal, or near optimal,
solution significantly faster than either GAs or PSO. This is the
result of combining the strengths of PSO with GAs, simulta-
neously. The GAs facilitate a global search to reach a near optimal
solution and the PSO’s group interactions enhances the search for
the optimal local solution. The specific parameters of the BS
structure are described in Section 4.
3. Experimental results

This section is dedicated to a comprehensive investigation on
the proposed methods’ performance. To this end, we will compare
the proposed algorithms with FCM, PCM (Krishnapuram and
Keller, 1993), RFCM (Pham, 2001), and an implementation of IFCM
algorithm based on ANN (ANN-IFCM) (Shen et al., 2005).

Our experiments were performed on three types of images: (1)
a synthetic square image; (2) simulated brain images obtained
from Brainweb2; and (3) real MR images acquired from IBSR.3 In
all experiment the size of the population (P) is set to 20 and the
cost function JFCM with the similarity index defined in (4) is
employed as a measure of fitness. Also, a single point crossover
with probability of 0.2 and an order changing mutation with
probability of 0.01 are applied. The weighting exponent m in all
fuzzy clustering methods was set to 2. It has been observed that
this value of weighting exponent yields the best results in most
brain MR images (Shen et al., 2005).
3.1. Square image

A synthetic square image consisting of 16 squares of size
64�64 is generated. This square image consists of 4 classes with
intensity values of 0, 100, 200, and 300. In order to investigate the
sensitivity of the algorithms to noise, a uniformly distributed
noise in the interval (0, 120) is added to the image. The reference

<!--ti-->www.bic.mni.mcgill.ca/brainweb/<!--/ti-->
<!--ti-->www.bic.mni.mcgill.ca/brainweb/<!--/ti-->
<!--ti-->www.bic.mni.mcgill.ca/brainweb/<!--/ti-->
<!--ti-->www.bic.mni.mcgill.ca/brainweb/<!--/ti-->
<!--ti-->http://www.cma.mgh.harvard.edu/ibsr/<!--/ti-->
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Fig. 3. Simulated T1-weighted MR image. (a) The original image with 7% noise. (b) Discrete anatomical model (from left to right) white matter, gray matter, CSF, and the

total segmentation. (c) Segmentation result of ANN-IFCM. (d) Segmentation result of GAs-IFCM. (e) Segmentation result of PSO-IFCM. (f) Segmentation result of BS-IFCM.
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noise-free image and the noisy one are illustrated in Fig. 1(a) and
(b), respectively.

In order to evaluate the segmentation performance quantita-
tively, some metrics are defined as follows:
(1)
Tabl
Segm

Cla

CS

W

Gr

Av
Under segmentation (Uns), representing the percentage of
negative false segmentation:

UnS¼
Nfp

Nn
� 100 ð8Þ

Over segmentation (OvS), representing the percentage of
(2)

positive false segmentation:

OvS¼
Nfn

Np
� 100 ð9Þ

Incorrect segmentation (InC), representing the total percen-
(3)

tage of false segmentation:

InC¼
NfpþNfn

N
� 100 ð10Þ

where Nfp is the number of pixels that do not belong to a
cluster and are segmented into the cluster. Nfn is the number
of pixels that belong to a cluster and are not segmented into
the cluster. Np is the number of all pixels that belong to a
cluster, and Nn is the total number of pixels that do not belong
to a cluster.
Table 1 lists the above metrics calculated for the seven tested
methods. It is clear that FCM, PCM, and RFCM cannot overcome
the degradation caused by noise and their segmentation
performance is very poor compared to IFCM-based algorithms.
Among IFCM-based algorithms, GAs- and PSO-based methods are
superior to the ANN-based method. However, unprecedented
improvement in segmentation results is achieved by the BS-based
method. This is the result of combining advantages of GAs and
PSO, simultaneously. For better comparison, the segmentation
results of IFCM-based methods are illustrated in Fig. 1(c)–(f);
where the segmented classes are demonstrated in red, green,
blue, and black colors.

Since the segmentation results of IFCM-based algorithms are
too closed to each other, another metric is defined for better
comparison of these methods. The new metric is the similarity
index (SI) used for comparing the similarity of two samples
defined as follows:

SI¼ 2�
A \ B

AþB
� 100 ð11Þ

where A and B are the reference and the segmented images,
respectively. We compute this metric on the squared segmented
e 2
entation evaluation on simulated T1-weighted MR.

ss Evaluation

parameters

FCM PCM RFCM

F UnS(%) 0.5 0 0.47

OvS(%) 7.98 100 7.98

InC(%) 0.76 34 0.73

hite matter UnS(%) 1.35 0 1.11

OvS(%) 11.08 100 10.92

InC(%) 2.33 10.16 2.11

ay matter UnS(%) 0.75 15.86 0.76

OvS(%) 7.23 0 5.72

InC(%) 1.68 13.57 1.47

erage UnS(%) 0.87 5.29 0.78

OvS(%) 8.76 66.67 8.21

InC(%) 1.59 19.24 1.44
image at different noise levels. The results are averaged over 10
runs of the algorithms. Fig. 2 illustrates the performance
comparison of different IFCM-based methods. The comparison
clearly indicates that both GAs and PSO are superior to ANN in
optimized estimation of l and x. However, best results are
obtained using the combination of GAs and PSO, i.e., the BS
algorithm.

Simulated MR images

Generally, it is impossible to quantitatively evaluate the
segmentation performance of an algorithm on real MR images,
since the ground truth of segmentation for real images is not
available. Therefore, only visual comparison is possible. However,
Brainweb provides a simulated brain database including a set of
realistic MRI data volumes produced by an MRI simulator. These
data enable us to evaluate the performance of various image
analysis methods in a setting where the truth is known.

