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a b s t r a c t

We extend the notion of KT-invexity from mathematical programming to the classical
optimal control problem and show that this generalized invexity property is not only
a sufficient condition of optimality for KT-processes (processes that obey KT-conditions
below) but also a necessary condition.
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1. Introduction

A variety of real problems can be modeled as optimal control problems, so that optimal control theory turns out to be
an important tool for the solution of several day-by-day problems. Some of these problems occur, for example, in electrical
power production (see [1]), economy (see [2]), ecology (see [3]), medicine (see [4]) and epidemics control (see [5]), among
others.
In this work we study the following optimal control problem

minimize F(x, u) =
∫ T

0
f (t, x(t), u(t))dt

subject to x′i(t) = hi(t, x(t), u(t)), t ∈ [0, T ], i = 1, 2, . . . , n,
xi(0) = αi, i = 1, 2, . . . , n,
gj(t, u(t)) ≤ 0, t ∈ [0, T ], j = 1, 2, . . . , k,

 (OCP)

where f : [0, T ] × Rn × Rm → R, hi : [0, T ] × Rn × Rm → R, i ∈ I := {1, 2, . . . , n}, and gj : [0, T ] × Rm → R, j ∈
J := {1, 2, . . . , k}, are continuously differentiable functions, x : [0, T ] → Rn are piecewise smooth (state) functions and
u : [0, T ] → Rm are piecewise continuous (control) functions and αi ∈ R, i ∈ I .
Constraints of the type |u(t)| ≤ 1, t ∈ [0, T ], which frequently appears in optimal control problems, are subsumed in

the above model by setting g(t, u(t)) = |u(t)|2 − 1, where | · | denotes the Euclidean norm in Rm.
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We denote by X the space of all piecewise smooth functions from [0, T ] on Rn with the norm

‖x‖ = ‖x‖∞ + ‖Dx‖∞, (1)

where x = Dy if y(t) = y(0)+
∫ t
0 x(s)ds; and by U, V , W the spaces of all piecewise continuous functions from [0, T ] into

Rm, Rn, Rk with the uniform norm ‖ · ‖∞, respectively.
It is possible to replace the norm defined in (1) by the weaker norm ‖x‖1,1 = ‖x‖∞ +

∫ T
0 ‖Dx(s)‖dt . In this case one

considers control functions in a more general space of essentially bounded functions, and trajectories of the system of
differential equation of the problem (OCP) as absolutely continuous functions instead of piecewise smooth ones. We chose
the spaces X,U, V andW above to keep the exposition simple and in line with [6].
We say that p = (x, u) ∈ X ×U is a feasible control process if the pair (x, u) satisfies the constraints of (OCP). We say that

p̄ = (x̄, ū) is an optimal control process if (x̄, ū) is a solution of (OCP), that is, if F(p) ≥ F(p̄) for all feasible control processes p.
A feasible control process that satisfies the classical Kuhn–Tucker type necessary optimality condition (Theorem1 below)

is called a KT-process.
The purpose of this paper is to extend the notion of KT-invexity from mathematical programming to optimal control

problems and show that a KT-process of an optimal control problem is optimal if and only if this problem is KT-invex. The
notions of KT-processes and KT-invexity will be defined in Section 3.

2. Background and preliminary results

Following Craven in [6], the differential equation x′i(t) = hi(t, x(t), u(t)), t ∈ [0, T ], xi(0) = αi, i ∈ I , can be
re-written as Dx = H(x, u), where H : X × U → V is defined by H(x, u)(t) = (hi(t, x(t), u(t))i∈I). Defining G : U → W by
G(u)(t) = (gj(t, u(t))j∈J), we can re-write (OCP) as the abstract problem:

minimize F(x, u)
subject to Dx = H(x, u),
G(u) ∈ −S,

(2)

