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To the best of our knowledge, there is no method in literature for solving such fully fuzzy
linear programming (FLP) problems in which some or all the parameters are represented
by unrestricted L-R flat fuzzy numbers. Also, to propose such a method, there is need to find
the product of unrestricted L-R flat fuzzy numbers. However, there is no method in the lit-
erature to find the product of unrestricted L-R flat fuzzy numbers.

In this paper, firstly the product of unrestricted L-R flat fuzzy numbers is proposed and
then with the help of proposed product, a new method (named as Mehar’s method) is pro-
posed for solving fully FLP problems. It is also shown that the fully FLP problems which can
be solved by the existing methods can also be solved by the Mehar’s method. However,
such fully FLP problems in which some or all the parameters are represented by unre-
stricted L-R flat fuzzy numbers can be solved by Mehar’s method but can not be solved
by any of the existing methods.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Linear programming is one of the most frequently applied operation research techniques. Although, it has been investi-
gated and expanded for more than six decades by many researchers and from the various point of views, it is still useful to
develop new approaches in order to better fit the real world problems within the framework of linear programming.

In conventional approach, parameters of linear programming models must be well defined and precise. However, in real
world environment, this is not a realistic assumption. Usually, the value of many parameters of a linear programming model
is estimated by experts. Clearly, it can not be assumed the knowledge of experts is so precise. Since, Bellman and Zadeh [1]
proposed the concept of decision making in fuzzy environments, a number of researchers have exhibited their interest to
solve the FLP problems [2–8] and fully FLP problems [9–15].

On the basis of deep study of the existing methods for solving fully FLP problems, it can be concluded that there is no
method in the literature for solving fully FLP problems in which some or all the parameters are represented by unrestricted
L-R flat fuzzy numbers.

This paper is organised as follows: In Section 2, some basic definitions and arithmetic operations of L-R flat fuzzy numbers
are presented. In Section 3, limitations of the existing method [9] are pointed out. In Section 4, product of unrestricted L-R
flat fuzzy numbers is introduced. In Section 5, a new method, named as Mehar’s method, is proposed to find the fuzzy opti-
mal solution of fully FLP problems. In Section 6, advantages of the Mehar’s method over the existing methods are discussed
and to illustrate the Mehar’s method numerical example is solved. Obtained results are discussed in Section 7. Conclusions
are discussed in Section 8.
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2. Preliminaries

In this section, some basic definitions and arithmetic operations of L-R flat fuzzy numbers are presented.

2.1. Basic definitions

In this section, some basic definitions of L-R flat fuzzy numbers are presented.

Definition 2.1 [16]. A function L : ½0;1Þ ! ½0;1� (or R : ½0;1Þ ! ½0;1�) is said to be reference function of fuzzy number if
and only if

(i) Lð0Þ ¼ 1 (or Rð0Þ ¼ 1)
(ii) L (or R) is non-increasing on ½0;1Þ.

 
 

 

Definition 2.2 [16]. A fuzzy number eA, defined on universal set of real numbers R, denoted as ðm;n;a; bÞLR, is said to be an LR
flat fuzzy number if its membership function leAðxÞ is given by
leAðxÞ ¼
Lðm�x

a Þ x 6 m;a > 0;
Rðx�n

b Þ x P n;b > 0;

1 m 6 x 6 n:

8><>:

Definition 2.3 [14]. An L-R flat fuzzy number eA ¼ ðm;n;a; bÞLR is said to be non-negative L-R flat fuzzy number if m� a P 0
and is said to be non-positive L-R flat fuzzy number if nþ b 6 0.
Definition 2.4 [14]. An L-R flat fuzzy number eA ¼ ðm;n;a; bÞLR is said to be unrestricted L-R flat fuzzy number if m� a is a
real number.
Definition 2.5 [16]. Let eA = ðm;n;a; bÞLR be an L-R flat fuzzy number and k be a real number in the interval ½0;1� then the
crisp set, Ak ¼ fx 2 X : leAðxÞP kg ¼ ½m� aL�1ðkÞ; nþ bR�1ðkÞ�, is said to be k-cut of eA.

