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Abstract The thermal shock cracking of solids is analyzed for a long cylinder sub-
jected to a sudden change of temperature on its outer surface, based on a generalized
heat conduction model in which the concepts of phase lags of temperature gradient
and heat flux are introduced. The temperature field and associated thermal stress for
an un-cracked cylinder are obtained in closed form. Then the thermal stress with an
opposite sign is loaded on the crack surface to formulate the crack problem. The ther-
mal stress intensity factor is deduced and given by a Fredholm integral equation. The
cracking behavior is discussed and thermal shock resistance of the cylinder is evalu-
ated according to the stress criterion and the fracture mechanics criterion, separately.
The effects of phase lags of temperature gradient and heat flux and the crack size on
the thermal shock resistance of the cylinder are also discussed.

Keywords Thermal shock resistance · Fracture mechanics · Non-Fourier heat
conduction · Cylinder specimen

1 Introduction

Nowadays, thermal barrier materials are widely used in spacecrafts, energy conver-
sion systems and electronic devices. The strength analysis of thermal barrier material
under thermal shock is a rapidly emerging area as the cracks or defects being com-
monly observed in solids during thermal shock [3,11]. Thermal shock resistance is
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an important parameter introduced to evaluate the material tolerance to thermal shock
in the strength analysis. A common measure of thermal shock resistance (TSR) is
the maximum temperature change in surface that the material can sustain without
cracking. Early, in a series of researches, Hasselman [17–19] introduced TSR by com-
paring the physical and mechanical properties of ceramic materials. Then the concept
of fracture mechanics emerged and developed. Accordingly, the fracture mechanics-
based criterion is introduced to determine the TSR as well as the stress-based criterion
[1,16,22,23,32,42].

To solve the thermal elasticity problem, the temperature field should be deter-
mined first. Basically, many studies have been carried out based on the classic Fourier
heat conduction model. Yu and Qin [45,46] completely analyzed a two-dimensional
problem about the thermal, electric, and elastic fields of a thermopiezoelectric solid
damaged by cracks in Cartesian coordinates and then developed a generalized self-
consistent approximate method for determining the thermoelectroelastic properties of
piezoelectric materials weakened by microcracks. Li and co-workers [9,10,21–23]
achieved some significant researches by using temperature-dependent material prop-
erties. The classical heat conduction model based on Fourier’s law assumes that a body
will be affected at the instant of heating:

q(X, t) = −k∇T (X, t), (1)

where q is the heat flux vector, X is position, t is time, k is the thermal conductivity,
and T is the temperature. However, many experiments prove that, in some situations,
the speed of heat propagation in a body is always finite [24,28,29,47]. That means that
the assumption in Fourier’s law is not strictly appropriate and the deduced temperature
field may not be accurate in instantaneous heat conduction.

The earliest non-Fourier heat conduction model (which is noted as C–V model
in the following) is independently formulated by [4,40] based on the local energy
balance. The relaxation concept is introduced to approach the wave nature of heat
propagation and gives the following non-Fourier heat conduction law:

q(X, t) + τq
∂q(X, t)

∂t
= −k∇T (X, t), (2)

where τq is the thermal relaxation time, which is related to the collision frequency
of the molecules within the energy carrier. Ordonez-Miranda and Alvarado-Gil [26]
present a method to determine the thermal relaxation time of a finite layer. The Eq. 2
together with energy conservation equation gives the temperature governing equation
of C–V model:

ρcτq
∂2T

∂t2 + ρc
∂T

∂t
= k∇2T, (3)

where the internal heat source is ignored, ρ is the mass density, and c is the specific
heat. Obviously, Eq. 3 is hyperbolic. This nature is entirely different from that based
on Fourier’s law, which is parabolic. Following Cattaneo and Vernottee, some other
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researchers reach the same heat conduction law as Eq. 3 from different theories [20,
34,35].

Many existing articles on the solution of thermal and elastic problem have been
based on the C–V model. Chen and Hu [6–8] completed the thermoelastic analysis of
a cracked half-plane, of a cracked half-plane bonded to a coating, and a cracked finite
substrate bonded to a coating, respectively. Wang and co-workers [5,43] analyzed the
fracture of semi-infinite medium and plate under thermal shock successively. Zhang
et al. [48] investigated the dissipative transient waves in a piezoelectric microplate
under thermal shock. Fu et al. [13,14] studied the thermoelastic behavior of solid
cylinder with a circumferential crack and a hollow cylinder with a circumferential
crack under thermal shock. Especially, Ezzat [12] constructed a new model of the
magneto-thermoelasticity theory by applying this non-Fourier heat conduction theory.
Wang [41] obtained the thermal stress intensity factor of an infinite cylinder under
transient temperature change in outer surface.