where S = {w ∈ W : w(t) ≥ 0, t ∈ [0, T ]}. Optimality conditions for the abstract problem above were obtained by
Craven [6]. Actually assuming that the linear operator−D+ Hx(x̄, ū) is onto, Craven characterized optimal processes of the
Kuhn–Tucker type.
Assuming that the operator−D+ Hx(x̄, ū) is onto is the same as assuming that the differential equation{

x′i(t)+∇xhi(t, x̄(t), ū(t))
Tx(t) = vi(t), t ∈ [0, T ], i ∈ I,

xi(0) = αi, i ∈ I, (LS)

has a solution x ∈ X whichever v = (v1, v2, . . . , vn) ∈ V . When this happens we will say that the Local Solvability (LS)
Condition holds at p̄.

Theorem 1 (Kuhn–Tucker). Let p̄ = (x̄, ū) ∈ X ×U be an optimal process. Assume that the (LS) Condition holds at p̄. Then there
exist piecewise smooth functions µ : [0, T ] → Rn and λ : [0, T ] → Rk satisfying, for almost every t ∈ [0, T ],

∇x f (t, p̄)+
∑
i∈I

µi(t)∇xhi(t, p̄)+ µ′(t) = 0; (3)

µi(T ) = 0, i ∈ I; (4)

∇u f (t, p̄)+
∑
i∈I

µi(t)∇uhi(t, p̄)+
∑
j∈J

λj(t)∇ugj(t, ū) = 0; (5)

λj(t)gj(t, ū) = 0, j ∈ J; (6)

λj(t) ≥ 0, j ∈ J. (7)

Proof. See Craven [6]. �

When conditions (3)–(7) above are satisfied for a feasible process p̄ ∈ X × U , we say that p̄ is a KT-process. The functions
λ(t) and µ(t) are called Lagrange multipliers.
Theorem 1 is very close to the Pontryagin Maximum Principle (see, for instance, Alekseev et al. [7]), which is the

main result of the optimal control theory. The condition (LS) is a constraint qualification for the abstract mathematical
programming problem (2) which provides conditions for the multiplier related to the cost function to be one, avoiding
degeneracy of the optimality conditions. Translating the necessary conditions from the abstract set up to the control
theoretical setting we obtain the necessary conditions in the above theorem with the multiplier related to cost function
still 1; see the Eqs. (3), (5). For more details, see Craven [6].
The Theorem 1 furnishes necessary optimality conditions for a pair (x, u) to be a solution of the control problem. But,

without supplementary hypothesis, they are not sufficient. To decidewhether a candidate process is optimal or not there are
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three approaches: (1) the verification functionmethod via Hamilton–Jacobi–Bellman theory; (2) second ordermethods; and
(3) the exploration of the special structure of the functions such as convexity, deformation to simpler problems, generalized
convexity, etc. In the last years, linkedwithmathematical programming, the notion of invex functions and its generalizations
have appeared in the literature (see [8,6,9,10]), which has been very fruitful with respect to obtaining sufficient optimality
conditions. These notions have been used in continuous-time programming problems, see [11–15], and in certain classes of
variational and control problems, see for instance, [16–18].
In [10], Martin introduced a generalization of the notion of invexity, which he denominated KT-invexity. Martin, then,

showed that KT-invexity is, like invexity, a sufficient condition of optimality to the classical mathematical programming
problem, in the sense that every stationary point (or KT-point) is a global minimizer of the problem. However, Martin’s
result goes further and tells us that KT-invexity is also a necessary condition for the validity of the property that every
stationary point is a global minimizer. In summary, Martin showed that every stationary point is a global minimizer if and
only if the problem is KT-invex. Then we see that the largest class of problems where such property is valid is the class of
the KT-invex problems.
In the next section we obtain a similar result to Martin’s one, for the Optimal Control Problem (OCP).

3. Characterization of KT-invexity for optimal control problems

As invexitywill play a central role in this work, we start this section with its definition which was given by Hanson in [9].

