
                          

A Novel Image Denoising Method Based on Sparse Representation and Incremental 
Dictionary Learning for Large-scale Dataset 

ABSTRACT. Denoising of images is one of the most basic tasks of image processing. The 

approach which we concentrate on is based on sparse and redundant representations over a 

learned overcomplete dictionary. It has been proved that the K-singular value decomposition 

(K-SVD) algorithm is a highly effective method of training the overcomplete dictionaries for 

sparse signal representation. However, when the training datasets become extremely large in 

scale, this algorithm will be no longer effective as it is batch algorithm which deals with all the 

training samples at each iteration. In this paper we present an efficient incremental learning 

alternative implementation of this algorithm, which both accelerates it and adapts gracefully to 

large datasets with millions of training samples. The denoising experiments conducted with both 

large-scale image and training dataset demonstrate that our proposed method leads to faster 

performance and better dictionaries. Keywords: Image denoising, Sparse representation, 

Incremental learning, Overcomplete dictionary 

1. Introduction. Images are one of the significantly important ways to get information for 
us. However, in the practical application, images are often suffering from a variety of noise, 
so that denoising of images becomes one of the most basic tasks of image processing which 
has been extensively studied in the past several decades. Denoising is the simplest problem 
among the family known as Inverse Problems, aiming to recover a high quality signal from 
a degraded version of it. In this paper, we address the classic image denoising problem: An 
ideal image is measured in the presence of an additive zero-mean white and homogeneous 
Gaussian noise, with standard deviation. The image denoising problem is important, not 
only because of the evident applications it serves. Being the simplest possible inverse 
problem, it provides a convenient platform over which image processing ideas and 
techniques can be assessed. Indeed, numerous contributions in the past several years 
addressed this problem from diverse points of view. Statistical estimators, spatial 
adaptive filters, stochastic analysis, partial differential equations, transform-domain 
methods and other approximation theory methods are some of the many directions 
explored in studying this problem. In this paper, we have no intention to provide a survey 
of this activity. Instead, we intend to explore the method that utilizes sparse and redundant 
representations over trained overcomplete dictionaries for image or image sequence 
denoising, extending the work reported by Elad et al. [1] . Recently several algorithms 
have been proposed for learning such 
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sparse representation dictionaries from the training data such as method of optimal direc-
tions (MOD) [2] , K-SVD [3] and etc. Researchers have shown that these algorithms can 
achieve outstanding performances in image compression [4] and denoising. 

However, most of these methods for dictionary learning are iterative batch algorithms, 
which deal with all the training samples at each iteration to minimize the objective function 
under sparsity constraints. Therefore, another problem we may encounter is that when the 
training set becomes very large, these methods are no longer efficient. To overcome this 
bottleneck, an online algorithm for dictionary learning which applies stochastic approxima-
tion method has been proposed in the literature [5] . To address these issues, we propose an 
incremental learning approach that processes one sample (or a small subset) of the training 
set at a time. This is particularly important in the context of image and video processing, 
where it is common to learn dictionaries adapted to training data that may include several 
millions of small patches. Our proposed approach is expected to lead to benefits both in the 
denoising performance and the computational complexity, when compared to previous 
batch dictionary learning algorithm. 

The outline of this paper is organized as follows. In section II, we briefly introduce the 
principles of sparse and redundant representations and their deployment to image denoising. 
Then we discuss the batch dictionary learning algorithm and propose the incremental dic-
tionary learning method for large-scale training dataset in section III. In section IV, the ex-
perimental results are given compared to classic competitive denoising algorithms with 
different kinds of dataset. Conclusions and future works are presented in the final section.  
 
2. Denoising via Sparse Representation. Consider the problem of estimation of x from the 
observed signal y with additional noise n, thus 

2y=x+n where n {0 I}N ， ，                     (1) 
Where, n denotes the observation zero-mean white Gaussian noise and I denotes the identi-
ty matrix. We desire to design an algorithm that can remove the noise from y, getting as 
close as possible to the original image x. image denoising method based on sparse repre-
sentation assume that x has a sparse representation over an overcomplete dictionary , i.e. 
x=  with a small 0

0
  (the number of nonzero elements of a vector) and also assume that 

a good estimation on the energy of the present noise 2 2

2
n   is provided. 