Tzou [38] has carried out a lot of essential investigations on the theory of heat con-
duction. Tzou [35] presented that the C–V model is a result of macroscopic approach.
He argued that the average concept employed in the macroscopic approach may lose
its physical support. Thus he provided a unified field approach [36] from macro- to
micro-scales based on the two-step model [2,29]. The constitutive equation is given
as

q
(
X, t + τq

) = −k∇T (X, t + τT ) , (4)

where τq and τT are phase lags of the heat flux and temperature gradient, respectively,
which are both positive and assumed to be intrinsic properties of the material. By
substituting the Taylor series expansion (to the first order) of Eq. 4 into energy equation,
Tzou [36] obtained

ρcτq
∂2T

∂t2 + ρc
∂T

∂t
= k∇2T + kτT

∂

∂t
∇2T . (5)

For the case of τT = 0, Eqs. 4 and 5 (which are noted as Tzou model in the following)
reduce to the Eqs. 2 and 3 (C–V model). For the case of τq = τT = 0, Tzou model
reduce to the classical diffusion model (classic Fourier model). Obviously, Tzou model
describes a more general heat propagation behavior. It is note worthy that the dual-
phase-lag (DPL) model commonly used is another Taylor series expansion (to the
second order) of Eq. 4 [30,44]. As pointed out by [36,37], the Tzou model is a unified
field approach for heat conduction from macro- to micro-scales while the DPL model
is one in small-scale and high-rate heating.

This paper studies the thermal shock fracture of a cracked cylinder under a sudden
change of temperature on its outer surface based on Tzou model. The temperature
field of an un-cracked cylinder under the same boundary condition is studied in Sect.
3. The thermal stress in closed form for the un-cracked cylinder is acquired in Sect.
4 by employing the obtained temperature field. Using the thermal stress as crack
surface condition with an opposite sign, the thermal stress intensity factor for the
cracked cylinder is deduced and given by a Fredholm integral equation in Sect. 5.
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Afterwards in Sect. 6, the thermal shock resistance of the cylinder is calculated by the
thermal stress and thermal stress intensity factor based on stress criterion and fracture
mechanics criterion. Finally, conclusions of this paper are drawn in Sect. 7.

2 Basic Governing Equations

Consider a cracked cylinder given in Fig. 1. The temperature of outer surface of the
cylinder is suddenly increased by T0. All the field variables are functions of coordinate
R (radical direction) and time t only. The radius of the crack and cylinder are Ra and
Rb, respectively. For such one-dimensional problem in cylinder coordinate system,
the constitutive equation and the governing equation for temperature in Tzou model
are, respectively,

(
1 + τq

∂

∂t

)
qR(R, t) = −k

(
1 + τT

∂

∂t

)
∂T (R, t)

∂R
, (6)

and

ρc

(
1 + τq

∂

∂t

)
∂T (R, t)

∂t
= k

(
1 + τT

∂

∂t

)(
∂2T (R, t)

∂R2 + 1

R

∂T (R, t)

∂R

)
. (7)

It has been assumed that the thermal properties are not affected by the mechanical
behaviors of the material and the heat source is neglected. For a more systematic study,
the following dimensionless parameters are introduced according to υ = τT /τq , t =
t/τq , r = R/ l, z = Z/ l, a = Ra/ l, b = Rb/ l, where l = √

kτq/(ρc) is a character-
istic length parameter of the material. Accordingly, Eq. 7 can be re-written as

∂2T (r, t)

∂t2 + ∂T (r, t)

∂t
=

(
1 + υ

∂

∂t

)(
∂2T (r, t)

∂r2 + 1

r

∂T (r, t)

∂r

)
. (8)

For the solution of Eq. 8, both boundary and initial conditions are necessary. In this
paper, the initial condition is set as T (r, 0) = 0. Thus the temperature change is
�T = T (r, t), which will simplify the expression of equations for mechanical fields.
In addition, the value of T (r, 0) does not affect the thermal stress level in the absence
of the temperature dependency of material properties. With the initial condition, the
Laplace transform of Eq. 8 respect to time t is given as

RR

Z 2 aR 2 bR

Fig. 1 A cylinder with a penny-shaped crack
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∂2T ∗(r, p)
∂r2 + 1

r

∂T ∗(r, p)
∂r

− λ0
2(p)T ∗(r, p) = 0, (9)

where

λ0(p) = √
p (p + 1) / (1 + υp) (10)

and the superscript * indicates Laplace transform.
Based on the linear thermoelasticity theory, the mechanical constitutive equations

are as follows:
⎧
⎪⎪⎨

⎪⎪⎩

σrr
σθθ

σzz
σr z

⎫
⎪⎪⎬

⎪⎪⎭
= 1

l

⎡

⎢⎢
⎣

c11 c12 c13 0
c12 c11 c13 0
c13 c13 c33 0
0 0 0 c44

⎤

⎥⎥
⎦

⎧
⎪⎪⎨

⎪⎪⎩

∂u/∂r
u/r
∂w/∂z
∂u/∂z + ∂w/∂r

⎫
⎪⎪⎬

⎪⎪⎭
−

⎧
⎪⎪⎨

⎪⎪⎩

χ11
χ11
χ33
0

⎫
⎪⎪⎬

⎪⎪⎭
T, (11)

where σrr , σθθ , and σzz are normal stresses, σr z is shear stress, ci j (i, j = 1, 2, 3)

are elastic contents, u and w are displacements along R and Z directions, respec-
tively, and χi i are temperature-stress coefficients. In the absence of body forces, the
displacements governing equations which deduced from constitutive equations and
equilibrium equations are given as

c11

(
∂2u

∂r2 + 1

r

∂u

∂r
− u

r2

)
+ c13

∂2w

∂r∂z
+ c44

(
∂2u

∂z2 + ∂2w

∂r∂z

)
= χ11l

∂T

∂r

c44

(
∂2u

∂r∂z
+ 1

r

∂u

∂z
+ ∂2w

∂r2 + 1

r

∂w

∂r

)
+ c13

(
∂2u

∂r∂z
+ 1

r

∂u

∂z

)
+ c33

∂2w

∂z2 = χ33l
∂T

∂z
.