Definition 1. Given a function φ : S ⊂ Rn → R, where S is an nonempty open set, we say that it is invex if there exists a
map η : S × S → Rn satisfying

φ(x)− φ(y) ≥ ∇φ(y)Tη(x, y) ∀ x, y ∈ S.

It is clear that all convex functions are invex with η(x, y) = x− y. Other relations of invexity with the property of convexity
and its generalizations can be found in Giorgi [19].
The first result, stated below as Theorem 2, furnishes sufficient optimality conditions via invexity. Before stating

Theorem 2 we give the definition of invex problems.

Definition 2. We say that (OCP) is invex if for all p = (x, u), p̄ = (x̄, ū) ∈ X × U there exist functions η : [0, T ] → Rn,
piecewise smooth, and ξ : [0, T ] → Rm, piecewise continuous, such that∫ T

0
[f (t, p)− f (t, p̄)]dt ≥

∫ T

0
[∇x f (t, p̄)Tη(t)+∇u f (t, p̄)Tξ(t)]dt; (8)

η′i(t) = x
′

i(t)− hi(t, p)− x̄
′

i(t)+ hi(t, p̄)+∇xhi(t, p̄)
Tη(t)+∇uhi(t, p̄)Tξ(t) a.e. t ∈ [0, T ], i ∈ I; (9)

ηi(0) = 0, i ∈ I; (10)

gj(t, u)− gj(t, ū) ≥ ∇ugj(t, ū)Tξ(t) a.e. t ∈ [0, T ], j ∈ J. (11)

Observe that if f , hi, −hi, i ∈ I , and gj, j ∈ J , are convex, conditions (8) and (9) above are verifiedwith η(t) = x(t)− x̄(t)
and ξ(t) = u(t)− ū(t). However, ηi(0) = 0, i ∈ I , is true only if p and p̄ are feasible processes.

Theorem 2. Suppose that (OCP) is invex. Then every KT-process is an optimal process.

Proof. Let p̄ = (x̄, ū) ∈ X×U be a KT-process. Therefore there exist Lagrangemultipliers λ(t) andµ(t) satisfying conditions
(3)–(7) of Theorem 1. Taking into account that λj(t) ≥ 0 a.e. t ∈ [0, T ], j ∈ J , it follows from (8), (9) and (11) that,∫ T

0
[f (t, p)− f (t, p̄)]dt +

∫ T

0

∑
j∈J

λj(t)[gj(t, u)− gj(t, ū)]dt +
∫ T

0

∑
i∈I

µi(t)[hi(t, p)− x′i(t)− hi(t, p̄)+ x̄
′

i(t)]dt

≥

∫ T

0
[∇x f (t, p̄)Tη(t)+∇u f (t, p̄)Tξ(t)]dt +

∫ T

0

∑
j∈J

λj(t)∇ugj(t, ū)Tξ(t)dt

+

∫ T

0

∑
i∈I

µi(t)[∇xhi(t, p̄)Tη(t)+∇uhi(t, p̄)Tξ(t)− η′i(t)]dt

for all p = (x, u) ∈ X×U . Using (6) and hi(t, p̄) = x̄′i(t), t ∈ [0, T ], i ∈ I , and rearranging the terms in the secondmember,
we obtain∫ T

0
[f (t, p)− f (t, p̄)+

∑
j∈J

λj(t)gj(t, u)+
∑
i∈I

µi(t)[hi(t, p)− x′i(t)]]dt
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≥

∫ T

0
[∇x f (t, p̄)+

∑
i∈I

µi(t)∇xhi(t, p̄)]Tη(t)dt −
∫ T

0

∑
i∈I

µi(t)η′i(t)dt

+

∫ T

0
[∇u f (t, p̄)+

∑
j∈J

λj(t)∇ugj(t, ū)]Tξ(t)dt +
∫ T

0

∑
i∈I

µi(t)∇uhi(t, p̄)Tξ(t)dt

for all p ∈ X × U . Using integration by parts, (4) and (10), we have∫ T

0

∑
i∈I

µi(t)η′i(t)dt =
∑
i∈I

µi(t)ηi(t)

∣∣∣∣∣
T

0

−

∫ T

0

∑
i∈I

ηi(t)µ′i(t)dt

= −

∫ T

0
µ′(t)Tη(t)dt.

