
Future Generation Computer Systems 56 (2016) 295–302
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Assessment of SDN technology for an easy-to-use VPN service
Ronald van der Pol a,∗, Bart Gijsen b, Piotr Zuraniewski b,d, Daniel Filipe Cabaça Romão c,
Marijke Kaat a
a SURFnet, Moreelsepark 48, 3511 EP Utrecht, The Netherlands
b TNO, Anna van Buerenplein 1, 2509 JE Den Haag, The Netherlands
c University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
d Department of Applied Mathematics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland

h i g h l i g h t s

• We describe the architecture of an OpenFlow based multi-domain on-demand L3VPN.
• We give implementation details of the developed demonstrator.
• An easy to use web portal allows end-users to set-up and manage multi-domain VPN.
• Community Connect (CoCo) service can enable integrated resource management solutions.
• We performed functional and non-functional tests in a physical and virtual testbed.

a r t i c l e i n f o

Article history:
Received 25 February 2015
Received in revised form
4 August 2015
Accepted 11 September 2015
Available online 21 September 2015

Keywords:
SDN
OpenFlow
OpenDaylight
Mininet
VPN
eScience

a b s t r a c t

This paper describes how state-of-the-art SDN technology can be used to create and validate a user con-
figurable, on-demand VPN service. In the Community Connection (CoCo) project an architecture for the
VPN service was designed and a prototype was developed based on the OpenFlow protocol and the Open-
Daylight controller. The CoCo prototype enables automatic setup and tear down of CoCo instances (VPNs)
by end-users via an easy to use web portal, without needing the help of network administrators to do
manual configuration of the network switches. Users from the research community, amongst others, ex-
pressed their interest in using such an easy-to-use VPN service for on-demand interconnection of their
eScience resources (servers, VMs, laptops, storage, scientific instruments, etc.) thatmay only be reachable
for their closed group. The developed CoCo prototype was validated in an SDN testbed and via Mininet
simulation. Using the calibratedMininet simulation the impactwas analysed for larger scale deployments
of the CoCo prototype.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The advent of Software Defined Networking (SDN) is creating
innovation opportunities for a wide range of use cases. A specif-
ically promising application is the opportunity to create connec-
tivity solutions in a more flexible way than with current Internet
technology. To assess this opportunity and the maturity level of
state of the art SDN technology, such as the OpenFlow protocol,
the OpenDaylight controller and the Mininet simulation environ-
ment, an easy-to-use VPN service was developed and validated in

∗ Corresponding author.
E-mail addresses: ronald.vanderpol@surfnet.nl (R. van der Pol),

bart.gijsen@tno.nl (B. Gijsen), piotr.zuraniewski@tno.nl (P. Zuraniewski),
d.f.romao@uva.nl (D.F.C. Romão), marijke.kaat@surfnet.nl (M. Kaat).

http://dx.doi.org/10.1016/j.future.2015.09.010
0167-739X/© 2015 Elsevier B.V. All rights reserved.
the CoCo project. The CoCo project, that ran fromOctober 2013 un-
til March 2015, was one of the open calls projects funded by the
European GN3plus project [1].

The demand for an easy-to-use VPN service has, for example,
been identified in the eScience community. In eScience research
the importance of networked services and facilities such asmedical
and genome databases, scientific instruments, visualization facili-
ties, storage and cloud computing is increasing. However, current
Internet services and facilities do not always provide the solutions
that are required to meet the security and privacy requirements.
It may require significant security configuration effort by network
administrators as well as by users. Reducing the required config-
uration actions has been a long term endeavour for Internet re-
searchers and significant steps have been taken. For example, in
most intranet environments users already feel as if secure com-

http://dx.doi.org/10.1016/j.future.2015.09.010
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2015.09.010&domain=pdf
mailto:ronald.vanderpol@surfnet.nl
mailto:bart.gijsen@tno.nl
mailto:piotr.zuraniewski@tno.nl
mailto:d.f.romao@uva.nl
mailto:marijke.kaat@surfnet.nl
http://dx.doi.org/10.1016/j.future.2015.09.010


296 R. van der Pol et al. / Future Generation Computer Systems 56 (2016) 295–302
Fig. 1. CoCo Layered architecture.
munication comes out of the box and with HTTPS related tech-
nology secure client–server communication on the Internet has
become child’s play. A little more skilled user will be able to ap-
ply file encryption for securely sending its content to his peers.
However, here is where current, user-friendly secure communica-
tion between end-users stops. More generic secure communica-
tion technology, such as Virtual Private Networks (VPNs) between
multiple end-users, involvesmanual processes at one ormore Net-
work Operation Centers. This lack in secure communication tech-
nology leaves a variety of interesting applications out of scope. The
need exists in particular in the eScience community as will be il-
lustrated by the use case in Section 2.

The prototype developed in the CoCo project demonstrates
how the OpenFlow protocol and the OpenDaylight controller can
be used to create a new type of user configurable, on-demand,
multi-domain and multipoint-to-multipoint VPN service. After
a one-time initial general set-up of the CoCo service by the
network administrator end-userswill be able to set up andmanage
CoCo instances via an easy to use web portal, without having
to rely on further manual intervention of the administrator. The
programming interfaces of the CoCo prototype can also be exposed
as API’s to other applications, such that these other applications
can automatically set up and tear down CoCo instances. The
architecture for the CoCo service is presented in Section 3.

The CoCo prototype is developed on the SDN testbeds of
SURFnet and the University of Amsterdam, that are equipped with
OpenFlow switches and an OpenDaylight controller. During the
development of the prototype several challenges in state of the
art SDN technology were encountered, such as missing features
that still need to be developed and bugs that need to be fixed. The
solutions that were found for the CoCo prototype are described in
Section 4.

In order to validate the CoCo prototype an automated test en-
vironment was developed for performing user-level experiments.
In addition to the experimental validation in the SDN testbed a
Mininet-based simulation environment was created. Mininet uses
Open vSwitch as software OpenFlow switches, but in the test envi-
ronment the same CoCo code was used and it also used OpenDay-
light. The only difference was that software switches were used
instead of hardware OpenFlow switches. With this setup Mininet
simulations were run for validating the scalability of the CoCo
prototype, beyond the boundaries of the number of OpenFlow
switches and CoCo connected sites in the testbed. The results from
these experiments and the scalability analysis are included in Sec-
tion 5.