Definition 2.6 [16]. Let eA1 ¼ ðm1; n1;a1; b1ÞLR and eA2 ¼ ðm2;n2;a2; b2ÞLR, be any L-R flat fuzzy numbers then eA1 ¼ eA2 iff
m1 ¼ m2;n1 ¼ n2;a1 ¼ a2 and b1 ¼ b2.
2.2. Arithmetic operations

In this section, the arithmetic operations between L-R flat fuzzy numbers are presented [16].
Let eA1 ¼ ðm1;n1;a1; b1ÞLR, eA2 ¼ ðm2;n2;a2; b2ÞLR be any L-R flat fuzzy numbers and eA3 ¼ ðm3;n3;a3; b3ÞRL be any R-L flat

fuzzy number. Then,

(i) eA1 � eA2 ¼ ðm1 þm2;n1 þ n2;a1 þ a2; b1 þ b2ÞLR

(ii) eA1 � eA3 ¼ ðm1 � n3;n1 �m3;a1 þ b3; b1 þ a3ÞLR

(iii) If eA1 and eA2 both are non-negative, theneA1 � eA2 ’ ðm1m2;n1n2;m1a2 þ a1m2 � a1a2;n1b2 þ b1n2 þ b1b2ÞLR

(iv) If eA1 is non-positive and eA2 is non-negative, theneA1 � eA2 ’ ðm1n2;n1m2;a1n2 �m1b2 þ a1b2; b1m2 � n1a2 � b1a2ÞLR

(v) If eA1 is non-negative and eA2 is non-positive, theneA1 � eA2 ’ ðn1m2;m1n2;n1a2 � b1m2 þ b1a2;m1b2 � a1n2 � a1b2ÞLR

(vi) If eA1 and eA2 both are non-positive, theneA1 � eA2 ’ ðn1n2;m1m2;�n1b2 � b1n2 � b1b2;�m1a2 � a1m2 þ a1a2ÞLR

(vii) keA1 ¼
ðkm1; kn1; ka1; kb1ÞLR k P 0
ðkn1; km1;�kb1;�ka1ÞRL k < 0

�
:

There also exist another formula [16] for the product of such L-R flat fuzzy numbers in which the spreads are smaller as
compared to the mean values:

(i) If eA1 and eA2 both are non-negative, theneA1 � eA2 ’ ðm1m2;n1n2;m1a2 þ a1m2; n1b2 þ b1n2ÞLR
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(ii) If eA1 is non-positive and eA2 is non-negative, theneA1 � eA2 ’ ðm1n2; n1m2;a1n2 �m1b2; b1m2 � n1a2ÞLR

(iii) If eA1 is non-negative and eA2 is non-positive, theneA1 � eA2 ’ ðn1m2;m1n2;n1a2 � b1m2;m1b2 � a1n2ÞLR

(iv) If eA1 and eA2 both are non-positive, theneA1 � eA2 ’ ðn1n2;m1m2;�n1b2 � b1n2;�m1a2 � a1m2ÞLR

Remark 1. If m ¼ n then an L-R flat fuzzy number ðm;n;a; bÞLR is said to be an L-R fuzzy number and is denoted as
ðm;m;a; bÞLR or ðn;n;a; bÞLR or ðm;a; bÞLR or ðn;a; bÞLR.

Remark 2. If m ¼ n and LðxÞ ¼ RðxÞ ¼maximizef0;1� xg then an L-R flat fuzzy number ðm;n;a; bÞLR is said to be a triangular
fuzzy number and is denoted as ðm;a; bÞ.

Remark 3. If m – n and LðxÞ ¼ RðxÞ ¼ maximizef0;1� xg then an L-R flat fuzzy number ðm;n;a; bÞLR is said to be a trapezoi-
dal fuzzy number and is denoted as ðm;n;a; bÞ.

Remark 4 [17]. Let eA1 ¼ ðm1;n1;a1; b1ÞLR, eA2 ¼ ðm2;n2;a2; b2ÞLR be any L-R flat fuzzy numbers. Then,

(i) eA � eB iff RðeAÞ 6 RðeBÞ
(ii) eA 	 eB iff RðeAÞP RðeBÞ

(iii) eA 
 eB iff RðeAÞ ¼ RðeBÞ
where Rðm;n;a; bÞ = 1

2 ð
R 1

0 ðm� aL�1ðkÞÞ dk +
R 1

0 ðnþ bR�1ðkÞÞ dkÞ;0 6 k 6 1.

