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Abstract: This paper presents metaheuristics framework for solving portfolio optimization problem. Many meth-
ods and techniques exist for tackling this well-known economics and finance problem. As additional constraints
are being added to the basic problem definition, traditional techniques become insufficient and optimization meta-
heuristics emerge as a better approach. In this paper, firefly algorithm (FA) swarm intelligence metaheuristics was
applied to the portfolio optimization problem and it was tested on a set of five assets with promising results.
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1 Introduction

Portfolio optimization problem, also known as portfo-
lio selection problem, is one of the most studied re-
search topics in the field of finance and economics.
Financial portfolios are collection of financial instru-
ments (investments), all owned by the same organiza-
tion or by an individual. They usually include bonds
(investments in debts), stocks (investments in individ-
ual businesses), and mutual funds (pools of money
from many professional investors).

In its basic definition, portfolio optimization
problem is dealing with the selection of portfolio’s as-
sets (or securities) that minimizes the risk subject to
the constraint that guarantees a given level of returns.
Individual and institutional investors prefer to invest
in portfolios rather than in a single asset because by
doing this, the risk is mitigated with no negative im-
pact on the expected returns [1].

Thus, the goal is to select a portfolio with mini-
mum risk at defined minimal expected returns. This
means reducing nonsystematic risks to zero. Alterna-
tively, portfolio optimization problem can be defined
as multi-criteria optimization in which risks have to
be minimized, while, on the other hand, return has
to be maximized. Unfortunately, this approach to the
problem have several drawbacks [2]. First, it can be
difficult to collect enough data for precise estimation
of the risk and returns. Second, the estimation of re-
turn and covariance (used for defining the risk) from
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historical data is very prone to measurement errors
[3]. Third, and finally, this model is considered to be
too simplistic for practical purposes because it does
not capture many properties of the real-world trading,
such as maximum size of portfolio, transaction costs,
preferences over assets, cost management, etc. These
properties can be modeled by adding additional con-
straints to the basic problem formulation leading to
the constrained portfolio optimization problem. Con-
strained problem is more complex than the uncon-
strained one, and belong to the class of NP-Complete
problems [4].

Portfolio optimization problem can be solved us-
ing various methods and techniques. Fuzzy portfo-
lio selection problem was successfully solved using
parametric quadratic programming technique [5], and
linear programming method [6]. The application of
integer programming can be found in [7].

As mentioned above, constrained portfolio opti-
mization problem adds additional real-world require-
ments to the basic problem formulation. Moreover, in
some cases, portfolio characteristics, such is its size
(number of assets in portfolio), makes the problem
intractable in a reasonable amount of computational
time. In those cases, exact methods can not obtain re-
sults, and the use of approximate algorithms and in
particular metaheuristics in necessary.

One of the most interesting groups of metaheuris-
tics are nature-inspired algorithms which simulate the
behavior of natural systems. They can roughly be di-
vided into two groups: evolutionary algorithms (EA)
and swarm intelligence. Well-known representative
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of EA is genetic algorithms (GA) which was success-
fully applied on portfolio optimization problem [8].

Swarm intelligence is using principles of the col-
lective behavior of social insect colonies and other an-
imal groups in the search process. The key concept
of swarm intelligence lies in the effect of emergent
behavior of many individuals which exhibit extraordi-
nary collective intelligence. Particle swarm optimiza-
tion (PSO) is a swarm intelligence algorithm which
mimics social behavior of fish schooling or bird flock-
ing. PSO was tested on portfolio optimization prob-
lem [9]. Ant colony optimization (ACO) showed great
success in solving many hard optimization problems
[10], [11], [12], [13]. ACO was inspired by the for-
aging behavior of ants who deposit pheromone trails
which help them in finding the shortest path between
food sources and their nests. Artificial bee colony
(ABC) metaheristics is one of the latest simulations
of the honey bee swarm. In this implementation, three
group of bees: employers, outlookers and scouts work
together and carry exploitation and exploration pro-
cesses. ABC showed outstanding results in global op-
timization problems [14].

In this paper, we present the firefly algorithm (FA)
for portfolio optimization problem. The implementa-
tion of the FA for this problem was not found in the
literature.

This paper begins with illustration of mathemati-
cal formulation of the portfolio optimization problem
in Section 2. Section 3 introduces FA metaheuristics.
Experimental data, problem setup and experimental
results are presented in Section 4, while Section 5 con-
cludes the paper.