In Section 6 a discussion of the results is presented, including
recommendations for following research. Finally, in Section 7
concluding remarks are presented about the ability of state of
the art SDN technology to create connectivity solutions in a more
flexible way than with current Internet technology.

2. Representative CoCo use case

Aparticular use case demonstrating the innovative power of the
CoCo service is the DNA sequencer as a Service [2]. DNA sequencers
are increasingly important instruments for scientists in the ge-
nomics science field. These sequencer instruments and the specific
bioinformatics solutions required for the storage, processing and
transport of their output are very expensive and get outdated rel-
atively quickly, due to the current rapid developments. Therefore,
research organizations can only justify such investments if the (re-
)utilization of the sequencers and bioinformatics solutions is suf-
ficiently high. The opportunity to strongly improve this return on
investment by offering scientists from multiple institutes a DNA
sequencing as a ,Service has been identified as a key innovation in
the genomics research field.

Fig. 1 presents an overview of a technical solution for a DNA
sequencer as a Service. The DNA sequencer as a Service is an
example of a service plane extension of the CoCo service. The
service plane is not part of CoCo, but can further facilitate the ease-
of-use for the end user by incorporating the CoCo service in the
control and data plane into an integrated service. Fig. 1 illustrates
how authorized genomics experts can access aweb interface of the
DNA sequencer as a Service to set up the connectivity required for
conducting an experiment.

Currently, the automation of DNA sequencing and processing
is increasingly being applied via workflowmanagement solutions.



R. van der Pol et al. / Future Generation Computer Systems 56 (2016) 295–302 297
Fig. 2. Interdomain data plane forwarding.
At their back-end such platforms will manage and interface to the
resources that are used to execute these processes. These resources
include storage, processing and network connectivity. In this use
case the CoCo service is foreseen to provide management services
for the connectivity resources. In particular, once the workflow
management solution needs to establish connectivity to a DNA
sequencer in a different domain it can be programmed to use
the CoCo portals in the relevant domains to create the required
multi-domain connectivity. Thisway the genomics expert’s actions
can be limited to setting up the experiment, without logging-in
on multiple systems and having to bother about establishing the
required connectivity paths over and over again.

3. CoCo overall architecture

The exploration of use cases, such as the DNA sequencer as
a Service, resulted in a number of design principles for the VPN
service. The CoCo service should be a multipoint-to-multipoint
VPN service, applicable in a multi-domain environment. A CoCo
instance can be set up between several, up to tens of endpoints.
The configuration of a CoCo instance is done by the end-users
themselves and the time required to activate (changes to) a CoCo
instance should take no more than 10 s. In other words, the
CoCo service should be highly scalable, fast and very easy to
use. The systems providing the CoCo service must be able to
support multiple CoCo service instances simultaneously, i.e. end-
user equipment can be part of several, different CoCo instances
at the same time. Setting up and using the CoCo service should
be affordable as only limited portions of research budgets are
usually available for connectivity. The CoCo architecture should be
easy to incorporate in the existing research and campus network
infrastructures.

The CoCo prototype is developed using existing state-of-the-art
open source SDN frameworks and open standards are used where
possible. The CoCo prototype will consist of multiple domains and
each domain has an OpenFlow based infrastructure. The data plane
(forwarding plane) consists of OpenFlow switches. The switches
in one domain are controlled by an OpenDaylight SDN controller
and each domain runs its own CoCo agent. A CoCo agent is an
extension to the OpenDaylight controller and adds specific CoCo
functionality to theOpenDaylight controller. Fig. 1 shows the inter-
domain architecture of CoCo.

OpenDaylight [3] is a community-driven open source SDN
controller framework hosted at the Linux Foundation [4]. It is
currently seen as one of the major open source SDN controllers.
We have chosen to use OpenDaylight in the CoCo project because
of this large and growing user and developer community.

A CoCo agent has several tasks. One task is to control the
OpenFlow switches in its domain by doing topology discovery and
configuring flow forwarding rules on the switches. The other task
is in the inter-domain control plane of CoCo. The CoCo agents use
the BGP protocol to exchange VPN and end-point informationwith
each other. BGP is only used for exchanging information. BGP does
not do any forwarding (FIB) manipulations. The forwarding tables
in the OpenFlow switches are controlled via OpenDaylight.

The core of the network is based on MPLS label forwarding
and is implemented over several domains. MPLS is only used
as encapsulation. The forwarding paths are calculated by and
provisioned from the OpenDaylight controllers. As such, no data
plane label distribution protocols such as the Label Distribution
Protocol (LDP [5]) are used.

In the control plane of each domain there is a single CoCo portal.
End users can login to this portal directly, or via a service plane
portal, and they can setup or tear down CoCo instances. CoCo
instances are set up by choosing end-sites from a list and entering
prefix and port based VLAN information for each site. End users
can join multiple CoCo instances simultaneously. The web portal
distributes the prefix and VLAN information to the CoCo agents in
the various domains.

3.1. CoCo data plane forwarding

The CoCo networks core consists of OpenFlow switches that
have either a Provider Edge (PE) function or a Provider (P) function.
The PE switches connect to either Customer Equipment (CE) via
a UNI interface or to PE switches in other domains via an E-NNI
interface, as shown in Fig. 2. The P switches are internal core
network switches. The terminology and concepts are specified
in RFC 4026, Provider Provisioned Virtual Private Network (VPN)
Terminology [6].

MPLS based forwarding is used in the core of the network
in order to keep the forwarding tables small by aggregating all
IP prefixes that are behind one PE OpenFlow switch. Two MPLS
labels are used. The outer MPLS label is used to identify the PE
switch to which a packet must be sent. The inner MPLS label is
used to identify a particular CoCo instance (VPN). PE switches take
care of tagging the user traffic received from Customer Edge (CE)
equipmentwith the properMPLS labels.When sending traffic from
the core network to the CE switch, the PE switch removes theMPLS
labels. Note that a site can be present in multiple CoCo instances at
the same time. The inner MPLS labels identify the separate CoCo
instances.