The sparsest representation we are looking for, is simply  
0 2 2

0 2
ˆ arg min , . . y-s t


                       (2) 

Some pursuit algorithm such as orthogonal matching pursuit (OMP) [6] and basis pursuit 
(BP) [7] algorithms can be used to resolve this optimization problem. Once the sparsest so-
lution of Eq. 2 has been found with the stated algorithm, we can recover the approximate 
image by ˆx̂=  . Sparse representation of noised image is conducted on the trained dictio-
nary or predefined dictionary. In summary, image denoising includes three steps:  

1) Training samples: The training data were constructed as a set of block patches of size 
8x8 or 16x16 pixels, taken from the noised image or a database of natural images. Each 
block is rearranged into a column y and get the matrix 1 2[ , ... ]nY y y y . 

2) Dictionary training: We applied the MOD, K-SVD or our proposed incremental learn-
ing algorithm to train an adaptive overcomplete dictionary of size L. The coefficients were 



 

computed using OMP with a fixed number, where the maximal number of coefficients is K. 
Note that better performance can be obtained by switching to Lasso [8] . We concentrated 
on OMP because of its simplicity and fast execution. 

3) Image denoising via sparse representation: We conduct adaptive sparse representation 
of noised image and get denoised x', rearrange each column of x' into an image block, com-
bine all the blocks and average the overlapped pixel, get the denoised image x̂ . 
 
3. Dictionary learning. The MOD or K-SVD algorithms is both batch dictionary learning 
algorithms often used to find the optimal dictionary D that leads to the lowest reconstruc-
tion error given a fixed sparsity factor K. In practice, it has been observed that K-SVD 
converges with less number of iterations than MOD. It motivates us to select the K-SVD 
algorithm to be compared with our proposed incremental method. We now briefly describe 
the K-SVD algorithm which was proposed by Aharon et al. [3] . 

The K-SVD algorithm aims to iteratively improve the dictionary to achieve sparser re-
presentations of the signals in Y, by solving the optimization problem. 

2

0,
min{ } . . , iFD X

Y D s t i K                      (3) 

The K-SVD algorithm summarized in Algorithm 1 uses two basic steps, which together 
constitute the algorithm iteration and each iteration involves the all training samples: (i) the 
signals in Y are sparse coded given the current dictionary, producing the sparse representa-
tions matrix A, and (ii) the dictionary atoms are updated given the current sparse represen-
tations. The sparse coding part is commonly implemented using OMP or Lasso. The dic-
tionary update is performed one atom at a time, optimizing the target function for each 
atom individually while keeping the rest fixed. The problem can be solved directly via SVD 
decomposition.  
Algorithm 1 K-SVD 
1: Input: Signal set Y, initial dictionary D0, target sparsity K, number of iterations k. 
2: Output: Dictionary D and sparse matrix A such that Y DA  
3: Init: Set D:= D0 
4: for n = 1 … k do 

5:   
2

i i 2 0
i =Arg min{ y } . . KD s t


    ： ：  

6:   for j = 1…L do 
7:  Apply SVD decomposition to update Dj 
8:   end for 
9: end for 

 
Large-scale training set is a reasonable extension from human beings in learning from 

experiences such as large image denoising or video inpainting task. However the aforemen-
tioned batch dictionary learning schemes fail to handle large-scale dataset problem. For this 
reason, we explored the incremental dictionary learning method for large-scale training set. 
Inspired by Bottou [9] and Mairal [10] use the expected objective function to replace the 
original empirical objective function, we obtain a novel dictionary learning problem:  
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Where, ̂ denotes the sparse coefficients computed in the sparse coding stage. To solve 



  

the above problem, we propose an incremental learning algorithm for dictionary updating 
which processes one training sample or a small subset at a time.  

The approach we propose in this paper is a block-coordinate descent algorithm. The 
overall algorithm is summarized in Algorithm 2. In this algorithm, the i.i.d. samples yt are 
drawn from an unknown probability distribution p(y) sequentially. However, since the dis-
tribution p(y) is unknown, obtaining such i.i.d. samples may be very difficult. The common 
trick in our algorithm to obtain such i.i.d. samples is to cycle over a randomly permuted 
training set. The sparse coding steps are same as K-SVD algorithm. The dictionary update 
steps are different from the K-SVD algorithm. The updated dictionary Dt is computed by 
minimizing the following cost function. 

             
2 1

2 1
1

1 1
( )

2

t

t i i i
i

f D y D
t

  


                   (5) 

Where, the vectors i are computed during the previous spare coding steps of the algorithm. 