2 Portfolio optimization problem

The fundamental guideline in making financial invest-
ments decisions is diversification where investors in-
vest into different types of assets. Portfolio diver-
sification minimizes investors’ exposure to the risks
while maximizing returns on portfolios.

Many methods can be applied to solving multi-
objective optimization problems such is portfolio op-
timization. One essential method is to transform the
multi-objective optimization problem into a single-
objective optimization problem. This method can be
further divided into two sub-types. In the first ap-
proach, one important objective function is selected
for optimization, while the rest of objective functions
are defined as constrained conditions. Alternatively,
only one evaluation function is created by weighting
the multiple objective functions [15].

The first method is defined by Markowitz and is
called the standard mean-variance model [16]. In this

model, the selection of risky portfolio is considered as
one objective function and the mean return on an asset
is considered to be one of the constraints [9]. It can be
formulated as follows:

min σ2
Rp

= σ2
p =

N
∑

i=1

N
∑

j=1

ωiωjCov(R̄iR̄j) (1)

Subject to

R̄p = E(Rp) =
N
∑

i=1

ωiR̄i ≥ R (2)

N
∑

i=1

ωi = 1 (3)

ωi ≥ 0, ∀i ∈ (1, 2, ...N ) (4)

whereN is the number of available assets,R̄i is the
mean return on an asseti andCov(R̄iR̄j) is covari-
ance of returns of assetsi andj respectively. Weight
variableωi controls the proportion of the capital that
is invested in asseti, and constraint in Eq. 3 ensures
that the whole available capital is invested. In this
model, the goal is to minimize the portfolio riskσ2

p,
for a given value of portfolio expected return̄Rp.

The second method refers to the construction of
only one evaluation function that models portfolio se-
lection problem. This method comprises two distinct
models: efficient frontier and sharpe ratio model [15].

In efficient frontier model, the goal is to find the
different objective function values by varying desired
mean returnR. The best practice is to introduce new
parameterλ ∈ [0, 1] which is called risk aversion in-
dicator [15]. In this case, the model is approximated
to only one objective function:

min λ[
N
∑

i=1

N
∑

j=1

ωiωjCov(R̄iR̄j ]− (1− λ)[
N
∑

i=1

ωiR̄i]

(5)
Subject to

N
∑

i=1

ωi = 1 (6)

ωi ≥ 0, ∀i ∈ (1, 2, ...N ) (7)

λ controls the relative importance of the mean return
to the risk of the investor. Whenλ is zero, mean return
of the portfolio is maximized regardless of the risk.
Contrarily, whenλ equals 1, risk of the portfolio is
being minimized regardless of the mean return. Thus,
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with the increase ofλ, the relative importance of the
risk to the investor increases, and importance of the
mean return decreases, and vice-versa.

With the change of the value ofλ, objective func-
tion value changes also. The reason of this change is
that the objective function is composed of the mean re-
turn value and the variance (risk). The dependencies
between changes ofλ and the mean return and vari-
ance intersections are shown on a continuous curve
which is called efficient frontier in the Markowitz the-
ory [16]. Since each point on this curve indicates an
optimum, portfolio optimization problem is consid-
ered as multi-objective, butλ transforms it into single-
objective optimization task.

Sharpe ratio (SR) model combines the informa-
tion from mean and variance of an asset [17]. This
simple model is risk-adjusted measure of mean return
and can be described with the following equation [17]:

SR =
Rp −Rf

StdDev(p)
, (8)

wherep denotes portfolio,Rp is the mean return of the
portfolio p, andRf is a test available rate of return on
a risk-free asset.StdDev(p) is a measure of the risk
in portfolio (standard deviation ofRp). By adjusting
the portfolio weightswi, portfolio’s sharpe ratio can
be maximized.

Here, we presented only the basic problem defini-
tions. As we mentioned in the previous section, addi-
tional constraints can be applied to make the problem
more realistic. For example, budget, cardinality and
transaction lot constraints were successfully applied
in solving portfolio optimization problem using parti-
cle swarm optimization (PSO) method in [9].

3 Implementation of the FA

FA is one of the latest swarm intelligence metaheuris-
tics. It is inspired by the flashing behavior of fire-
flies. The main algorithm’s principle is that each fire-
fly moves towards the brighter firefly. Firefly’s flash is
used as a signaling system for attracting other fireflies.
FA was first proposed for unconstrained optimization
problems [18].