(12)

3 The Temperature Field

The Laplace transform of governing equation with initial condition T (r, 0) = 0 is
given as Eq. 9. Its solution is T ∗(r, p) = A(p)I0(rλ0(p)), where A(p) is an unknown
function which can be determined by the boundary condition, and I j (x)( j = 0, 1)

is j th order modified Bessel function of first kind. Applying a typical thermal shock
boundary condition [13,14,23,36,42] T (R = Rb, t) = T0H(t),where H(t) is the unit
step function, A(p) is easily obtained as A(p) = T0/(pI0(bλ0(p))). Since the heat
flow propagates in radial direction which is parallel to the crack face, the crack does
not disturb the temperature distribution. Under the boundary condition given above,
the temperature fields of cracked cylinder and un-cracked cylinder are identical

T ∗(r, p) = T0
I0 (rλ0(p))

pI0 (bλ0(p))
. (13)

After solving the temperature in Laplace transform domain, its Laplace inverse can be
conveniently evaluated by numerical method. To this end, the formula used previously
[39] is employed:
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Fig. 2 (a) The temperature distribution for selected values of υ, at time t = τq . The dimensionless radius
of the cylinder is b = 5. (b) The temperature distribution for selected values of υ, at time t = 5τq . The
dimensionless radius of the cylinder is b = 5

T (r, t) = eγ t

t

[
T ∗(r, γ )

2
+ Re

N∑

n=1

(−1)nT ∗
(
r, γ + inπ

t

)]

. (14)

The above equation is the Riemann sum approximation of the Fourier integral trans-
formed from the Laplace inversion integral. The quantity γ is the real value in the
Bromwich cut from γ − i∞ to γ + i∞. As pointed out by [36], for a faster conver-
gence, the value of γ satisfies the relation γ t = 4.7.

Figure 2 exhibits the temperature distribution for selected values of υ, at times
t = 1 (a) and t = 5 (b). The value of υ is set by referring the literature [36]. The
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dimensionless radius of the cylinder is set as b = 5. In Fig. 2a, the curve for larger
value of υ is smooth. When υ > 1, the temperature level is higher than the results
from classic Fourier model (when υ = 1, Tzou model reduces to the classic Fourier
model) in the entire field. A larger value of υ results in a higher temperature. Revealed
by Eq. 8, in fact, the material with larger value of υ is an ideal thermal conductor. Thus
the heat propagation for the cases of υ > 1 are promoted comparing with the case of
υ = 1. When υ < 1, the curve of the temperature distribution becomes sharper as υ

decreases. As expected, there is a sudden temperature jump when at r = b − t as υ

vanishes. When υ = 0, Tzou model reduces to C–V model which is a wave model
with a sharp temperature wave front at r = b − t . The heat propagation is distinctly
impeded comparing with the case of υ = 1. Recalling the definition υ = τT /τq , in a
word, the results in Fig. 2a demonstrate that the lagging behavior of the temperature
gradient contribute to the heat transfer while the heat flux lagging response impede
the heat transfer.

Following Fig. 2a and b displays the temperature distribution at time t = 5. For
C–V model, it is a special case that the temperature wavefront arrives at the center of
the cylinder fist time when t = 5. According to the results given in Fig. 2b and amount
of other results for the cases t > 5 calculated by the authors, the temperature of the
thermal wavefront based on C–V model becomes divergent when the thermal wave
reaches the center of the cylinder. The wave models (C–V model and DPL model)
have been proposed and used for describing the fast heating. Quintanilla and co-
worker [27,30,31] have given the limitations of phase lags τq and τT for each model.
However, those limitations do not predict the temperature divergence of the thermal
wavefront. It is speculated that the boundary condition T (R = Rb, t) = T0H(t) is a
too strong instantaneous condition for wave model. Based on wave model, the wave
front of temperature is very sharp under this boundary condition [36,43,44]. For the
problem in this paper, the sharp wave fronts excited by condition in surface converge
at the center of the cylinder. Thus the temperature of the thermal wavefront becomes
divergent.

4 The Thermal Stress Field for Un-Cracked Cylinder

The surface of the un-cracked cylinder is assumed to be stress free. Thus the solution
of the thermal stress is the same as in literature [41]:

σzz = −χ33

(
T − 2

b2

∫ b

0
Trdr

)
, (15)

where χ33 = χ33 − (c13/c11) χ11. Substituting the solution of the temperature given
in Eqs. 13 into 15, we obtain:

σzz = − χ33T0

pI0 (bλ0(p))

(
I0 (rλ0(p)) − 2

bλ0(p)
I1 (bλ0(p))

)
. (16)
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Applying the Laplace inverse algorithm given in Eq. 14, numerical results of stress
σzz can be calculated.

