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In  recent  years,  there  has  been  a growing  interest  in image  encryption  based  on chaotic  maps.  In this  paper,
we  evaluate  the  permutation  and  diffusion  operations  used  in  image  encryption  based  on  chaotic  maps.
Firstly,  we  research  the permutation  operation  and  diffusion  operation,  respectively.  We  use  common
eywords:
mage encryption
haotic map
ermutation and diffusion operation

analytical  criterion  to measure  the effect  of  encryption  operation.  Then  we  employ  the  same  method
to  evaluate  the  combinational  operation,  which  is  widely  used  in chaotic  image  encryption.  Finally,  we
reverse  the  order  of  combinational  operation  and  reevaluate  the effect  of  encryption  operation.  By the
evaluating  results,  researchers  can  choose  the  best  operation  to  encrypt  image,  and  improve  the  effect
and security  of  algorithm  based  on chaotic  maps.

© 2016  Published  by  Elsevier  GmbH.
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. Introduction

Due to the development of information technology, the security
f image is becoming more and more important for image trans-
ission. The digital image possesses some inherent features such

s bulk data capacity and high correlation among adjacent pixels, so
ncryption algorithms are different from the traditional methods,
uch as DES, AES and so on. Chaotic maps have good potential char-
cter, such as ergodicity, sensitivity to initial conditions and control
arameters. So many chaos-based image encryption algorithms
ave been proposed [1–10]. In Ref. [1], the authors generalized
wo-dimensional chaotic cat map  to 3D for designing a real-time
ecure symmetric encryption scheme, used 3D cat map  to per-
ute the position of image pixels in the permutation stage and

mployed logistic chaotic system to diffuse the permuted image in
he diffusion stage. A fast image encryption algorithm combined
ith permutation and diffusion was proposed in Ref. [2]. First, the

mage was partitioned into blocks of pixels. Then, spatiotemporal
haos was employed to shuffle the blocks, and at the same time, to
hange the pixel values. Meanwhile, an efficient method for gen-
rating pseudorandom numbers from spatiotemporal chaos was
Please cite this article in press as: B. Wang, et al., Evaluating the perm
on chaotic maps, Optik - Int. J. Light Electron Opt. (2015), http://dx.do

uggested, which further increased the encryption speed. In Ref. [3],
he authors firstly analyzed the parameter sensitivity of standard

ap, and compared the secret key space of standard map  with that

∗ Corresponding author. Tel.: +86 041187402106.
E-mail address: wangbinpaper@gmail.com (B. Wang).

ttp://dx.doi.org/10.1016/j.ijleo.2016.01.015
030-4026/© 2016 Published by Elsevier GmbH.

63

64

65
of cat map  and baker map. Then an improved standard map was
used to realize position permutation, and the diffusion function
consisted of logistic map  that was used to realize the diffusion of
image. In Ref. [4], it was  a typical map—the baker map—that was
further extended to be 3D and then used to speed up image encryp-
tion while permuting the position of plain-image. The logistic map
was also used to diffuse the permuted image. In Ref. [5], the authors
introduced a certain diffusion effect in the permutation stage by
simple sequential add-and-shift operations. Although that led to
a longer processing time in a single round, the overall encryption
time was reduced as fewer rounds were required. A novel image
encryption algorithm based on a 3D chaotic map  that could defeat
the aforementioned attack among other existing attacks was pro-
posed in Ref. [6]. The design of proposed algorithm was simple
and efficient, and based on three phases which provided necessary
properties for a secure image encryption algorithm including per-
mutation and diffusion properties. In Ref. [7], the paper proposed
a novel chaos-based image encryption algorithm to encrypt color
images by using a Coupled Two-dimensional Piecewise Nonlinear
Chaotic Map, called CTPNCM, and a masking process. Distinct char-
acteristics of the algorithm were high security, high sensitivity, and
high speed that can be applied in encryption of color images.