3.2. CoCo control plane

The CoCo agents are responsible for topology discovery within
a domain and do intra- and inter-domain path calculation. The
intra-domain path calculation is based on the domain topology
only. The inter-domain path calculation is based on BGP path
information that is exchanged with neighbouring domains. In the
inter-domain case each CoCo agent configures forwarding entries
on the OpenFlow switches in its own domain that form a path



298 R. van der Pol et al. / Future Generation Computer Systems 56 (2016) 295–302
between two PEs in that domain. This can be either two PEs directly
connected to the source and destination CE, or it can be a PE that is
connected to the E-NNI port to the inter-domain link that has been
chosen by the BGP path selection process towards a CE in another
domain (see Fig. 2). For simplicity, we start with one shortest path
between each pair of PEs. At a later stage we can easily extend it
with backup paths.

BGP is used to exchange information between the CoCo agents
similar to what is described in RFC 4364 BGP/MPLS IP Virtual
Private Networks (VPNs) [7]. There are BGP peering relationships
between neighbouring CoCo agents. The CoCo agents also work
with the concept of transit. For example, CoCo agent a1 has a
peering relationwith CoCo agent a2 only (see Fig. 1). CoCo agent a1
exchanges information with CoCo agents a3 and a4 via CoCo agent
a2, which in this case acts as a transit agent.

For each PE in its domain, a CoCo agent sends the following
information to its CoCo BGP peers:

• VPN-IPv4 address family (12 bytes) (RFC 4364 [7])
The 12 bytes consist of an 8 byte Route Distinguisher (RD) and
a 4 byte IPv4 address. An RD is encoded as a 2 byte ⟨Type⟩ and
a 6 byte ⟨Value⟩. We will use Type 2 RDs that consist of a 4 byte
AS number followed by a 2 byte value. This value is managed by
each domain, so by each CoCo agent. The CoCo agent manages
a list of free values and assigns a unique value to each CoCo
instance.

• VPN-IPv6 address family (24 bytes) (RFC 4659 [8])
The 24 bytes consist of an 8 byte Route Distinguisher (RD) and a
16 byte IPv6 address. The RD will be the same value as for IPv4.

• Next hop (VPN-IPv4 route with RD = 0)
The next hop in the route announcement should point to the PE
that has the prefixes behind it. The CoCo agent assigns unique
IPv4 addresses (from 10.0.0.0/24) to each PE in its domain to be
used as next hop.

• MPLS label to reach that PE (RFC 3107 [9])
This is done in the NLRI (Network Layer Reachability Infor-
mation) by using an AFI (Address Family Identifier) of VPN-
IPv4 and a SAFI (Subsequent Address Family Identifier) of
4. The NLRI is encoded as one or more triples of the form
⟨length, label, prefix⟩. The length is in bits and includes prefix
and label(s). Each label is encoded as 3 octets, where the high
order 20 bits contain the label value, and the low order bit con-
tains Bottom of Stack. The prefix field contains address prefixes
followed by enough trailing bits to make the end of the field fall
on an octet boundary.

• CoCo instance identifier (2 bytes) encoded in Route Target
A Route Target is sent via BGP Extended Communities (8
bytes) (RFC 4360 [10]) and is structured the same as a Route
Distinguisher. We will use a Type 2 RD again with a 4 byte
AS number and a 2 byte value. The value identifies the CoCo
instance and will be used as inner MPLS label in the data plane
for all traffic belonging to that CoCo instance.

Section 7 of RFC 4364 describes how PEs learn routes from
CEs. This can be done by static configuration or by running a
dynamic routing protocol, such as OSPF or BGP. When using OSPF,
an OSPF instance per VPN is needed. BGP provides more control to
the customer by using suggestions for route targets and/or using
extended communities.

4. CoCo prototype

The CoCo prototype was developed on SURFnet’s SDN testbed
and an OpenFlow testbed set up by the University of Amsterdam.
In the SURFnet testbed a Pica8 Pronto 3920 switch [11] was used,
running PicOS 2.4 in Open vSwitch (OVS) Mode. Four OpenFlow
bridges were configured on the switch. In the testbed of the
University of Amsterdam a Pica8 P3290 switch was used running
PicOS 2.1.3 with two bridges configured.

The CoCo architecture was designed to operate both in a
single-domain and amulti-domain environment. The current CoCo
prototype supports L3 VPNs only. There are many scalability and
operational challenges in a L2 VPN service, especially in a multi-
domain case. In Section 6.1 we describe the challenges of L2 VPNs.

4.1. CoCo data plane implementation

During development of the CoCo prototype it appeared that
currently not all OpenFlow switch software supports the MPLS
functions required for CoCo. Therefore, we use VLAN based port
services on the UNI interfaces. This means that traffic between
CE and PE is VLAN tagged and the VLAN ID maps to a particular
CoCo instance. The customer is responsible for putting traffic of
nodes in the correct VLAN. The PE matches on that VLAN ID
and on the destination IPv4 prefix. Before forwarding the packet
the PE switches add the two MPLS labels corresponding to the
destination PE and CoCo instance. The CoCo agent that installs
the flow forwarding rules on the PE switches needs to know
what the destination PE for each IP prefix is. The CoCo agent also
needs to know about the mapping between customer VLAN ID and
CoCo instance and the IP prefixes that the customer uses in that
particular CoCo instance. In the initial implementation of the CoCo
prototype, the person adding a site to a CoCo instance configures
this manually via the web portal.

4.2. CoCo control plane implementation

For the CoCo prototype the OpenDaylight SDN controller is
used. As mentioned in Section 3, OpenDaylight is a community-
driven open source SDN controller framework hosted at the Linux
Foundation. The OpenDaylight project started in April 2013. The
first version of OpenDaylight (Hydrogen [12]) was released in
February 2014. The current release cycle for major releases is six
months. Helium-SR2 [13]was released on January 30, 2015. During
development of the CoCoprototypeOpenDaylightHelium (SR1 and
SR3) was running on VMs with Ubuntu 14.04, with the following
features: odl-dlux-all, odl-openflowplugin-all and odl-restconf.