Algorithm 2 Incremental dictionary learning 
1: Input: ( )my R p y  (a strategy to draw i.i.d samples of p), R  (regularization pa-
rameter), T (number of iterations). 
2: Output: Dictionary D 
3: Init: Set D:= 0

m kD R  (initial dictionary), A0:= 0, B0:= 0 (reset the “past” information). 
4: for t = 1 to T do 
5:    Draw yt from p(y). 
6:    Sparse coding: compute ta using OMP 

7:    At ← At-1 + T
t ta a  

8:    Bt ← Bt-1 + T
t ty a  

9:   Compute Dt according to Eq. 5, with Dt-1 as warm restart 
10: end for 
 
4. Experimental Validation. In this section, we present experiments on natural images to 
demonstrate the efficiency of incremental dictionary learning and verify our method to the 
application of image denoising. Firstly, incremental dictionary training experiments are 
conducted on a standard image dataset. Secondly, we apply the proposed method to denoise 
a large-scale image with zero-mean white and homogeneous Gaussian noise. 
4.1. Incremental training on the image patches. For our experiments, we randomly select 
1×106 patches with size 8×8 from the standard image dataset showed as Figure 1 to form 
the training dataset. These patches are equally divided into two subsets A and B. We use 
the two subsets to incrementally train a 64×256 dictionary and assess the performance. 

 
FIGURE 1. The images used for training the dictionary. 

In the following dictionary training process, we normalize the patches to have unit 

2 norm and 1.2  in all of our experiments. We use the first part of the training set to 
train a dictionary. Then we use subsets B to continually train the dictionary. The learned 



 

dictionaries are showed as Figure 2. In the first training stage, the time of computation for 
dictionary learning is 18.467 seconds and the value of loss function of Eq. 5 is 0.2745. In 
the second training stage, the time of computation for dictionary learning is 19.11 seconds 
and the value of loss function is 0.2735. 

 
FIGURE 2. (left) Learned dictionary for 8×8 image patches, trained using the first half of the 
training set. (right) Learned dictionary for 8×8 image patches, continually trained using the 
second half of the training set. 
4.2. Denoising on large-scale image. Our last experiment demonstrates that our algorithm 
can be used for a large-scale image denoising task from the corrupted 4-Megapixel image 
(2560×1600) of Figure 3. We learn an overcomplete dictionary with 1024 elements using 
the roughly 1×106 blocks with size 16×16 from the noisy image. Once the dictionary has 
been learned, we denoise the corrupted image, averaging the denoised blocks when they 
overlap in the result, using the sparse representation denoising technique described in sec-
tion II. Our intent here is of course not to evaluate our learning procedure in denoising tasks, 
which would require a thorough comparison with state-the-art techniques on standard data-
sets. Instead, we just wish to demonstrate that the proposed method can indeed be applied 
to a realistic, non-trivial denoising task on a large-scale image.  

     
FIGURE 3. Denoising task on a 4-Megapixel conch and flower image. Top: Original image 
(left) and noisy image (right). Bottom: Wiener filter denoised image (left) and our proposed 
method denoised image (right). 

The denoising performances are reported in Tables 1-2 compared to classic wiener filter. 
The experimental results in Table 1 shows the peak signal-to-noise ratios (PSNRs) of the 
noisy image, wiener filter denoised image and our proposed method denoised image con-
ducted on different images. The experimental results in Table 2 shows the PSNRs of the 
noisy image, wiener filter denoised image and our proposed method denoised image con-
ducted on the same image with different noise size. As can be seen, our proposed method 
outperforms the classic image denoising filter in different settings. 

TABLE 1. Denoising performance on different image 



TABLE 2. Denoising performance on different noise size 
noisy image wiener filter our proposed method 

conch   image 28.12db 35.31db 36.97db 

conch   image 24.61db 31.95db 35.11db 

conch   image 22.11db 29.47db 33.67db 

conch   image 20.17db 27.53db 32.56db 

5. Conclusions. In this paper we introduce a new image denoising framework based on 
sparse representation using incremental learning algorithm for obtaining dictionaries 
adapted to large-scale training dataset. Preliminary experiments demonstrate that it is 
effective on image denoising tasks that may involve millions of training samples. In our 
future work, we plan to use the proposed learning framework for image sequence and video 
restoration tasks with variable datasets size. 

noisy image wiener filter our proposed method 

conch  image 22.11db 29.47db 33.67db 

flower  image 22.11db 29.52db 36.41db 
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