Substituting in the last inequality, we obtain∫ T

0
[f (t, p)− f (t, p̄)+

∑
j∈J

λj(t)gj(t, u)+
∑
i∈I

µi(t)[hi(t, p)− x′i(t)]]dt

≥

∫ T

0
[∇x f (t, p̄)+

∑
i∈I

µi(t)∇xhi(t, p̄)+ µ′(t)]Tη(t)dt

+

∫ T

0
[∇u f (t, p̄)+

∑
j∈J

λj(t)∇ugj(t, p̄)]Tξ(t)dt +
∫ T

0

∑
i∈I

µi(t)∇uhi(t, p̄)Tξ(t)dt

for all p ∈ X × U . It follows from (3) and (5) that∫ T

0
[f (t, p)− f (t, p̄)]dt ≥ −

∫ T

0

∑
j∈J

λj(t)gj(t, u)dt −
∫ T

0

[∑
i∈I

µi(t)[hi(t, p)− x′i(t)]

]
dt (12)

for all p ∈ X × U . In particular, if p is a feasible process, gj(t, u) ≤ 0, j ∈ J , and hi(t, p) = x′i(t), i ∈ I , for t ∈ [0, T ]. As
λj(t) ≥ 0 a.e. t ∈ [0, T ], j ∈ J , we get∫ T

0
[f (t, p)− f (t, p̄)]dt ≥ 0

for all feasible processes p, such that p̄ is an optimal process. �

Looking at the proof of the last theorem, we see that it is not necessary that the inequalities in (8) and (9) are valid for
all p, p̄ ∈ X × U . It is enough that they are valid for feasible processes of (OCP). In this case, the first four terms on the right
hand side of (9) add up to zero. Further, because of (6), when multiplying the expression (11) by λj(t), j ∈ J , the terms
λj(t)gj(t, ū(t)), j ∈ J , vanish if p̄ is a KT-process. Also because of (6), we see that λj(t) = 0 for t 6∈ Aj(ū), where

Aj(ū) = {t ∈ [0, T ] : gj(t, ū(t)) = 0}, j ∈ J,

so that it is not necessary (11) be valid for t 6∈ Aj(ū), j ∈ J . The term appearing in the right hand side of (12) is greater than
or equal to zero and can be omitted with (12) still valid. Basing on these remarks, we introduce the notion of KT-invexity
for Problem (OCP).

Definition 3. We say that (OCP) is KT-invex if for each pair of feasible processes p = (x, u), p̄ = (x̄, ū) ∈ X × U there exist
functions η : [0, T ] → Rn, piecewise smooth, and ξ : [0, T ] → Rm, piecewise continuous, such that∫ T

0
[f (t, p)− f (t, p̄)]dt ≥

∫ T

0
[∇xf (t, p̄)Tη(t)+∇u f (t, p̄)Tξ(t)]dt; (13)

η′i(t) = ∇xhi(t, p̄)
Tη(t)+∇uhi(t, p̄)Tξ(t) a.e. t ∈ [0, T ], i ∈ I; (14)

ηi(0) = 0, i ∈ I; (15)

0 ≥ ∇ugj(t, ū)Tξ(t) a.e. t ∈ Aj(ū), j ∈ J. (16)

The definition above is a generalization, for the context of the Problem (OCP), of the concept of KT-invexity, introduced
by Martin in [10] for the classical mathematical programming problem.
It is easy to see that if (OCP) is invex (according to the Definition 2), then it is KT-invex (according to Definition 3).
It should be noted that functions η and ξ in Definitions 2 and 3 depend on p and p̄, that is, on (x, u) and (x̄, ū).
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We would like to mention that when the endpoint condition xi(T ) = βi, i = 1, . . . , n, is present in the constraints of
(OCP), for some βi ∈ R, i = 1, . . . , n, Definitions 2 and 3 need to be modified by adding ηi(T ) = 0, i = 1, . . . , n, so that
Theorems 2 and 3 are valid.