OpenDaylight consists of severalmodules, such as the controller
platform, southbound plugins for protocols like OpenFlow 1.0 [14]
and 1.3 [15], OVSDB [16], and NETCONF [17] and modules that
offer services for OpenStack integration, a GUI, a DDOS protection
module, etc. The controller platform is the central module and it
has a Model-Driven Service Abstraction Layer (MD-SAL) based on
YANG [18]models. It also has basic network service functions, such
as a topology manager, a statistics manager, a switch manager, a
forwarding and routing module and a host tracker. Most of these
modules provide REST based northbound interfaces.

CoCo uses the northbound REST interfaces to retrieve the
topology of the OpenFlow network and to manipulate forwarding
entries on the OpenFlow switches. Parts of the VPN service project,
which is part of the OpenDaylight Lithium release and due to be
released in June 2015, will be used for the interaction with BGP.

To exchange the prefix reachability information between PE
and CE switches we have chosen for static configuration for
simplicity. The user enters the configuration data that is needed
(e.g. IP prefixes) on the CoCo agent web portal when adding a site
to a VPN.

4.3. CoCo portal

TheCoCoportal is the user interface for the CoCo service and it is
part of the CoCo agent. The CoCo agents are implemented as a web
application running on Tomcat and use a Model-View-Controller



R. van der Pol et al. / Future Generation Computer Systems 56 (2016) 295–302 299
User controlled provisioning of VPNs on OpenFlow switches using OpenDaylight.

Provisioned VPNs:

Fig. 3. CoCo portal screenshot.
architecture. The prototype is developed on a VM running Ubuntu
14.04 and Tomcat version 7.0.55. The developmentwas done using
Eclipse [19] with maven [20] and Java 1.7.

The user connects to the CoCo agent website with a browser
and gets an overview of the network topology and the configured
VPNs. See Fig. 3 for a screenshot of the portal.

The CoCo agent retrieves the topology information from the
OpenDaylight controller via REST calls. The configured VPNs are
stored in aMySQL database. On the portal the user can create a new
VPN, add sites to it, delete sites from it and delete the complete
VPN. But a user can only manipulate VPNs if he has the proper
credentials. After logging in he has access to VPNs and sites in his
group(s) only.

When a new VPN is created, the information is stored in the
MySQL database.When a VPN is deleted, the information is deleted
from the MySQL database. When sites are added to a VPN, the
MySQL database is updated and OpenFlow forwarding entries are
generated and sent to the OpenDaylight REST interface. OpenDay-
light takes care of configuring the OpenFlow switches. A similar
process takes place when removing sites from a VPN.

5. CoCo validation

We have performed a number of tests to verify interaction
with the CoCo portal from the user perspective. Since we wanted
to test various configurations (e.g., several different sets of sites
participating in a CoCo instance), we have developed an automated
test environment.

5.1. Test instruments

We have used AutoHotkey [21] to emulate interaction of an
MS Windows user with the CoCo portal. In addition, we have
developed several bash scripts for testing the connectivity (or
the lack thereof) between virtual machines (VMs, Ubuntu 14.04)
that are connected to our testbed and that can participate in
CoCo instances. For this connectivity test each VM uses the nmap
tool to send ICMP Echo Requests to all other VMs. To speed up
this phase we have used the parallel-ssh tool to initiate tests on
each of the VMs simultaneously. To facilitate the tests, we have
used a ‘Command & Control’ (C&C) machine which can accept the
instructions from MS Windows hosts and send the instructions
towards the VMs. In this way we can emulate the behaviour of
a large number of CoCo end users. To assure a proper sequence
of the events during a test, bash scripts are started from a single
command issued from the AutoHotkey script (i.e., from an MS
Windows system) by using the plink [22] tool which connects to
the C&C machine.

The tests with the CoCo prototype are performed in SURFnet’s
SDN testbed. In order to extend the scope of the test results beyond
the limited scale of the testbed we also developed a Mininet [23]
simulation environment. Mininet is a software emulator allowing
the creation of a virtual SDN network with a configurable number
of OpenFlow switches. These switches can either use Mininet’s
internal OpenFlow controller or use an external SDN controller,
e.g. OpenDaylight. Moreover, Mininet switches use OVSDB (Open
vSwitch Database, [16]) which is recognized as the de facto
management protocol standard for SDN [24]. We used Mininet
version 2.2.0 to emulate the OpenDaylight controller and the CoCo
prototype software in theMininet environment. Configuration and
validation scripts to setup aMininet-based simulation for the CoCo
service have been published by the CoCo project [25].

5.2. Experiments

As an input, the AutoHotkey script is fed with the type of action
to be tested (e.g., setting-up the CoCo instance, adding a site to a
CoCo instance or disabling a CoCo instance) alongwith appropriate
arguments (e.g., a list of the sites being members of the CoCo
instance to create) and the number of test repetitions. In the CoCo
project a number of test cases were performed to validate (a) the
functionality of the CoCo prototype, (b) the ease of use and (c) its
scalability.

The ease of use test starts with opening the CoCo portal in a
web browser, clearing all existing CoCo instances and verifying
that there is no connectivity (yet) between the VMs under test.
After assuring that each VM can only reach itself, the next step is
to select other sites on the CoCo portal, to submit the request to



300 R. van der Pol et al. / Future Generation Computer Systems 56 (2016) 295–302
the OpenDaylight controller and check the connectivity again. In
order to get an indication for the CoCo instance activation timeswe
measured the elapsed time, and repeated this test sequence about
ten times.

The measurement results from these repeated tests indicated
a very limited variability in the elapsed activation times. The
coefficients of variation (ratio of standard deviation to the average
value) being in the order of 0.02 and therefore we can suffice with
reporting the average elapsed times. The elapsed time between
pressing the done button (i.e., sending an order to actually create a
CoCo instance) until a successful connectivity measurement result
took approximately 3.3 s. This includes 1 s ‘sleep’ time in the script
and 1.45 s for the nmap full-mesh connectivity test. In general,
we can conclude that the CoCo instance is ready in roughly 1 s. In
total, the described session (from opening the web browser with
the CoCo portal until closing it after completing all the mentioned
tests and actions and including some artificially introduced sleep-
time) took approximately 13 s. Excluding the initial CoCo instance
clearing and the test of its effect the session time was below
10 s. According to Nielsen’s [26] de facto usability criteria for
interactiveweb applications this CoCo instance activation timewill
be perfectly acceptable from a user’s point of view.