 
 

 

3. Limitations of the existing method for solving fully FLP problems

To the best of our knowledge, till now no one have defined the product of unrestricted L-R fuzzy numbers or L-R flat fuzzy
numbers e.g., if eA1 ¼ ð1;3;4;2ÞLR and eA2 ¼ ð2;4;5;3ÞLR then there is neither any product rule to find the value of eA1 � eA2 nor
to find the value of eA1 � eA2. Due to non-existence of such product the existing method [9] can be used for solving fully FLP
problems ðP1Þ and ðP2Þ in which all the coefficients are represented by either non-negative L-R fuzzy numbers or non-posi-
tive L-R fuzzy numbers and all the decision variables are represented by non-negative L-R fuzzy numbers. However, the
existing method [9] can not be used to find the fuzzy optimal solution of fully FLP problems ðP3Þ and ðP4Þ in which some
or all the parameters are represented by unrestricted L-R fuzzy numbers or unrestricted L-R flat fuzzy numbers.
Maximize ðor MinimizeÞ
Xn

j¼1

ð~cj � ~xjÞ

subject toXn

j¼1

~aij � ~xj �;
;	 ~bi; i ¼ 1;2; . . . ;m;

ðP1Þ
where ~aij;
~bi and ~cj are non-negative or non-positive L-R fuzzy numbers and ~xj is a non-negative L-R fuzzy number.

Example 3.1. Maximize ðð2;1;2ÞLR � ~x1 � ð�3;2;1ÞLR � ~x2Þ
subject to
ð1;1;2ÞLR � ~x1 � ð2;1;3ÞLR � ~x2 � ð20;10;5ÞLR

ð�2;1;1ÞLR � ~x1 � ð5;2;3ÞLR � ~x2 	 ð�3;1;2ÞLR;
where ~x1; ~x2 are non-negative L-R fuzzy numbers and LðxÞ ¼ RðxÞ ¼ maximumf0;1� xg.
Maximize ðor MinimizeÞ
Xn

j¼1

ð~cj � ~xjÞ

subject toXn

j¼1

~aij � ~xj �;
;	 ~bi; i ¼ 1;2; . . . ;m;

ðP2Þ
where ~aij;
~bi and ~cj are non-negative or non-positive L-R fuzzy numbers and ~xj is a non-negative L-R fuzzy number.
Example 3.2. Maximize ð1;1;1ÞLR � ~x1 � ð2;1;2ÞLR � ~x2
� �

subject to
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ð4;1;0ÞLR � ~x1 � ð�2;1;1ÞLR � ~x2 	 ð5;2;3ÞLR

ð�3;1;2ÞLR � ~x1 � ð4;1;2ÞLR � ~x2 	 ð4;1;1ÞLR

 
 

where ~x1; ~x2 are non-negative L-R fuzzy numbers and LðxÞ ¼ RðxÞ ¼ maximumf0;1� xg. 
Maximize ðor MinimizeÞ
Xn

j¼1

ð~cj � ~xjÞ

subject toXn

j¼1

~aij � ~xj �;
;	 ~bi; i ¼ 1;2; . . . ;m;

ðP3Þ
where ~aij; ~xj;
~bi and ~cj are L-R flat fuzzy numbers.
Example 3.3. Maximize ð4;4;0;0ÞLR � ~x1 � ð1;1;1;1ÞLR � ~x2
� �

subject to
ð2;5;5;2ÞLR � ~x1 � ð�1;5;1;2ÞLR � ~x2 � ð�17;45;25;46ÞLR

ð1;2;1;1ÞLR � ~x1 � ð3;5;2;2ÞLR � ~x2 
 11;39;
193

5
;
168

5

� �
LR
where ~x1; ~x2 are L-R flat fuzzy numbers and LðxÞ ¼ RðxÞ ¼ maximumf0;1� xg.
Maximize ðor MinimizeÞ
Xn

j¼1

ð~cj � ~xjÞ

subject toXn

j¼1

~aij � ~xj �;
;	 ~bi; i ¼ 1;2; . . . ;m;