Example 1. Let us consider the optimal control problem:

minimize F(u) =
∫ 1

0
[1− exp(−u(t))]dt

subject to x′(t) = −x(t)+ u(t)2, t ∈ [0, 1], x(0) = 1,
u(t) ≥ 0, t ∈ [0, 1].

It is easy to see that p̄(t) = (x̄(t), ū(t)) = (exp(−t), 0), t ∈ [0, 1], is the optimal process. It is also easy to see that
p̄ = (exp(−t), 0) is the only KT-process. So, in this problem, every KT-process is an optimal process.
This problem is not invex. Indeed, suppose, by contradiction, that there exist functions η and ξ satisfying∫ 1

0
[1− exp(−u(t))− 1+ exp(−ū(t))]dt ≥

∫ 1

0
exp(−ū(t))ξ(t)dt, (17)

η′(t) = x′(t)+ x(t)− u(t)2 − x̄′(t)− x̄(t)+ ū(t)2 − η(t)+ 2ū(t)ξ(t) a.e. t ∈ [0, 1], (18)
−u(t)+ ū(t) ≥ −ξ(t) a.e. t ∈ [0, 1], (19)

for all (x, u), (x̄, ū). Then, by (17) and (19) we have

F(u)− F(ū)−
∫ 1

0
exp(−ū(t))(u(t)− ū(t))dt

=

∫ 1

0
[1− exp(−u(t))− 1+ exp(−ū(t))− exp(−ū(t))(u(t)− ū(t))]dt

≥

∫ 1

0
[1− exp(−u(t))− 1+ exp(−ū(t))− exp(−ū(t))ξ(t)]dt ≥ 0

for all u, ū. In particular, for u(t) = 0 and ū(t) = t, t ∈ [0, 1], we have

F(u)− F(ū)−
∫ 1

0
exp(−ū(t))(u(t)− ū(t))dt = 1− 3 exp(−1) < 0,

which contradicts the above inequality.
We see, then, that invexity is not necessary for the validity of the property that every KT-process is an optimal process.
On the other hand, the problem is KT-invex with

η(t) = η(t, p(t), p̄(t))

= 2 exp(−t)
∫ t

0
ū(τ )[exp(τ )− exp(τ − u(τ )+ ū(τ ))]dτ ,

ξ(t) = ξ(t, p(t), p̄(t)) = 1− exp(−u(t)+ ū(t)).

The next lemma will be used in the proof of Theorem 3, which is our main result.

Lemma 1. Let p̄ = (x̄, ū) ∈ X × U be a feasible process. Assume that the (LS) Condition is satisfied at p̄. If there does not exist
(z, w) ∈ X × U such that

∫ T

0
[∇x f (t, p̄)Tz(t)+∇u f (t, p̄)Tw(t)]dt < 0,

z ′i (t) = ∇xhi(t, p̄)z(t)+∇uhi(t, p̄)w(t), t ∈ [0, T ], i ∈ I,
zi(0) = 0, i ∈ I,
∇ugj(t, ū)w(t) ≤ 0, t ∈ Aj(ū), j ∈ J,

then p̄ is a KT-process of (OCP).

Proof. DefineΦ : X × U → R, γi : [0, T ] × Rn × Rm → R, i ∈ I , and ψj : [0, T ] × Rm → R, j ∈ J , respectively, by

Φ(z, w) =
∫ T

0
[∇x f (t, p̄)Tz(t)+∇u f (t, p̄)Tw(t)]dt,

γi(t, z(t), w(t)) = ∇xhi(t, p̄)z(t)+∇uhi(t, p̄)w(t), i ∈ I,
ψj(t, w(t)) = ∇ugj(t, p̄)w(t), j ∈ J.