Figure 3 gives the distribution of thermal stress σzz at times t = 1 (a), t = 2
(b), and t = 3 (c). The symbol σ0 = χ33T0 is used to normalize the thermal stress
σzz . From the holoscopic Fig. 3, as expected, the thermal stress in the entire field is
vanishing as time goes on. The maximum compression stress appears at the surface
of the cylinder. As going deep to the center of the cylinder, the compression stress
decreases, then it became tension stress at a certain internal point and begins to increase,
till the maximum tension stress occurs at the center of the cylinder. When υ > 1, it
is found that the thermal stress associated with Tzou model [36] is smaller than the
thermal stress associated with classic Fourier model. In addition, a larger value of υ

corresponding to a lower stress level. When υ < 1, the thermal stress changes sharply
near r = b − t .

The maximum tension stress is an important quantity which may induce cracking.
As shown in Fig. 3, the maximum tension stress always appears at the center of the
cylinder. Thus Fig. 4 gives the variation curves of the thermal stresses at the center of
the cylinder with time for different values of υ. It shows that the thermal stress climbs
more rapidly and convergences faster for larger value of υ. When υ > 1, the peaks
of the thermal stress have no considerable distance comparing with the result for the
case of υ = 1 (equals to classic Fourier model). On the contrary, when υ < 1, the
peaks of the thermal stresses is much higher than the result for the case of υ = 1. A
smaller value of υ results in a higher thermal stress peak.

To observe the effect of the parameter l on the maximum tension stress, the variation
curves of the thermal stress at the center of the cylinder with time for l = 0.1Rb, l =
0.2Rb and l = 0.3Rb are drown in Fig. 5. Where the reference length is set as Rb = 1m.
The symbol τ0 which is defined by

√
kτ0/(ρc) = 0.2Rb is used to normalize time

t . Both cases for υ = 5 and υ = 0.5 are considered. The results indicate that the
maximum tension stress vanish faster and its summit is higher for longer l (also longer
τq ). It means that, in other words, a smaller cylinder will result in more quickly stress
response and stronger tension stress at the center of the cylinder.

More comprehensive study about the effects of the parameters υ and l on the thermal
stress peak will be completed by the analysis of the TSR based on stress criterion in
Sect. 6.

5 The Fracture Analysis of the Cracked Cylinder

The above analysis shows that the maximum axial tensile stress of the cylinder appears
at its center under heating condition. And the axial tensile stress of investigated point
decrease even became compressive stress as the investigated point departing from the
center of the cylinder. Thus it is predictable that a crack may initiate at the center
of the cylinder under heating condition. The crack grows unstably until it enters the
compressive region. The problem can be synthesized from the solution for an un-
cracked cylinder under thermal shock and the solution for a cracked cylinder under
equivalent stress on crack surface. The equivalent stress is the thermal stress with
an opposite sign which is given in Eq. 16. Considering the symmetry of the cracked
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Fig. 3 (a) The thermal stress
distribution for selected values
of υ, at time t = τq . The
dimensionless radius of the
cylinder is b = 5. (b) The
thermal stress distribution for
selected values of υ, at time
t = 3τq . The dimensionless
radius of the cylinder is b = 5.
(c) The thermal stress
distribution for selected values
of υ, at time t = 5τq . The
dimensionless radius of the
cylinder is b = 5
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Fig. 4 The thermal stress variation with time, at the center of the cylinder. The dimensionless radius of the
cylinder is b = 5
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Fig. 5 The thermal stress variation with time at the center of the cylinder, under selected values of para-
meter l

cylinder, the boundary conditions on the z = 0 plane can be stated as: (1) σr z(r, 0) = 0
for entire r region; (2) σzz(r, 0) = p(r) for r < a and w(r, 0) = 0 for r ≥ a, where

p(r) = χ33T0

pI0 (bλ0(p))

(
I0 (rλ0(p)) − 2

bλ0(p)
I1 (bλ0(p))

)
. (17)

For the convenience of solution, the elasticity field in terms of p(r) will be deduced
first, then substituting Eq. 17. Assume that the surface of the cylinder is stress free.
The boundary conditions on the surface are stated as σrr (b, z) = 0, and σr z(b, z) = 0.

123



Int J Thermophys  (2016) 37:17 Page 11 of 23  17 

5.1 The Elasticity Field

Thanks for the symmetry of the problem, only the upper half of the cylinder needs
to study. The governing equation of the displacements of cylinder under equivalent
stress is the homogeneous equation corresponding to Eq. 12. Using Hankel transform
with respect to variable r , the solution of the homogeneous equation is given as

{
u
w

}
= Ra

∫ ∞

0

2∑

m=1

Fm(s)

{
d1m J1(rs)
d2m J0(rs)

}
esλmzds

+ Ra

∫ ∞

0

2∑

m=1

Em(s)

{
d1m I1(rs/λm) cos(sz)
d2m I0(rs/λm) sin(sz)

}
ds, (18)

where J j ( j = 0, 1) is j-th order Bessel function of first kind, Fm(s) and Em(s)(m =
1, 2) are unknown functions which will be determined by boundary conditions. The
characteristic values λm obey (c11−c44λ

2
m)(c33λ

2
m−c44)−(c13+c44)

2λ2
m = 0, and the

constants d1m and d2m are calculated by the characteristic value λm as d1m = 1, d2m =
−(c11 − c44λ

2
m)/((c13 + c44)λm). Obviously, there are four solutions for λm . If we

arrange the order of the four roots such that Re(λ1) < Re(λ2) < Re(λ3) < Re(λ4),
then it must have the relations λ1 = −λ4 and λ2 = −λ3. Considering the convergence
of displacements at z = ∞, only λ1 and λ2 (which have negative real parts) will be
used.