ðP4Þ
where ~aij, ~xj;
~bi and ~cj are L-R flat fuzzy numbers.
Example 3.4. Maximize ð1;1;1;1ÞLR�N~x1 � ð4;4;0;0ÞLR�N~x2
� �

subject to
ð2;3;1;1ÞLR�N~x1 � ð�3;�2;1;1ÞLR�N~x2 	 ð�27;�4;21;32ÞLR

ð1;2;1;1ÞLR�N~x1 � ð3;5;2;2ÞLR�N~x2 
 11;39;
193

5
;
168

5

� �
LR
where ~x1; ~x2 are L-R flat fuzzy numbers and LðxÞ ¼ RðxÞ ¼ maximumf0;1� xg.
Remark 5. The existing methods [10–13] can be used only for solving such fully FLP problems in which some or all the
coefficients are represented by triangular or trapezoidal fuzzy numbers and the decision variables are represented by non-
negative triangular or trapezoidal fuzzy numbers.
Remark 6. The existing methods [14,15] can be used only for solving such fully FLP problems in which the sign of all the
constraints is equality sign as well as all the coefficients are represented by triangular or trapezoidal fuzzy numbers and
the decision variables are represented by non-negative triangular or trapezoidal fuzzy numbers.
4. Proposed product

In this section, to overcome the limitations of the existing methods [9–15], corresponding to the existing product rules �
and �, presented in Section 2.2, new product rules are introduced.

4.1. New product corresponding to the existing product �

In this section, new product corresponding to the existing product � is introduced.

Proposition 4.1. If eA1 ¼ ðm1;n1;a1; b1ÞLR and eA2 ¼ ðm2;n2;a2; b2ÞLR are two L-R flat fuzzy numbers such that m1 � a1 < 0 and
m1 P 0 then eA1 � eA2 ’ ðm01;n01;a01; b

0
1ÞLR, where, m01 ¼ minimum fm1m2; n1m2g;n01 ¼ maximumfm1n2;n1n2g;a01 ¼ minimum

fm1m2;n1m2g� minimum fm1n2 þm1b2 � a1n2 � a1b2;n1m2 � n1a2 þ b1m2 � b1a2g; b01 ¼ maximum fm1m2 �m1a2�
a1m2 þ a1a2; n1n2 þ n1b2 þ b1n2 þ b1b2g� maximum fm1n2;n1n2g.
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Proof. Let eA1 ¼ ðm1;n1;a1; b1ÞLR and eA2 ¼ ðm2;n2;a2; b2ÞLR be two L-R flat fuzzy numbers such that m1 � a1 < 0 and m1 P 0
then using the Definition 2.5, A1k ¼ ½m1 � a1L�1ðkÞ;n1 þ b1R�1ðkÞ� and A2k ¼ ½m2 � a2L�1ðkÞ;n2 þ b2R�1ðkÞ�. Since m1 � a1 < 0
and m1 P 0 so m1 � a1L�1ðkÞ 6 0 for k P Lðm1

a1
Þ and m1 � a1L�1ðkÞP 0 for k 6 Lðm1

a1
Þ and n1 þ b1R�1ðkÞP 0 for all k, so to find

the product of eA1 and eA2 there is need to consider the following five cases:

Case (i) If m2 � a2 P 0 then m2 � a2L�1ðkÞP 0 and n2 þ b2R�1ðkÞP 0 for all k so the following two subcases may arise to
find the product of A1k and A2k:

 
 

 

(a) If m1 � a1L�1ðkÞ P 0 then

A1kA2k ¼ ðm1 � a1L�1ðkÞÞðm2 � a2L�1ðkÞÞ; ðn1 þ b1R�1ðkÞÞðn2 þ b2R�1ðkÞÞ
h i
Putting k ¼ 1, we get:
A1kA2k ¼ ½m1m2;n1n2�: ð2Þ

(b) If m1 � a1L�1ðkÞ 6 0 then

A1kA2k ¼ ðm1 � a1L�1ðkÞÞðn2 þ b2R�1ðkÞÞ; ðn1 þ b1R�1ðkÞÞðn2 þ b2R�1ðkÞÞ
h i
Putting k ¼ 0, we get:
A1kA2k ¼ ½m1n2 þm1b2 � a1n2 � a1b2;n1n2 þ n1b2 þ b1n2 þ b1b2�: ð3Þ

Now combining (2) and (3) we get:

eA1 � eA2 ’ ðm001;n001;a001;b
00
1ÞLR

where, m001 ¼ m1m2;n001 ¼ n1n2;a001 ¼ m1m2 �m1n2 þm1b2 � a1n2 � a1b2; b
00
1 ¼ n1n2 þ n1b2 þ b1n2 þ b1b2 � n1n2.