In Ref. [1], the authors proposed a general cryptographic
chaos-based architecture for image encryption, namely permuta-
utation and diffusion operations used in image encryption based
i.org/10.1016/j.ijleo.2016.01.015

tion–diffusion architecture, as shown in Fig. 1. This architecture
includes two  important operations, permutation operation and dif-
fusion operation. The former permutes the plain-image, instead of
changing the value of pixel. The latter changes the value of pixel,
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ig. 1. Flowchart of permutation–diffusion type of chaos-based image cryptosys-
ems.

nstead of altering the position of pixel. In order to improve encryp-
ion effect of algorithms, the whole permutation–diffusion round
ill be repeated.

There are a large number of chaotic maps used in permuta-
ion–diffusion architecture, for example Logistic map, Tent map,
tandard chaotic map, Cat chaotic map, generalized Baker chaotic
ap, Chen’s chaotic system, Lorentz chaotic system and so on

1–6,11–15]. Although these chaotic maps can be used in the image
ncryption, some chaotic maps could cause a loophole, such as Cat
ap, Tent map  and so on [16–18]. At the same time, using com-

lex chaotic systems can make the rise of runtime of chaos-based
mage encryption, like Chen’s chaotic system, Lorentz chaotic sys-
em. To design fast image encryption architecture, the complex
haotic map  is not advised to be used. So in this paper, we  use
he Logistic map  to encrypt image, and evaluate the permutation
nd diffusion operator. It can be denoted as Eq. (1):

i+1 = �xi(1 − xi) (1)

Here, � is the control parameter for chaotic map, xi and xi+1 are
he ith and the i + 1th state of chaotic map, respectively. A number
f works related to logistic map  have been published, including
arameter sensitivity, initial value sensitivity, statistical properties
nd degradation phenomenon [19,20].

In order to test the effect of permutation and diffusion oper-
tion, we design different experiments to evaluate them. Firstly,
e employ common analytical criterion to measure the per-
utation operation and diffusion operation, respectively. Then
e test the effect of combinational operation, namely permu-

ation–diffusion architecture. Finally, we evaluate the reverse
ombinational operation, namely diffusion–permutation architec-
ure, using the common analytical criterion. In above experiments,
he whole permutation round, diffusion round or combinational
ound will be not repeated to elaborate the encrypted effect of
ncrypted algorithm and used operation.

The paper is organized as follows. In the next section, the process
f image encryption and decryption is described in detail. In Section
, the performance analyses and simulation is described in detail.
inally, conclusions are drawn in Section 4.

. The process of image encryption and decryption

In this part, the process of image encryption is described in
etail. The process is divided into three different types, namely per-
utation type, diffusion type and combinational type. These types

ave same initial key which is randomly generated and related
o plain-image by XOR operation. Owning to the characteristic of
ogistic map, it is chosen as chaotic map  in image encryption. Dif-
erent parameters and initial values for the Eq. (1) are denoted as
Please cite this article in press as: B. Wang, et al., Evaluating the perm
on chaotic maps, Optik - Int. J. Light Electron Opt. (2015), http://dx.do

1, �2, x1(0) and x2(0), respectively,
where �1, �2 ∈ [3.9, 4] and x1(0), x2(0) ∈ (0, 1). Ikey is denoted

s the initial key.
Output  th e c ipher-image  

Fig. 2. The flowchart of image encryption.

2.1. Encryption algorithm

The details of encryption are described as follows, and illustrated
in Fig. 2:

Step 1. Randomly generating the initial key and making the Ikey
related to the plain image by XOR operation;
Step 2. Using Ikey as the parameter and value of logistic maps,
and iterating logistic maps for100 times to get rid of the transient
effect;
Step 3. Sorting the chaotic orbit obtained from previous step
ascendingly, and permuting the diffused or plain-image by this
order;

Mim(i) = permute(P(i) or D(i), Order(i)),

i = 1, 2, . . .,  M ∗ N (2)

Step 4. Generating cipher key by permuted image and Ilkey with
XOR operation;
Step 5. Diffusing the permuted or plain-image by the logistic
chaotic orbit from Step 3;

C(i) = (Mim(i) or P(i)) ⊕ Orbit(i), i = 1, 2, . . .,  M ∗ N (3)

Step 6. Outputting the cipher-image.