By substituting the displacements given in Eq. 18 into the constitutive relations in
Eq. 11, the thermal stresses can be expressed in terms of Fm(s) and Em(s)

σrr (r, z) =
2∑

m=1

∫ ∞

0
Fm(s)

[
C1ms J0(rs) − (c11 − c12) d1m

1

r
J1(rs)

]
esλmzds

+
2∑

m=1

∫ ∞

0
Em(s)

[
C1m

λm
s I0(rs/λm) − (c11 − c12) d1m

1

r
I1(rs/λm)

]
cos(sz)ds

(19a)

σzz(r, z) =
2∑

m=1

∫ ∞

0
C2msFm(s)J0(rs)e

sλmzds

+
2∑

m=1

∫ ∞

0

C2m

λm
sEm(s)I0(rs/λm) cos(sz)ds (19b)

σr z(r, z) =
2∑

m=1

∫ ∞

0
C3msFm(s)J1(rs)e

sλmzds

−
2∑

m=1

∫ ∞

0

C3m

λm
sEm(s)I1(rs/λm) sin(sz)ds, (19c)

where the constants C1m,C2m , and C3m(m = 1, 2) are listed in Appendix 1.
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Now the expressions of displacements and stresses are obtained, the unknown
functions Fm(s) and Em(s) can be determined by substituting the expressions into
boundary conditions. To use the mixed boundary conditions on the z = 0 plane, a new
function F0(s) is introduced and defined as F0(s) = ∑2

m=1 d2mFm(s). Substituting
expression (19c) into condition σr z(r, 0) = 0, results another relation of Fm(s) which
is

∑2
m=1 C3mFm(s) = 0. Thus the unknown functionsFm(s) can be expressed in

terms of F0(s) as Fm(s) = F0(s) fm , where the constants fm(m = 1, 2) are listed in
Appendix 1. Substituting expression (18) into condition w(r, 0) = 0 for r ≥ a and
recalling the definition of F0(s), result the equation

∫ ∞
0 F0(s)J0(rs)ds = 0 for r ≥ a.

It can be easily verified that F0(s) has a solution of the form

F0(s) =
∫ a

0
ω(x) sin(sx)dx (20)

provided that limξ→0 ω(ξ) = 0, where ω(ξ) is a new unknown function. Recalling the
stresses expressions (19), the boundary conditions on the outer surface of the cylinder
yield two equations about Fm(s) and Em(s). That means that Em(s) can be expressed
in terms of Fm(s). With the substitution of Eq. 20, Em(s) can be given in terms of
ω(ξ)

Em(s) = 2

π

∫ a

0
ω(x)βm(s, x)dx, (21)

where βm(s, x) is given in Appendix 1.
The unknown functions Fm(s) and Em(s) are determined by ω(ξ) now. Using

condition σzz(r, 0) = p(r) for r < a, an equation for ω(ξ) is obtained

∫ ∞

0

2∑

m=1

C2m fms J0(rs)
∫ a

0
ω(ξ) sin(sξ)dξds

+ 2
π

∫ a

0
ω(x)

∫ ∞

0

2∑

m=1

C2m

λm
s I0 (rs/λm) βm(s, x)dsdx

= p(r)

0 ≤ r < a. (22)

Applying the integral identity [15]

∫ ∞

0
J0(rs) cos(sξ)ds =

{
1/

√
r2 − ξ2, ξ < r

0, r < ξ
(23)

Equation 22 can be transform to an Abel integral equation

μ

∫ r

0

ω′(ξ)
√
r2 − ξ2

dξ + 2

π

∫ a

0
ω(η)

∫ ∞

0

2∑

m=1

C2m

λm
s I0

(
rs/λm

)
βm(s, η)dsdη = p(r),

0 ≤ r < a, (24)
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where
∑2

m=1 C2m fm = μ is a constant. The solution of the Abel integral equation is

μω(ξ) + 2

π

∫ ξ

0

r
√

ξ2 − r2

2

π

∫ a

0
ω(η)

∫ ∞

0

2∑

m=1

C2m

λm
s I0

(
rs/λm

)
βm(s, η)dsdηdr

= 2

π

∫ ξ

0

rp(r)
√

ξ2 − r2
dr . (25)

Applying the integral identity

∫ ξ

0

r I0
(
rs/λm

)

√
ξ2 − r2

dr = λm

s
sinh (ξs/λm) . (26)