V.A. de Oliveira et al. / Nonlinear Analysis 71 (2009) 4790–4797 4795

Let us consider the linear control problem

minimize Φ(z, w)
subject to z ′i (t) = γi(t, z(t), w(t)), t ∈ [0, T ], i ∈ I,
zi(0) = 0, i ∈ I,
χj(t)ψj(t, w(t)) ≤ 0, t ∈ [0, T ], j ∈ J,

where χj : [0, T ] → R, is defined, for each j ∈ J , by

χj(t) =
{
1, if t ∈ Aj(ū),
0, if t ∈ [0, T ] \ Aj(ū).

As, by hypothesis, there does not exist (z, w) ∈ X × U such that
∫ T

0
[∇x f (t, p̄)Tz(t)+∇uf (t, p̄)Tw(t)]dt < 0,

z ′i (t) = ∇xhi(t, p̄)z(t)+∇uhi(t, p̄)w(t), t ∈ [0, T ], i ∈ I,
zi(0) = 0, i ∈ I,
∇ugj(t, ū)w(t) ≤ 0, t ∈ Aj(ū), j ∈ J,

then we have Φ(z, w) ≥ 0 for all feasible process (z, w) of the problem above. On the other hand, (z̄, w̄) = (0, 0) is a
feasible process andΦ(z, w) = 0. Therefore (z̄, w̄) is an optimal process. It is easy to see that

∇zγi(t, z, w) = ∇xhi(t, p̄), ∇wγi(t, z, w) = ∇uhi(t, p̄), i ∈ I,

and

∇wψj(t, w) = ∇ugj(t, p̄), j ∈ J.

Thus the problem satisfies the (LS) Condition at (z̄, w̄). It follows fromTheorem1 that there exist piecewise smooth functions
µ : [0, T ] → Rn and λ : [0, T ] → Rk satisfying

∇x f (t, p̄)+
∑
i∈I

µi(t)∇xhi(t, p̄)+ µ′(t) = 0,

µi(T ) = 0, i ∈ I,

∇u f (t, p̄)+
∑
i∈I

µi(t)∇uhi(t, p̄)+
∑
j∈J

λj(t)χj(t)∇ugj(t, ū) = 0,

λj(t) ≥ 0, j ∈ J,

for almost every t ∈ [0, T ]. Defining λ̃j = χjλj, j ∈ J , we have λ̃j(t) ≥ 0 and λ̃j(t)gj(t, ū(t)) = 0 a.e. t ∈ [0, T ], j ∈ J . Hence
p̄ is a KT-process of (OCP). �

The next theorem is a generalization of Martin’s result for the Problem (OCP).

Theorem 3. Assume that the (LS) Condition is satisfied at each feasible process p̄. Then, every KT-process is an optimal process if
and only if (OCP) is KT-invex.

Proof. Suppose that every KT-process is an optimal process. Let p and p̄ be feasible processes of (OCP). If F(p) ≥ F(p̄), define
η ≡ 0 and ξ ≡ 0. Clearly conditions (13)–(16) in Definition 3 are verified. Assume that F(p) < F(p̄). Then p̄ is not an optimal
process and hence is not a KT-process, since we are supposing that every KT-process is optimal. It follows from Lemma 1
that there exists (z, w) ∈ X × U such that∫ T

0
[∇x f (t, p̄)Tz(t)+∇u f (t, p̄)Tw(t)]dt < 0, (20)

z ′i (t) = ∇xhi(t, p̄)z(t)+∇uhi(t, p̄)w(t), t ∈ [0, T ], i ∈ I, (21)

zi(0) = 0, i ∈ I, (22)
∇ugj(t, ū)w(t) ≤ 0, t ∈ Aj(ū), j ∈ J. (23)

Set

c =
F(p)− F(p̄)∫ T

0 [∇x f (t, p̄)
Tz(t)+∇u f (t, p̄)Tw(t)]dt

.
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As F(p) < F(p̄), it follows from (20) that c > 0. For each t ∈ [0, T ], define η(t) = cz(t) and ξ(t) = cw(t). So, by (22),
ηi(0) = 0, i ∈ I , and (15) holds. We have that∫ T

0
[∇x f (t, p̄)Tη(t)+∇u f (t, p̄)Tξ(t)]dt = c

∫ T

0
[∇x f (t, p̄)Tz(t)+∇u f (t, p̄)Tw(t)]dt

= F(p)− F(p̄).