This validation of elapsed CoCo instance activation times was
performed on VMs that are connected to four CoCo sites in the
testbed. To analyse the impact of elapsed activation times in larger
scale SDN networks we used the Mininet simulation environment.

5.3. Scalability tests

While in principle it is possible to perform large scale tests us-
ing a physical testbed, it may require some tedious tasks such as
rewiring when topology changes. Using a virtual testbed is more
convenient, offering rapid generation of different setups. We have
used the Fast Network Simulation Setup (FNSS) toolchain [27] to
generate various networks which in turn can be easily exported to
Mininet. Any topology created in this way is then automatically re-
trieved by the OpenDaylight controller as described in Section 4.2.
To function correctly, CoCo needs additional information stored in
its MySQL database such as MPLS labels or sites configuration. We
populate this database using a custom Python script which pro-
cesses Mininet topology information along with a MySQLdb [28]
module for the actual export. Finally, for these tests we have de-
cided not to use AutoHotkey to simulate user clicks needed to add
sites to a VPN, but rather supply the required configuration directly
to a little helper function in CoCo itself. Therefore, our focus is on
CoCo instance setup time understood as described in the previous
section, i.e., as a time which elapses from sending an order to actu-
ally create a CoCo instance. A successful creation is each time con-
firmed by performing connectivity tests as described Section 5.1.

For our experiments we have chosen to simulate a two-tier
data centre topology: switches are organized in two tiers (core and
edge) with each core switch connected to each edge switch while
each host (in our case: CoCo site) is connected to exactly one edge
switch. We keep the number of core switches equal to two while
increasing the number of edge switches.1 Each of the edge switches
connects two sites and one of them is selected to participate in
a CoCo instance. In this setup we therefore expect a quadratic
complexity with the number of sites as paths between each pair
of sites need to be calculated and inserted into the appropriate
switches.We have used Ubuntu 14.04 virtualmachinewith 2 cores
clocked at 3.5 GHz and 32 GB of RAM.

The results are summarized in Table 1 and Fig. 4, confirming
quadratic dependency. We have performed 10 repetitions for
each selected number of nodes using Java System.nanoTime() to

1 Note, that we do not aim to replicate an optimal network architecture here
with acceptable oversubscription ratios, etc. but ratherwant to verify the VPN setup
process itself.
Table 1
Elapsed times for various network configurations. Result of the first run considered
as outlier and removed in further calculations. Times in ms.

No. of sites 2 4 6 8 10 15 20

Run
1 252 981 2159 5128 6689 14579 28617
2 428 1788 5427 9429 12675 29586 52150
3 469 1897 4752 8456 12900 29278 57020
4 426 2213 4426 8255 12593 30893 52709
5 459 2083 4281 7763 12640 29299 53875
6 407 1915 4663 8330 12085 30186 56715
7 472 1843 4642 8109 12660 28916 54152
8 533 1787 4188 7683 13106 29562 54673
9 415 2179 4508 8005 13159 32962 56703
10 402 1795 5610 7622 12620 29125 54052

mean 446 1944 4722 8184 12715 29979 54672
median 428 1897 4642 8109 12660 29562 54152
stdev 40 160 461 520 301 1198 1677
CV 0.09 0.08 0.10 0.06 0.02 0.04 0.03

Fig. 4. Setup time vs. number of sites.

measure the elapsed time. The first observation is that in each
test a first run always lasted roughly half of the typical runtime,
despite clearing configuration after each run. We have left it to
future work to investigate where this difference comes from. We
have decided to treat the first value as an outlier and remove it
from further processing. Therefore mean (and its plot in Fig. 4),
median, standard deviation and coefficient of variation in Table 1
are calculated for runs 2–10. Since the obtained times were stable
we decided that 9 effective repetitions are sufficient. For number of
sites less than 10 the setup time is less than 10 s. On the other hand,
for 20 participating sites our system needed about 1 min to converge.
Wehave observed that for 15 and 20 sites the controller sometimes
failed to install a flow, resulting in lack of connectivity between
certain sites. The OpenDaylight console showed exceptions related
to concurrent execution, but were not able to find a complete
explanation. We plan to repeat our tests using the next release of
OpenDaylight (Lithium) and verify if this particular problem still
persists. We conclude that a virtual testbed is capable to verify
various scenarios using the same tools as in a production network.
The added value is the speed of creating new network topologies
and ease of prototyping at minimal (or no) investments.

6. Discussion

The underlying objective of developing the CoCo prototype was
to assess the maturity level of state of the art SDN technology.
To this end our experiences during the CoCo development are



R. van der Pol et al. / Future Generation Computer Systems 56 (2016) 295–302 301
discussed in this section. These experiences are distinguished in
(a) the limitations of SDN technology that were encountered and
(b) challenges that are yet unresolved for the CoCo prototype.

It should be noted that this is a reflection of the state of the art
during the development in the period of 2014 and the beginning
of 2015. Of course, the technology has not stopped evolving since
then.Nevertheless,we regard it valuable to determine thematurity
level for that period of time.

6.1. L2 VPN challenges

The presented CoCo prototype offers a L3 VPN service. We
explored the extension of the CoCo prototype to an easy to use,
on-demand L2 VPN service. Creating such a service with SDN
technology requires the implementation of a number of basic L2
functions. In order to implement these functions some scalability
challenges need to be addressed, especially in the multi-domain
case. A L2 VPN service requires two major additional features:
• MAC learning (or an equivalent mechanism) is needed at the PE

edges.
• The network must support broadcast.
As opposed to the case for a L3 VPN service, there is no routing and
all nodes at all sites in a L2 VPN reside in the same L2 network.
Therefore, they share the same IP prefix and each node must get a
unique IP address from that prefix.

One option is to use DHCP(v6). This requires either the
provisioning of addresses from one big pool, or to divide the
available address space over the CoCo sites. The latter option is
more difficult to manage, as it is usually hard to predict howmany
addresses are needed at each site.