Three simplification rules guide the construction
of the FA: each firefly attracts all other fireflies with
weaker flashes (firefly’s sex is neglected), attractive-
ness of fireflies is proportional to their brightness,
while, at the other side, the brightness is reverse pro-
portional to its distance from the light source, and the
brightness of a firefly is determined, or at least af-
fected by the distribution of the objective function.

With the increase of the distance from the lighting

source, the light intensity decreases. So, light inten-
sity follows the inverse square law:

I(r) =
I0

r2
, (9)

whereI(r) is the light intensity,r is distance, and
I0 is the light intensity at the source. Besides that, the
air also absorbs part of the light, and the light becomes
weaker. Thus, the light absorption coefficientγ must
be included in Eq. (9):

I(r) =
I0

1 + γr2
(10)

As mentioned above, attractivenessβ of a firefly
is proportional to its brightness (light intensity), and
this can be shown in the following expression:

β(r) = β0e
−γr2 (11)

Objective functionf(x) is used to encode the
brightness of a given firefly. It represents the light in-
tensity at locationx, asI(x) = f(x).

Movement of a firefly (process of exploitation) is
based upon attractiveness, and when fireflyj is more
attractive (brighter) than fireflyi, firefly i is moving
towardsj:

xi(t) = xi(t) + β0r
−γr2

i,j(xj − xi) +α(rand− 0.5),
(12)

whereβ0 is attractiveness atr = 0, α is random-
ization parameter,rand is random number uniformly
distributed between 0 and 1, andri,j is distance be-
tween firefliesi andj. This distance is calculated us-
ing Cartesian distance form:

ri,j = ||xi − xj || =

√

√

√

√

D
∑

k=1

(xi,k − xj,k), (13)

where D is the number of problem parameters.
For most problems,β0 = 0 andα ∈ [0, 1] are ade-
quate settings.

FA pseudo-code is shown below. Some details are
omitted for simplicity.

Generate initial population of firefliesxi,
(i = 1, 2, 3, ..., FN )
Light intesityIi at pointxi is defined byf(x)
Define light absorption coefficientγ
Define number of iterationsIN
while (t < IN ) do

for (i = 1 toFN ) do
for (j = 1 to i) do

if (Ij < Ii) then
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Move firefly j towards fireflyi in d di-
mension

Evaluate new solution, replace worst
with better solution, and update light intensity

end if
end for

end for
Rank all fireflies, find the current best, and move

them randomly
end while

In the pseudo-code above,FN is total number
of fireflies in the population,IN is total number of
algorithm’s iterations, andt is the current iteration.

4 Problem formulation, data and re-
sults

In this section, we present portfolio optimization
problem formulation used in testing FA approach,
data used in the experiments and experimental results.
We used the same problem formulation and data set
like in [19].

4.1 Problem definition
The goal is to select weights of the each asset in
the portfolio in order to maximize the portfolio’s re-
turn and to minimize the portfolio’s risk. We trans-
formed multi-objective problem into single one with
constraints.

The expected return of each individual securityi
is presented as follows:

E(ωi) = wi ∗ ri, (14)

wherewi denotes the weight of individual asseti, and
ri is the expected return ofi. Total expected return of
the portfolioP can be formulated as follows:

E(P ) =
n
∑

i=1

E(ωi), (15)

wheren is the number of securities in the portfolioP .
In our problem formulation, first goal is to maxi-

mize portfolio’s expected return, and thus, the expres-
sion shown in Eq. (15) is objective function for the
portfolio’s return and it should be maximized.

The objective function of the portfolio variance
(risk) is presented as a polynomial of second degree:

σ2(P ) = σ2(wi) =
n
∑

i=1

(ω2
i σ

2(ri)) +

n
∑

i=1

n
∑

j=i+1

2ωiωjCov(ri, rj), (16)

whereσ2(wi) is variance of asseti, andCov(ri, rj) is
covariance between securitiesi andj.

According to Eq. (15) and Eq. (16), the multi-
objective function to be minimized is illustrated as:

H(P ) = E(P )− σ2(P ) (17)

Alternatively, considering individual asseti, not the
whole portfolioP , it can be formulated as:

H(ωi) = E(ωi)− σ2(ωi) (18)

Problem constraints are:

n
∑

i=1

ω1 = 1 (19)

ωmin
i ≤ ωi ≤ ωmax

i (20)

and to reach the positive portfolio return, we used:

n
∑

i=1

riωi ≥ 0, (21)

whereωmin
i andωmax

i are minimum and maximum
weights of asseti respectively.

4.2 Experimental data
For testing purposes, we used simple historical data
set like in [19]. Data set is shown in Table 1.