Equation 25 can be simplified as

μω(ξ) +
∫ a

0
G(ξ, η)ω(η)dη = 2

π

∫ ξ

0

rp(r)
√

ξ2 − r2
dr , (27)

where

G(ξ, η) = 4

π2

∫ ∞

0

2∑

m=1

C2mβm(s, η) sinh (ξs/λm) ds (28)

Equation 27 is a standard Fredholm integral equation of the second kind and can
be solved by using an appropriate collocation in r . Substituting Eq. 17 and integral
identity 26, the right hand side of Eq. 27 can be simplified as

2

π

∫ ξ

0

rp(r)
√

ξ2 − r2
dr = χ33T0

2

π

1

pλ0(p)I0
(
bλ0(p)

)
[

sinh
(
ξλ0(p)

)− 2

b
I1

(
λ0(p)b

)
ξ

]
.

(29)

Once ω(ξ) is determined, the functions Fm(s) and Em(s) can be calculated easily. As
a result, the full elasticity field solution is obtained naturally.

5.2 The Thermal Stress Intensity Factor

Recalling the stress expression (23b), the stress near the crack tip can be calculated
by

σzz(r, 0) = − μω(a)√
r2 − a2

+ O(r). (30)
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Table 1 The dimensionless
stress intensity factor of a
cracked cylinder under uniform
tension.
(b = 20, K0 = 2σ

√
l/π)

a 1 3 5 7 9

KI/K0 0.9997 1.7344 2.2534 2.7056 3.1533

Kre f
I /K0 1.0003 1.7387 2.2652 2.7282 3.1896

a 6 7 8 9 10

KI/K0 3.6532 4.2881 5.2274 6.9671 12.5654

Kre f
I /K0 3.7062 4.3615 5.3249 7.0889 12.7077

0 1 2 3 4 5 6 7 8
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

t / τq

K
I /

 K
I0

υ = 50
υ = 5
υ = 0.5
υ = 0.05
υ = 1 (classic
Fourier model )

Fig. 6 The variation curves of the thermal stress intensity factor with time. The parameter l is set as
l = 0.2Rb , and crack length is Ra = 0.2Rb

Here the integral identity (26) is applied again. Now we define the mode I thermal
stress intensity factor (TSIF) KI = lim

R→Ra

√
2(R − Ra)σzz(r, 0), it gives

KI = −μω(a)l/
√
Ra . (31)

The exact solution of the stress intensity factor of a same cylinder under uniform
tension is Kref

I = 2
π
σ
√
RaF (Ra/Rb), where F (x) = (1−0.5x+0.148x3)/

√
1 − x

[33]. Substituting p(r) = −σ , the result of KI is calculated and compared with Kref
I

(Table 1). Obviously, the solution of TSIF in this paper is valid.
Then applying the material properties listed in Appendix 2, the dimensionless TSIF

KI/KI0 can be calculated numerically. The symbol KI0 = χ33T0
√
Rb is used to

normalize the TSIF KI. Following the analysis on the maximum tension stress, Fig. 6
gives the variation curves of the TSIFs with time under different values of υ for the
case of l = 0.2Rb, and Fig. 7 shows the TSIFs variation with time under different
values of parameter l for the cases of υ = 5 and υ = 0.5. It can be seen that the curves
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0 1 2 3 4 5 6 7 8
0.01

0.05
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0.15

t / τ0

K I / 
K I0

l = 0.2 Rb

l = 0.1 Rb
l = 0.05 Rb

l = 0.2 Rb

l = 0.1 Rb
l = 0.05 Rb

υ = 1  ( classic Fourier model )

υ = 0.5

υ = 5

Fig. 7 The variation curves of the thermal stress intensity factor with time, under selected values of
parameter l, and crack length Ra = 0.2Rb

for TSIFs in Figs. 6 and 7 are very similar to the curves for the maximum tension
stress given in Figs. 4 and 5, respectively. This similarity stands to the reason that the
TSIF is evaluated by the thermal stress on the crack surface which is located at the
center of the cylinder. According to Fig. 6, the effect of parameter υ on TSIF has two
different trends. When υ > 1, the maximum TSIFs are very close to the result for the
case of υ = 1 (which is the classic Fourier model). When υ < 1, the peaks of the
TSIFs is much higher than the result for the case of υ = 1. A smaller value of υ results
in a higher peak value of TSIF. Figure 7 demonstrates that a smaller cylinder radius
will result in a stronger TSIF. The general effect of the parameters υ and l on TSIF
peak will be studied in the analysis of the TSR based on fracture mechanics criterion
in Sect. 6.

Figure 8 depicts the variation of TSIF with crack length. As the crack length (Ra)

increases, the TSIF climbs to a peak at about Ra = 0.5Rb (Rb is the radius of the
cylinder), then reduces to zero when Ra approaches Rb. This means that the cylinder
has a TSR behavior when crack becomes sufficiently large. Recalling the thermal
stress distribution given in Fig. 3, the crack face contains compression zone when the
crack length is large enough. This explains the reason for the crack arrest behavior of
the cylinder cracking. However, the arrest of the cracking occurs very late. This is, for
sufficiently large crack radius. For example, if a initial crack radius is Ra = 0.1Rb,
it will grow unstably to Ra = 0.85Rb. A cylinder with such a huge crack is unlikely
able to resist any mechanical loading therefore can not be used in engineering.