For IPv6 there is the option to use SLAAC (Stateless Address
Autoconfiguration) [29]. This requires a mechanism for ICMPv6
prefix announcement and discovery. However, this traffic does not
need to traverse the backbone, as it is only needed at the edges.
It is probably best to implement this at each site by using a proxy
mechanism that intercepts discovery messages before they enter
the backbone.

When an Ethernet frame coming from a CE device reaches a
PE edge device there are two possibilities. When the destination
MAC address is known, the frame can be forwarded on the proper
interface. When the destination MAC address is not known, a
L2 VPN service would usually broadcast that frame towards all
destination PEs. This requires setting up broadcast support in the
backbone network. A technology like VPLS implements this with
setting up a full mesh of circuits between all PEs. This has clearly
scalability issues. Recent work in the IETF L2VPN working group
tries to solve this scalability problem with the EVPN specifications
(RFC 7432 [30]). With EVPN, MAC/IP address information is
explicitly exchanged between PEs via the BGP protocol. This way
there are no unknown MAC destinations anymore.

When a host in one site wants to communicate with a host in
another site, it needs to know its IP address. This is done via the
ARP and ND (Neighbor Discovery) protocols. These messages are
broadcast (multicast) and usually the destination node responds
with a reply. In a L2 VPN service this requires broadcast (multicast)
support in the backbone. Another option is to use proxy ARP (and
ND). At the edge the ARP (ND) requests are intercepted and a proxy
(that knows the destination IP address) replies to the sending node.
This way the ARP (ND) messages never enter the backbone.

6.2. Mininet test environment

In traditional communication networks the use of a separate
test and development environment, besides the operational pro-
duction network, is common practice. The advent of SDN offers
the opportunity to reduce the complexity and manual labour in
the physical test environment by using a simulation environment
that has identical control plane software installed. As mentioned
before, the CoCo service is intended to be easy to use by its end-
users, however, rolling out such a new service will require some
initial efforts from the network administrators. Fortunately, there
are possibilities to validate and tweak the CoCo service in a sep-
arated environment before deploying it in a production network.
One of the options is to use Mininet, which can run on a single PC.
It should be noted however, that Mininet is a software emulator
that has certain limitations. For example, limitations with respect
to attainable speed transfers, such as identified in [31]. In addition,
Mininet is a relatively new simulation environmentwith a growing
community and feature set. In our tests we have encountered cer-
tain problems with for example port numbering (resolved in ver-
sion 2.2.0) or somewhat crude sshd support (improving it is high
on the official Mininet project ideas list). Despite such limitations
andminor issuesMininet can be regarded as a good option (but not
the only one, see for example [32]) for experimenting with SDN,
complementing the facilities in a physical testbed.

6.3. Further CoCo development

The prototype of the CoCo service presented in this paper still
lacks a number of features. For example, the implementation of
authentication (and other AAA functions) is still very basic and
the necessary extensions to make the prototype applicable over
multiple domains are currently under development. The absence of
these features in the presented prototype are not due to limitations
in SDN technology, but are due to the higher priority that we gave
to implementing the features that are included in the current CoCo
prototype.

Resolution of conflicting CoCo requests is also a feature that
is still missing. For example, it may occur that multiple users
are adding or deleting CoCo sites and devices to the same CoCo
instance at the same time. For such potentially conflicting user
actions there is no mechanism in the current prototype that
enforces the correct processing of these actions. However, we
anticipate that existing concurrency mechanisms can be re-used
to handle conflicting requests in the CoCo prototype.

7. Conclusion

We were able to implement a working Community Connection
(CoCo) prototype. This prototype has been successfully validated
and a Mininet setup was used for scalability tests. During the
development we discovered that the SDN technologies we used
are still rapidly evolving. Implementing the CoCo components gave
us a lot of insight into the maturity of SDN, its possibilities and
weaknesses.

Acknowledgements

This paper has been produced with the financial assistance
of the European Union. The contents of this document are the
sole responsibility of SURFnet, TNO and UvA and can under
no circumstances be regarded as reflecting the position of the
European Union.

The authors acknowledge help from MichałGoliński in CoCo
code development.

References

[1] CoCo on Demand Community Connection Service for eScience Collaboration.
http://www.geant.net/opencall/SDN/Pages/CoCo.aspx.

[2] Intermediate Use Cases for the Community Connect (CoCo) Service. http://
www.geant.net/opencall/SDN/Documents/CoCo_intermediateusecases_
deliverable.pdf.

[3] OpenDaylight. http://www.opendaylight.org/.
[4] Linux Foundation. http://www.linuxfoundation.org/.
[5] L. Andersson, I. Minei, B. Thomas, LDP Specification, RFC 5036, 2007.

http://tools.ietf.org/html/rfc5036.
[6] L. Andersen, T. Madsen, Provider Provisioned Virtual Private Network (VPN)

Terminology, RFC 4026, 2005. http://tools.ietf.org/html/rfc4026.
[7] E. Rosen, Y. Rekhter, BGP/MPLS IP Virtual Private Networks (VPNs), RFC 4364,

2006. http://tools.ietf.org/html/rfc4364.

http://www.geant.net/opencall/SDN/Pages/CoCo.aspx
http://www.geant.net/opencall/SDN/Documents/CoCo_intermediateusecases_deliverable.pdf
http://www.geant.net/opencall/SDN/Documents/CoCo_intermediateusecases_deliverable.pdf
http://www.geant.net/opencall/SDN/Documents/CoCo_intermediateusecases_deliverable.pdf
http://www.geant.net/opencall/SDN/Documents/CoCo_intermediateusecases_deliverable.pdf
http://www.geant.net/opencall/SDN/Documents/CoCo_intermediateusecases_deliverable.pdf
http://www.geant.net/opencall/SDN/Documents/CoCo_intermediateusecases_deliverable.pdf
http://www.geant.net/opencall/SDN/Documents/CoCo_intermediateusecases_deliverable.pdf
http://www.geant.net/opencall/SDN/Documents/CoCo_intermediateusecases_deliverable.pdf
http://www.geant.net/opencall/SDN/Documents/CoCo_intermediateusecases_deliverable.pdf
http://www.geant.net/opencall/SDN/Documents/CoCo_intermediateusecases_deliverable.pdf
http://www.geant.net/opencall/SDN/Documents/CoCo_intermediateusecases_deliverable.pdf
http://www.opendaylight.org/
http://www.linuxfoundation.org/
http://tools.ietf.org/html/rfc5036
http://tools.ietf.org/html/rfc4026
http://tools.ietf.org/html/rfc4364


302 R. van der Pol et al. / Future Generation Computer Systems 56 (2016) 295–302
[8] J. De Clercq, D. Ooms, M. Carugi, F. Le Faucheur, BGP-MPLS IP Vir-
tual Private Network (VPN) Extension for IPv6 VPN, RFC 4659, 2006.
http://tools.ietf.org/html/rfc4659.