Where P(i) is the original image pixel value, Mim(i)  is the pixel
value which is permuted by the order or diffused by the orbit,
Order(i) is the ordered position of P(i), Orbit(i) is the logistic chaotic
orbit from step 5, D(i) is the pixel value which is diffused by the orbit
and C(i) is the cipher-image. M and N are the width and height of
the plain-image.

2.2. Decryption algorithm

The decryption process is similar to that of encryption procedure
in the reversed order. It can be briefly stated as follows:

Step 1. Iterating the logistic maps for 100 times to get rid of the
transient effect;
Step 2. Concurrently generating the chaotic orbit as encryption
process;
utation and diffusion operations used in image encryption based
i.org/10.1016/j.ijleo.2016.01.015

Step 4. Recovering the Mim(i) by Eq. (4);

Mim(i) = C(i) ⊕ Orbit(i), i = 1, 2, . . .,  M ∗ N (4)

152
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As Shannon said: ‘It is possible to solve many kinds of ciphers by
statistical analysis’ [21]. Therefore, diffusion and confusion opera-
tions should be adopted to resist the attack in any cryptosystem. In
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ig. 3. Evaluating the permutation operation. (a) Plain-image of Lena; (b) encrypted
mage by key: 987654321012345; (c) encrypted image by key: 987654321012346;
d) difference image.

Step 5. Recovering the P(i) by Eq. (5);

P(Order(i)) = Mim(i), i = 1, 2, . . .,  M ∗ N (5)

Step 6. Outputting the plain-image.

. The performance analyses and simulation

.1. The space of key

In a good image cryptosystem, the space of key should be large
nough to make brute-force attack infeasible. In this paper, the Ikey
onsists of 16 elements, namely Ikey = {xi} , i = 1, 2, . . .,  16, xi ∈ [0,
55]. So the key space of the proposed architecture is equal to
128 ≈ 3.4 × 1038, which is sufficiently large to meet the need for
ractical application. All the experiments have same the space of
ey.

.2. Key sensitivity

In this part, the test of key sensitivity will be performed as fol-
ows:

Step 1. Calculating the Imkey of the standard test 256 × 256 image
Lena;
Step 2. Encrypting the test image by Ikey 987654321012345;
Step 3. Slightly changing the generated Ikey 987654321012346,
and encrypting the same plain-image;
Step 4. Comparing the cipher-image encrypted by different keys.

In Fig. 3, the image encrypted by the key 987654321012345
as 99.43 percent different from the image encrypted by the key
Please cite this article in press as: B. Wang, et al., Evaluating the perm
on chaotic maps, Optik - Int. J. Light Electron Opt. (2015), http://dx.do

87654321012346 in terms of pixel values, although there is only
ne bit difference in the two keys. In Fig. 4, it has 99.36 percent
ifference. In Fig. 5, it has 99.58 percent difference. In Fig. 6, it has
9.42 percent difference. From the above values, we  can find that
Fig. 4. Evaluating the diffusion operation. (a) Plain-image of Lena; (b) encrypted
image by key: 987654321012345; (c) encrypted image by key: 987654321012346;
(d) difference image.

the diffusion–permutation operation is the worst method for key
sensitivity. The permutation diffusion operation is the best method.

3.3. Statistical analysis
utation and diffusion operations used in image encryption based
i.org/10.1016/j.ijleo.2016.01.015

Fig. 5. Evaluating the permutation–diffusion operation. (a) Plain-image of Lena;
(b)  encrypted image by key: 987654321012345; (c) encrypted image by key:
987654321012346; (d) difference image.

dx.doi.org/10.1016/j.ijleo.2016.01.015
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Table 1
The correlation coefficient of adjacent pixels.