6 The Thermal Shock Resistance

TSR is a major issue for the design of thermal barrier materials. A core problem
in evaluating TSR of materials is the authentication of appropriate material failure
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Fig. 8 The variation of thermal stress intensity factor with crack length. The parameter l is set as l = 0.2Rb

criterion. Generally, stress-based failure and fracture mechanics-based failure are two
major criterions to assess the brittle material performance.

According to the stress-based criterion, the TSR of material is the temperature
change for which the maximum tension thermal stress reach the strength of the medium
σb. From the above analysis, the maximum tension thermal stress appears at the center
of the cylinder. It can be calculated by σmax = χ33T0 (σzz/σ0)max. Then the TSR based
on stress criterion �T S

C follows:

�T S
C

σb/χ33
= 1

(σzz/σ0)max
. (32)

Based on Eq. 32, Figs. 9 and 10 give the variation curves of the TSR with parameter
υ and with parameter l, respectively. Firstly, it can be seen that the TSR for υ > 1
is always higher than the TSR for υ = 1 (classic Fourier model) while the TSR for
υ < 1 is always lower than the TSR for υ = 1. As a result of the contribution of
the temperature-gradient lag τT and the impediment of the heat flux lag τq (where
υ = τT /τq ) to the heat transfer, the TSR is enhanced by τT and weakened by τq . In
Fig. 9, as the value of υ increasing, the TSR climbs to a peak at a certain υ t > 1
and then decreases. Although this fact is perplexing, it stands for reason. Learned the
contrary effects of τT and τq on the heat transfer, it is understandable that the TSR
increases with the value of υ . However, we also learned from the analysis in Sects. 4
and 5 that the larger value of υ will results in more rapidly thermoelastic response (see
Figs. 4 and 6) which means the size of the cylinder is relative smaller. It is speculated
that there is no enough space to develop the contribution of the temperature-gradient
lag when υ > υ t . Fortunately, this speculation can also explain another phenomenon
in Fig. 9 that the larger l results in higher TSR peak and greater υ t . Note that the larger
l means the smaller size of the cylinder. In Fig. 10, as expect, when l is small the TSRs
for different values of υ approach the result from classic Fourier model as l decreases.
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Fig. 9 The variation of the thermal shock resistance of the cracked cylinder with υ , under selected values
of parameter l. The results are based on stress criterion. The reference of the thermal shock resistance is
�T S

0 = σb/χ33
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Fig. 10 The variation of the thermal shock resistance of the cracked cylinder with l, under selected values
of parameter υ . The results are based on stress criterion. The reference of the thermal shock resistance is
�T S

0 = σb/χ33

For the cases of υ < 1, the TSR decreases as the value of l grows. For the cases of
υ > 1, however, the TSR increases to a peak firstly and then decreases with l. Here
the decreasing of the TSR revealed the limit of the small size to the contribution of
the temperature-gradient lag.

According to the fracture mechanics-based criterion, the thermal shock resistance
of the material is the temperature change for which the maximum thermal stress
intensity factor for a dominant crack in the material reaches the toughness of the
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Fig. 11 The variation of the thermal shock resistance of the cracked cylinder with the crack length for
the case of l = 0.2Rb . The results are based on fracture mechanics criterion. The reference of the thermal
shock resistance is �T F

0 = KIC/
(
χ33

√
Rb

)

medium KIC. From the above analysis, the maximum TSIF depends on the crack
length, the temperature change, and the parameters τq and τT . The maximum TSIF
can be calculated by KI max = χ33T0

√
Rb (KI/KI0)max. Then the TSR based on

fracture mechanics criterion �T F
C is as follows:

�T F
C

KIC/
(
χ33

√
Rb

) = 1

(KI/KI0)max
. (33)

Based on Eq. 33, Fig. 11 gives the results of TSR as a function of crack size based on
fracture mechanics criterion. In Fig. 11, all the curves for different values of υ show
high sensitivity to the crack size, which is not observed in the results based on stress
criterion. As the length of the initiate crack grows, the TSR decreases rapidly. There
exists a minimum TSR for every value of the crack length. The object employed
in engineering will be absolute reliable if it is designed according to the minimum
TSR. Furthermore, Figs. 12 and 13 show the effects of parameters υ and l on the
minimum TSR, respectively. Naturally, the curves in Figs. 12 and 13 are very similar
to the curves of the TSR based on stress criterion given in Figs. 9 and 10. Firstly, the
minimum TSRs for the case of υ > 1 are always higher than the results from classic
Fourier model while the minimum TSRs for the case of υ < 1 are lower than the
results from classic Fourier model. Once again, this phenomenon demonstrates that
the temperature-gradient lag τT strengthens the TSR of the cylinder and the heat flux
lag τq weakens the TSR. In Fig. 12, as the value of υ increases, the minimum TSR
climbs to a peak at a certain υ t > 1 and then decreases. In Fig. 13, when l is small
the minimum TSRs for different values of υ approach the result from classic Fourier
model as l decreases. For the case of υ < 1, the minimum TSR decreases as the value
of lgrows (the growing of the value of l means the reducing of the cylinder size). For
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Fig. 12 The variation of the minimum thermal shock resistance of the cracked cylinder with υ , under
selected values of parameter l. The results are based on fracture mechanics criterion. The reference of the
thermal shock resistance is �T F
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Fig. 13 The variation of the minimum thermal shock resistance of the cracked cylinder with l, under
selected values of parameter υ . The results are based on fracture mechanics criterion. The reference of the
thermal shock resistance is �T F
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)

the case of υ > 1, however, the minimum TSR increases to a peak firstly and then
decreases with l.