[9] Y. Rekhter, E. Rosen, Carrying Label Information in BGP-4, RFC 3107, 2001.
http://tools.ietf.org/html/rfc3107.

[10] S. Sangli, D. Tappan, Y. Rekhter, BGP Extended Communities Attribute, RFC
4360, 2006. http://tools.ietf.org/html/rfc4360.

[11] Pica8 Pronto 3920 datasheet. http://www.pica8.org/documents/
pica8-datasheet-64x10gbe-p3780-p3920.pdf.

[12] OpenDaylight Hydrogen. http://www.opendaylight.org/hydrogen.
[13] OpenDaylight Helium-SR2. http://www.opendaylight.org/software/

downloads/helium-sr2.
[14] OpenFlow Switch Specification version 1.0.0, December 31, 2009. https://

www.opennetworking.org/images/stories/downloads/sdn-resources/
onf-specifications/openflow/openflow-spec-v1.0.0.pdf.

[15] OpenFlow Switch Specification 1.3.4, March 27, 2014. https://
www.opennetworking.org/images/stories/downloads/sdn-resources/
onf-specifications/openflow/openflow-switch-v1.3.4.pdf.

[16] B. Pfaff, B. Davie (Eds.), The Open vSwitch DatabaseManagement Protocol, RFC
7047, 2013. http://tools.ietf.org/html/rfc7047.

[17] R. Enns, M. Bjorklund, J. Schoenwaelder, A. Bierman, Network configuration
protocol (NETCONF), RFC 6241, 2011. http://tools.ietf.org/html/rfc6241.

[18] M. Bjorklund (Ed.), YANG—A Data Modeling Language for the Network
Configuration Protocol (NETCONF), RFC 6020, 2010. http://tools.ietf.org/html/
rfc6020.

[19] Eclipse. https://eclipse.org/ide/.
[20] Maven integration for Eclipse. https://maven.apache.org/eclipse-plugin.html.
[21] AutoHotkey (AHK). http://ahkscript.org/.
[22] Plink. http://www.chiark.greenend.org.uk/~sgtatham/putty/.
[23] Mininet. http://www.mininet.org/.
[24] https://wiki.opendaylight.org/view/OVSDB_Integration:Design.
[25] Mininet simulation of CoCo prototype. https://github.com/rvdpdotorg.
[26] JakobNielsen, Usability Engineering, Academic Press, Inc., ISBN: 0-12-518406-

9, 1993.
[27] L. Saino, C. Cocora, G. Pavlou, A Toolchain for simplifying network simulation

setup, in: Proceedings of the 6th International ICST Conference on Simulation
Tools and Techniques, SIMUTools 2013, Cannes, France, March 2013.

[28] A. Dustman, MySQLdb: a Python interface for MySQL. http://mysql-
python.sourceforge.net/.

[29] S. Thompson, T. Narten, T. Jinmei, IPv6 Stateless Address Autoconfiguration,
RFC 4862, 2007. http://tools.ietf.org/html/rfc4862.

[30] A. Sajassi, R. Aggarwal, N. Bitar, A. Isaac, J. Uttaro, J. Drake, W. Henderickx, BGP
MPLS-based Ethernet VPN, RFC 7432, 2015. http://tools.ietf.org/html/rfc7432.

[31] What are Mininet’s limitations? https://github.com/mininet/mininet/wiki/
Introduction-to-Mininet#what-are-mininets-limitations.

[32] ns-3 vns-3-dev documentation: OpenFlow switch support. http://www.
nsnam.org/docs/release/3.13/models/html/openflow-switch.html.

Ronald van der Pol, M.Sc. He has beenworking in the field
of Education and ResearchNetworks formore than twenty
years. Since 2012 he is working on network innovation
projects at SURFnet. His former employers include VU
University Amsterdam, SURFnet, NLnet Labs and SARA.
His current interests are in new network technologies and
how these can be applied to next generation networking.
This includes Software Defined Networking, OpenFlow,
multipathing, load balancing and other forms of traffic
engineering and optimization, network management and
monitoring, transport protocols, carrier Ethernet and end-

to-end performance of demanding applications. He holds masters degrees in both
Physics and Computer Science and is a frequent speaker at networking conferences.
Bart Gijsen, M.Sc. After receiving his M.Sc. degree in
both computing science and mathematics Bart joined
KPN Research in 1996 as a researcher in the field
of performance analysis of Internet technology based
information and communication systems. From 2003 till
present day Bart is employed at TNO as a senior innovator
in the expertise group Performance of Networks and
Systems. One of his focus areas is quantitative modelling
and impact prediction of Internet security and stability.
Among the 20+ journal and conference publications
about performance and robustness of information and

networking technology was his work on ‘A Global Reference Model of the DNS’, for
which he received the best paper award. Since 2010 Bart is also part-time director
of the Dutch ICT Innovation Platform ‘Critical ICT infrastructures’.

Piotr Zuraniewski, Ph.D. He received his M.Sc. degree in
mathematics (Best Graduate Award) in 2003 from AGH,
Poland, where he further worked as a research assistant,
being involved in several FP6/FP7 research projects. In
2011 he defended his Ph.D. thesis entitled ‘Stochastic
modelling and control of communication networks’ at the
University of Amsterdam. He is nowwith the Performance
of Networks and Systems group of TNO, working as a
research scientist. His research interests are Data Science,
performance evaluation, anomaly detection especially in
the context of new network technologies like SDN of NFV.

Dr. Zuraniewski is a co-author of several refereed scientific papers, published in
international journals. Since 2004 he is recognized as a Cisco Certified Network
Professional (CCNP).