Permutation operation Diffusion operation Permutation–diffusion Diffusion–permutation

Horizontal 0.0668 (0.9680) −0.0807 (0.9721) −0.0087 (0.9683) 0.1512 (0.9705)
Vertical 0.0405 (0.9509) 0.0076 (0.9462) −0.0279 (0.9464) 0.0814 (0.9272)
Diagonal 0.0195 (0.9246) 0.0143 (0.8922) 0.0246 (0.9021) 0.1043 (0.9291)

Table 2
The value of NPCR and UACI.Q5

Permutation operation Diffusion operation Permutation–diffusion Diffusion–permutation

NPCR 99.37 99.38 

UACI  23.48 31.92 
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ig. 6. Evaluating the diffusion–permutation operation. (a) Plain-image of Lena;
b) encrypted image by key: 987654321012345; (c) encrypted image by key:
87654321012346; (d) difference image.

his paper, the standard Lena test image of size 256 × 256 is selected
o test the property of resisting statistical analysis.

To calculate the correlation of two adjacent pixels, we randomly
elect 1000 pairs of two adjacent pixels including vertically adja-
ent pixels, horizontally adjacent pixels and diagonally adjacent
ixels. Then we calculate the correlation coefficient of each pair by
sing the following two formulas [1]:

ov(x, y) = E{(x − E(x))(y − E(y))} (6)

xy = cov(x, y)√
D(x)

√
D(y)

(7)

here x and y are gray-scale values of two adjacent pixels in the
mage. In numerical computation, the following discrete formulas
re employed:

(x) = 1
N

N∑
i=1

xi (8)
Please cite this article in press as: B. Wang, et al., Evaluating the perm
on chaotic maps, Optik - Int. J. Light Electron Opt. (2015), http://dx.do

(x) = 1
N

N∑
i=1

(xi − E(x))2 (9)
99.61 99.45
32.55 29.28

cov(x, y) = 1
N

N∑
i=1

{(xi − E(x))(yi − E(y))} (10)

Table 1 shows the results of horizontal, vertical and diagonal
directions.

In Table 1, the bold face is the correlation coefficient after
encrypting image. The values in the brackets are the correlation
coefficient before encrypting image. From the Table 1, we can find
that the diffusion-permutation operation is the worst method for
statistical analysis. The diffusion operation is the best method.

3.4. Differential attack

To test the property of resisting differential attack of this paper,
two common quantitative criteria are employed: number of pixels
change rate (NPCR) and unified average changing intensity (UACI).
The NPCR and UACI are defined as follows [22,23]:

NPCR =
∑

i,jD(i, j)

W × H
× 100% (11)

UACI = 1
W × H

⎡
⎣∑

i,j

∣∣C1(i, j − C2(i, j))
∣∣

255

⎤
⎦ × 100% (12)

where C1 and C2 are the two cipher-images whose corresponding
plain-image have one pixel difference, the gray-scale values of the
pixels at point (i, j) of C1 and C2 are denoted as C1(i, j) and C2(i, j),
respectively; W and H are the width and height of the cipher-image;
D(i, j) is determined by C1(i, j) and C2(i, j), namely, if C1(i, j) = C2(i, j)
then D(i, j) = 0 otherwise, D(i, j) = 1.

From the Table 2, we can find that the permutation–diffusion
operation is the best method for statistical analysis.

4. Conclusions

In this paper, we evaluate the permutation operation,
diffusion operation, permutation–diffusion operation and diffu-
sion–permutation operation based on chaotic image encryption.
Firstly, we  research the permutation operation and diffusion oper-
ation, respectively. We  use common analytical criterion to measure
the effect of encryption operation. Then we employ the same
method to evaluate the combinational operation, which is widely
used in chaotic image encryption. Finally, we reverse the order of
utation and diffusion operations used in image encryption based
i.org/10.1016/j.ijleo.2016.01.015

combinational operation and reevaluate the effect of encryption
operation. By the evaluating results, researchers can choose the best
operation to encrypt image, and improve the effect and security of
algorithm based on chaotic maps.
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