Table 1: Data set for the experiments
Year Stock 1 Stock 2 Stock 3 Stock 4 Stock 5
2007 -0.15 0.29 0.38 0.18 -0.10
2008 0.05 0.18 0.63 -0.12 0.15
2009 -0.43 0.24 0.46 0.42 0.15
2010 0.79 0.25 0.36 0.24 0.10
2011 0.32 0.17 -0.57 0.30 0.25

The mean return on each asset and covariance ma-
trix are given in Tables 2 and 3 respectively.

Table 2: Mean returns for each asset
Stock 1 0.116
Stock 2 0.226
Stock 3 0.252
Stock 4 0.204
Stock 5 0.11
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Table 3: Covariance matrix
Stock 1 Stock 2 Stock 3 Stock 4 Stock 5

Stock 1 0.21728 -0.003376 -0.053492 -0.009264 0.01064
Stock 2 -0.003376 0.00253 0.008468 0.002376 -0.00456
Stock 3 -0.053492 0.008468 0.22247 -0.031128 -0.02392
Stock 4 -0.009264 0.002376 -0.031128 0.04068 0.00276
Stock 5 0.01064 -0.00456 -0.02392 0.00276 0.01675

4.3 Algorithm settings and experiment re-
sults

In this subsection, we present experimental results for
testing FA for portfolio optimization problem. See
subsection 4.1 for problem formulation.

Tests were performed on Intel Core 2 Duo T8500
processor @4GHz with 4GB of RAM memory, Win-
dows 7 x64 Ultimate 64 operating system and Vi-
sual Studio 2012 with .NET 4.5 Framework. Solution
numberSN was set to 40, while maximum iteration
numberIN was set to 6000, yielding totally 240.000
objective function evaluations (40*6000). The same
number of objective function evaluations was used in
[20]. The algorithm was tested on 30 independent
runs each starting with a different random number
seed.

Since we used a set of five portfolio’s assets, di-
mensionD of a problem is 5. Each firefly in the
population is a 5-dimensional vector. In initialization
phase, fireflyx is created using the following:

xi = ωmin
i + rand(0, 1) ∗ (ωmax

i − ωmin
i ), (22)

whererand(0, 1) is a random number uniformly dis-
tributed between 0 and 1.

We also used constraint handling techniques to di-
rect the search process towards the feasible region of
the search space. Equality constraints decrease effi-
ciency of the search process by making the feasible
space very small compared to the entire search space.
For improving the search process, the equality con-
straints can be replaced by inequality constraints us-
ing the following expression [21]:

|h(x)| − ε ≤ 0, (23)

whereε > 0 is very small violation tolerance. The
ε was dynamically adjusted according to the current
algorithm’s iteration:

ε(t+ 1) =
ε(t)

dec
, (24)

where t is the current iteration, anddec is a value
slightly larger than 1. When the value ofε reaches the
predetermined threshold value, Eq. (24) is no longer
applied. Summary of FA parameter set is given in Ta-
ble 4.

Table 4: FA parameter set
Parameter Value
Number of fireflies (FN) 40
Number of iterations (IN) 6000
Initial value for randomization parameterα 0.5
Attractiveness atr = 0 β0 0.2
Absorption coefficientγ 1.0
Initial violation tolerance (ε) 1.0
Decrement (dec) 1.002
ωmin 0
ωmax 1

In experimental results, we show best, mean and
worst results for objective function value, variance
(risk) and average return of portfolios.

Table 5: Experimental results
Best Worst Mean

Objective function 4.542 4.698 4.615
Variance 0.036 0.072 0.059
Return 0.218 0.198 0.205

In Table 6, we show portfolio weights for the best
and worst results.

Table 6: Portfolio weights for best and worst results
ω1 ω2 ω3 ω4 ω5

Best 0.056 0.432 0.361 0.072 0.079
Worst 0.042 0.198 0.319 0.262 0.179

According to the experiment results presented in
Tables 5 and 6, FA for portfolio optimization performs
similar like GA approach in [19]. In [19], three vari-
ants of GA were shown: single-point, two-point and
arithmetic. Arithmetic variant performed significantly
better than other two variants, and also better than the
FA presented in this paper. But, at the other hand, FA
showed better performance than single-point and two-
point variants of the GA presented in [19].

5 Conclusion
In this paper, FA for portfolio optimization problem
was presented. The algorithm was tested on a set of
five assets, like GA in [19]. The experimental results
show that the FA metaheuristics has potential for solv-
ing this problem.
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