Daniel Filipe Cabaça Romão, B.Eng. He received his bach-
elor in electronics, telecommunications and computer en-
gineering in 2012 from ISEL, Lisbon. Prior to his current
job, Danielwas involved inULOOP(FP7), and he researched
secure bootstrapping methods for connecting to wireless
networks at Caixa Mágica, Lisbon. Currently he is a part-
time Scientific System Engineer for the System and Net-
work Engineering research group at the University of Am-
sterdam. In his current position, he is responsible for net-
work and system administration as well as developing ex-
tensions for cloudmanagement systems and participate in

research projects. Also, he is pursuing a Master degree in System and Network En-
gineering. His research interests are: SDN/NFV, Cloud Computing, and security of
networks.

Marijke Kaat, M.Sc. She received a master’s degree in
Computer Science from the University of Amsterdam. She
has been working for over twenty years in the field of
Education and Research Networks. Currently, she is a
Network Manager at SURFnet, with a focus on network
innovations and sustainability. She participated in several
global and European standards and operational fora (IETF,
RIPE) and GÉANT research projects. Her current interests
are new network technologies and architectures such
as SDN, RINA and NDN, but also new developments
in network management, monitoring and measurements

and the sustainability and greenness of networks. She is also a part-time lecturer
and researcher in the System and Network Engineering group at the University of
Amsterdam.

http://tools.ietf.org/html/rfc4659
http://tools.ietf.org/html/rfc3107
http://tools.ietf.org/html/rfc4360
http://www.pica8.org/documents/pica8-datasheet-64x10gbe-p3780-p3920.pdf
http://www.pica8.org/documents/pica8-datasheet-64x10gbe-p3780-p3920.pdf
http://www.pica8.org/documents/pica8-datasheet-64x10gbe-p3780-p3920.pdf
http://www.pica8.org/documents/pica8-datasheet-64x10gbe-p3780-p3920.pdf
http://www.pica8.org/documents/pica8-datasheet-64x10gbe-p3780-p3920.pdf
http://www.pica8.org/documents/pica8-datasheet-64x10gbe-p3780-p3920.pdf
http://www.pica8.org/documents/pica8-datasheet-64x10gbe-p3780-p3920.pdf
http://www.opendaylight.org/hydrogen
http://www.opendaylight.org/software/downloads/helium-sr2
http://www.opendaylight.org/software/downloads/helium-sr2
http://www.opendaylight.org/software/downloads/helium-sr2
http://www.opendaylight.org/software/downloads/helium-sr2
http://www.opendaylight.org/software/downloads/helium-sr2
http://www.opendaylight.org/software/downloads/helium-sr2
http://www.opendaylight.org/software/downloads/helium-sr2
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.3.4.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.3.4.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.3.4.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.3.4.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.3.4.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.3.4.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.3.4.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.3.4.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.3.4.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.3.4.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.3.4.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.3.4.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.3.4.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.3.4.pdf
http://tools.ietf.org/html/rfc7047
http://tools.ietf.org/html/rfc6241
http://tools.ietf.org/html/rfc6020
http://tools.ietf.org/html/rfc6020
http://tools.ietf.org/html/rfc6020
http://tools.ietf.org/html/rfc6020
http://tools.ietf.org/html/rfc6020
http://tools.ietf.org/html/rfc6020
https://eclipse.org/ide/
https://maven.apache.org/eclipse-plugin.html
http://ahkscript.org/
http://www.chiark.greenend.org.uk/%7Esgtatham/putty/
http://www.mininet.org/
https://wiki.opendaylight.org/view/OVSDB_Integration:Design
https://github.com/rvdpdotorg
http://refhub.elsevier.com/S0167-739X(15)00290-3/sbref26
http://mysql-python.sourceforge.net/
http://mysql-python.sourceforge.net/
http://mysql-python.sourceforge.net/
http://tools.ietf.org/html/rfc4862
http://tools.ietf.org/html/rfc7432
https://github.com/mininet/mininet/wiki/Introduction-to-Mininet#what-are-mininets-limitations
https://github.com/mininet/mininet/wiki/Introduction-to-Mininet#what-are-mininets-limitations
https://github.com/mininet/mininet/wiki/Introduction-to-Mininet#what-are-mininets-limitations
https://github.com/mininet/mininet/wiki/Introduction-to-Mininet#what-are-mininets-limitations
https://github.com/mininet/mininet/wiki/Introduction-to-Mininet#what-are-mininets-limitations
https://github.com/mininet/mininet/wiki/Introduction-to-Mininet#what-are-mininets-limitations
https://github.com/mininet/mininet/wiki/Introduction-to-Mininet#what-are-mininets-limitations
https://github.com/mininet/mininet/wiki/Introduction-to-Mininet#what-are-mininets-limitations
http://www.nsnam.org/docs/release/3.13/models/html/openflow-switch.html
http://www.nsnam.org/docs/release/3.13/models/html/openflow-switch.html
http://www.nsnam.org/docs/release/3.13/models/html/openflow-switch.html
http://www.nsnam.org/docs/release/3.13/models/html/openflow-switch.html
http://www.nsnam.org/docs/release/3.13/models/html/openflow-switch.html
http://www.nsnam.org/docs/release/3.13/models/html/openflow-switch.html
http://www.nsnam.org/docs/release/3.13/models/html/openflow-switch.html
http://www.nsnam.org/docs/release/3.13/models/html/openflow-switch.html
http://www.nsnam.org/docs/release/3.13/models/html/openflow-switch.html
http://www.nsnam.org/docs/release/3.13/models/html/openflow-switch.html
http://www.nsnam.org/docs/release/3.13/models/html/openflow-switch.html
http://www.nsnam.org/docs/release/3.13/models/html/openflow-switch.html

	Assessment of SDN technology for an easy-to-use VPN service
	Introduction
	Representative CoCo use case
	CoCo overall architecture
	CoCo data plane forwarding
	CoCo control plane

	CoCo prototype
	CoCo data plane implementation
	CoCo control plane implementation
	CoCo portal

	CoCo validation
	Test instruments
	Experiments
	Scalability tests

	Discussion
	L2 VPN challenges
	Mininet test environment
	Further CoCo development

	Conclusion
	Acknowledgments Acknowledgements
	References