Finally, the true TSR �TC should be the smaller one between �T S
C and �T F

C :

�TC = min
(
�T S

C ,�T F
C

)
. (34)
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It is conceivable that there exists a transit crack length RT
a for which �T S

C = �T F
C ,

for predicted phase lags τT and τq and cylinder size Rb. If the length of the dominant
pre-existing crack Ra is smaller than RT

a , the true TSR �TC should be �T S
C , otherwise

it should be �T F
C .

7 Conclusions

This paper studies the fracture of a cracked cylinder subjected to a sudden temperature
change on outer surface. By Laplace transform and dual-integral equation technique,
the temperature field of the cylinder is calculated based on Tzou’s phase lags model
[36], and the TSR of the cylinder is evaluated based on stress criterion and fracture
mechanics criterion. The effects of phase lags and size of the medium on its TSR is
researched. It is found that

(1) When Tzou’s phase lags model [36] reduces to C–V model, the temperature of
thermal wave front became divergent when the wave front reaches the center of
the cylinder. This fact indicates that the case of a sudden temperature change may
not be appropriate boundary condition for wave model, although it is classical in
mathematics.

(2) The phase lags τq and τT of the medium have different effects on the TSR of
the cylinder. This is, the temperature gradient lagging enhances the TSR of the
cylinder and the heat flux lagging weakens the TSR. Especially, the enhancement
of the temperature-gradient lag will reduce if it is too large for the heat flux lag
and the size of the cylinder.

(3) The effect of the size of the cylinder dependents on the ratio of the temperature-
gradient lag τT to heat flux lag τq . For the case of τq < τT , the thermal shock
resistance decreases as the size of the cylinder reducing. For the case of τq > τT ,
the TSR increases to a peak firstly and then decreases as the size of the cylinder
reducing.

(4) The TSR of the cylinder is very sensitive to the size of the crack. There is a transit
crack radius RT

a , for which the TSR is the same for stress-based criterion and
the fracture mechanics-based criterion. If the length of the dominant pre-existing
crack Ra is smaller than RT

a , the TSR of the cylinder is controlled by the stress-
based criterion and it is a constant to the crack size Ra . Otherwise, the true TSR of
the cylinder is controlled by the fracture mechanics-based criterion and reduces
quickly as crack size growing.
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Appendix 1

The constants C1m,C2m , and C3m(m = 1, 2) are given as

C1m = c11d1m + c13d2mλm, (35)
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C2m = c13d1m + c33d2mλm, (36)

C3m = c44 (d1mλm − d2m) . (37)

The constants fm(m = 1, 2) are given as

{
f1
f2

}
=

[
d21 d22
C31 C32

]−1 {
1
0

}
. (38)

The function βm(s, x) is given as

{βm(s, x)} = [�(s)]−1
{

α1(s, x)
α2(s, x)

}
,

�(s) =
[

C1m
λm

s I0(bs/λm) − (c11−c12)
b d1m I1(bs/λm)

C3m
λm

s I1(bs/λm)

]

, (39)

where

α1(s, x) =
2∑

m=1

[
C1m fms

λ2
m

L0

(
− s

λm
b

)
− (c11 − c12)

b

d1m fm
λm

L1

(
− s

λm
b

)]

× sinh

(
− s

λm
x

)
, (40)

α2(s, x) =
2∑

m=1

C3m fms

λ2
m

L1

(
− s

λm
b

)
sinh

(
− s

λm
x

)
, (41)

and where Li (i = 0, 1) are the ith modified Bessel function of the second kind.

Appendix 2

The material contents are given by beryllium oxide [25]: elastic modulus, Er =
397 GPa, Ez = 450 GPa,Grz = 153 GPa, Poisson’s ratios, vrθ = 0.32, vrθ = 0.16;
temperature-strain coefficients, αr = 2.3 × 10−6 K−1, αz = 4.4 × 10−6 K−1.

Accordingly, the stiffness coefficients ci j and temperature-stress coefficients χi i

are as follows:

c11 = 46.3 × 1010 N·m−2, c12 = 16.2 × 1010 N·m−2,

c13 = 10.0 × 1010 N·m−2, c33 = 48.2 × 1010 N·m−2,

c44 = 15.3 × 1010 N·m−2, χ11 = 0.107 × 106 N·m−2·K−1,

χ33 = 0.212 × 106 N·m−2·K−1

Following the material properties ci j and χi i , the contents μ can be calculated by

computer: μ = −2.14 × 10
11

N·m−3·K−1.
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