Therefore

F(p)− F(p̄)−
∫ T

0
[∇x f (t, p̄)Tη(t)+∇u f (t, p̄)Tξ(t)]dt = 0,

so that condition (13) of Definition 3 is verified. As c > 0, it follows, respectively, from (21) and (23) that the conditions (14)
and (16) are also verified. Thus, (OCP) is KT-invex.
Conversely, suppose that (OCP) is KT-invex. Let p̄ be a KT-process. Therefore, there exist Lagrange multipliers λ(t) and

µ(t) satisfying conditions (3)–(7) of Theorem 1. Taking into account that λj(t) ≥ 0 a.e. t ∈ [0, T ] and that λj(t) = 0, t ∈
[0, T ] \ Aj(ū), j ∈ J , it follows from (13), (14) and (16) that,∫ T

0
[f (t, p)− f (t, p̄)]dt ≥

∫ T

0
[∇x f (t, p̄)Tη(t)+∇u f (t, p̄)Tξ(t)]dt +

∫ T

0

∑
j∈J

λj(t)∇ugj(t, ū)Tξ(t)dt

+

∫ T

0

∑
i∈I

µi(t)[∇xhi(t, p̄)Tη(t)+∇uhi(t, p̄)Tξ(t)]dt −
∫ T

0

∑
i∈I

µi(t)η′i(t)dt

for all feasible process p. Rearranging the terms, we obtain∫ T

0
[f (t, p)− f (t, p̄)]dt ≥

∫ T

0
[∇x f (t, p̄)+

∑
i∈I

µi(t)∇xhi(t, p̄)]Tη(t)dt

+

∫ T

0
[∇u f (t, p̄)+

∑
i∈I

µi(t)∇uhi(t, p̄)+
∑
j∈J

λj(t)∇ugj(t, ū)]Tξ(t)dt −
∫ T

0

∑
i∈I

µi(t)η′i(t)dt

for all feasible process p. Using integration by parts, (4) and (15), we have∫ T

0

∑
i∈I

µi(t)η′i(t)dt =
∑
i∈I

µi(t)ηi(t)

∣∣∣∣∣
T

0

−

∫ T

0

∑
i∈I

ηi(t)µ′i(t)dt

= −

∫ T

0
µ′(t)Tη(t)dt.

Substituting in the last inequality, we obtain∫ T

0
[f (t, p)− f (t, p̄)]dt ≥

∫ T

0
[∇x f (t, p̄)+

∑
i∈I

µi(t)∇xhi(t, p̄)]Tη(t)dt +
∫ T

0
µ′(t)Tη(t)dt

+

∫ T

0
[∇u f (t, p̄)+

∑
i∈I

µi(t)∇uhi(t, p̄)+
∑
j∈J

λj(t)∇ugj(t, ū)]Tξ(t)dt

for all feasible process p. It follows from (3) and (5) that∫ T

0
[f (t, p)− f (t, p̄)]dt ≥ 0

for all feasible process p. Hence p̄ is an optimal process. �

4. Final considerations

In this work we showed how KT-invexity, introduced by Martin [10] in the context of mathematical programming, can
be extended to optimal control problems with unilateral control constraints. We gave an example showing that the class of
KT-invex control problems are larger than the class of invex control problems. The main result fully characterizes KT-invex
control problems: a control problem is KT-invex iff every KT-process is an optimal process.
The assumptions made here are that all functions on the data are continuously differentiable. Relaxing this assumption

to include nonsmooth functions is a topic for future research.
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