In this experiment, a simulated T1-weighted MR image
(181�217�181) was downloaded from Brainweb and 7% noise
was applied to each slice of the simulated image.

The 100th brain region slice of the simulated image is shown
in Fig. 3(a) and its discrete anatomical structure consisting of
cerebral spinal fluid (CSF), white matter, and gray matter is shown
in Fig. 3(b). The noisy slice was segmented into four clusters:
background, CSF, white matter, and gray matter (the background
was neglected from the viewing results) using FCM, PCM, RFCM,
and the IFCM-based methods. The segmentation results after
applying IFCM-based methods are shown in Fig. 3(c)–(f). Also, the
performance evaluation parameters of FCM, PCM, RFCM, and
IFCMs are compared in Table 2.

Again, it is obvious that the BS-IFCM has achieved the best
segmentation results. These observations are consistent with the
simulation results obtained in the previous section.

Real MR images

Finally, an evaluation was performed on real MR images. A real
MR image (coronal T1-weighted image with a matrix of
256�256) was obtained from IBSR: the Center of Morphometric
Analysis at Massachusetts General Hospital. IBSR provides
manually guided expert segmentation results along with brain
MRI data to support the evaluation and development of
segmentation methods.

Fig. 4(a) shows an slice of the image with 5% Gaussian noise
and Fig. 4(b) shows the manual segmentation results provided by
the IBSR. For comparison with the manual segmentation results,
ANN-IFCM GAs-IFCM PSO-IFCM BS-IFCM

0.2 0.16 0.11 0.08

6.82 5.91 4.36 3.26

0.57 0.45 0.31 0.22

0.95 0.91 0.78 0.55

7.31 7.02 5.56 4.69

1.59 1.39 1.06 0.84

0.54 0.48 0.29 0.17

2.65 2.61 2.13 1.34

0.93 0.87 0.71 0.36

0.56 0.52 0.39 0.27

5.59 5.18 4.02 3.1

1.03 0.9 0.69 0.44
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Fig. 4. Real T1-weighted MR image. (a) The original image with 5% noise. (b) Discrete anatomical model (from left to right) white matter, gray matter, CSF, others, and the

total segmentation. (c) Segmentation results of FCM (d) Segmentation result of ANN-IFCM. (e) Segmentation result of GAs-IFCM. (f) Segmentation result of PSO-IFCM.

(g) Segmentation result of BS-IFCM.
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which included four classes (CSF, gray matter, white matter, and
others), the cluster number was set to 4. The segmentation results
of FCM algorithm is shown in Fig. 4(c), while segmentation of
IFCM-based methods are shown in Fig. 4(d)–(g). Table 3 lists
the evaluation parameters for all methods. BS-IFCM showed a
significant improvement over other IFCMs both visually and
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Table 3
Segmentation evaluation on Real T1-weighted MR image.

Class Evaluation

parameters

FCM ANN-IFCM GA-IFCM PSO-IFCM BS-IFCM

CFS UnS(%) 11.1732 11.1142 10.6406 10.1619 9.5794

OvS(%) 44.4444 45.1356 41.4939 40.9091 41.8926

InC(%) 12.4009 12.7177 11.7791 11.2965 10.7717

SI(%) 87.5991 87.6305 88.2209 88.7035 89.2283

White matter UnS(%) 3.3556 2.7622 0.9783 1.5532 1.6639

OvS(%) 14.8345 9.6177 3.1523 9.0279 8.8211

InC(%) 6.2951 4.5178 1.5350 3.4673 3.4967

SI(%) 93.7049 95.4822 98.4650 96.5327 96.5033

Gray matter UnS(%) 5.9200 3.8073 3.8469 3.5824 3.5353

OvS(%) 36.9655 35.9035 31.4066 30.5603 29.133

InC(%) 16.9305 15.1905 13.6211 13.1503 12.6138

SI(%) 83.0695 87.6305 86.3789 86.8497 87.3862

Average UnS(%) 5.7635 5.1014 4.5606 4.4094 4.2800

OvS(%) 24.2163 22.7491 20.7562 20.2043 20.0522

InC(%) 9.3831 8.4900 7.6465 7.3856 7.1315

SI(%) 90.6169 91.5100 92.3535 92.6144 92.8685
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parametrically, and completely eliminated the effect of noise.
These results nominate the BS-IFCM algorithm as a good
technique for segmentation of noisy brain MR images in real
application.
4. Conclusion

In this paper, we proposed new algorithms, namely GAs and PSO,
to estimate the optimized values of neighborhood attraction
parameters in IFCM clustering algorithm. GAs are best at reaching
a near optimal solution but have trouble finding an exact solution,
while PSO’s group interactions enhances the search for an optimal
solution. Therefore, a combined GAs/PSO, the BS, algorithm was
employed for further improvements. Although the BS algorithm
seems to be more complicated than GAs and PSO, it is able to locate
an optimal solution significantly faster than either GAs or PSO. This
is the result of combining the strengths of PSO with GAs,
simultaneously. The GAs facilitate a global search to reach a near
optimal solution and the PSO’s group interactions enhances the
search for the optimal local solution. We tested the proposed
methods on three kinds of images; a square image, simulated brain
MR images, and real brain MR images. Both quantitative and
quantitative comparisons at different noise levels demonstrated that
both GAs and PSO are superior to the previously proposed ANN
method in optimizing the attraction parameters. However, signifi-
cant improvements in segmentation results were achieved using the
BS algorithm. These results nominate the BS-IFCM algorithm as a
good technique for segmentation of noisy brain MR images.
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