Case (ii) If m2 � a2 < 0;m2 P 0 then m2 � a2L�1ðkÞP 0 for k 6 Lðm2
a2
Þ, m2 � a2L�1ðkÞ 6 0 for k P Lðm2

a2
Þ and

n2 þ b2R�1ðkÞP 0 for all k then the four subcases may arise to find the product of A1k and A2k but since we want to find
the product of A1k and A2k corresponding to k ¼ 0 and k ¼ 1 so there is need to consider only the following two subcases:
(a) If m1 � a1L�1ðkÞ 6 0 and m2 � a2L�1ðkÞ 6 0 then

A1kA2k ¼ minimumfðm1 � a1L�1ðkÞÞðn2 þ b2R�1ðkÞÞ; ðn1 þ b1R�1ðkÞÞðm2 � a2L�1ðkÞÞg;
h

maximumfðm1 � a1L�1ðkÞÞðm2 � a2L�1ðkÞÞ; ðn1 þ b1R�1ðkÞÞðn2 þ b2R�1ðkÞÞg
i

Putting k ¼ 0, we get:
A1kA2k ¼ ½minimumfm1n2 þm1b2 � a1n2 � a1b2;n1m2 � n1a2 þ b1m2 � b1a2g;maximumfm1m2 �m1a2 � a1m2

þ a1a2;n1n2 þ n1b2 þ b1n2 þ b1b2g�: ð4Þ

(b) If m1 � a1L�1ðkÞP 0 and m2 � a2L�1ðkÞP 0 then

A1kA2k ¼ ½ðm1 � a1L�1ðkÞÞðm2 � a2L�1ðkÞÞ; ðn1 þ b1R�1ðkÞÞðn2 þ b2R�1ðkÞÞ�
Putting k ¼ 1, we get:
A1kA2k ¼ ½m1m2;n1n2�: ð5Þ

Now combining (4) and (5) we get:eA1 � eA2 ’ ðm002;n002;a002;b
00
2ÞLR

where, m002 ¼ m1m2;n002 ¼ n1n2;a002 ¼ m1m2�minimumfm1n2 þm1b2 � a1n2 � a1b2 �m1m2;n1m2 � n1a2 þ b1m2 � b1a2g; b002 ¼
maximumfm1m2 �m1a2 � a1m2 þ a1a2; n1n2 þ n1b2 þ b1n2 þ b1b2g � n1n2.

Case (iii) If m2 < 0;n2 P 0 then m2 � a2L�1ðkÞ 6 0 and n2 þ b2R�1ðkÞP 0 for all k so the following two subcases may arise
to find the product of A1k and A2k:
(a) If m1 � a1L�1ðkÞP 0 then
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A1kA2k ¼ ½ðn1 þ b1R�1ðkÞÞðm2 � a2L�1ðkÞÞ; ðn1 þ b1R�1ðkÞÞðn2 þ b2R�1ðkÞÞ� 
Putting k ¼ 1, we get:

 

 

A1kA2k ¼ ½n1m2;n1n2�: ð6Þ

(b) If m1 � a1L�1ðkÞ 6 0 then

A1kA2k ¼ ½minimumfðm1 � a1L�1ðkÞÞðn2 þ b2R�1ðkÞÞ; ðn1 þ b1R�1ðkÞÞðm2 � a2L�1ðkÞÞg;maximumfðm1 � a1L�1ðkÞÞðm2

� a2L�1ðkÞÞ; ðn1 þ b1R�1ðkÞÞðn2 þ b2R�1ðkÞÞg�
Putting k ¼ 0, we get:
A1kA2k ¼ ½minimumfm1n2 þm1b2 � a1n2 � a1b2;n1m2 þ b1m2 � n1a2 � b1a2g;maximumfm1m2 �m1a2 � a1m2

þ a1a2;n1n2 þ n1b2 þ b1n2 þ b1b2g�: ð7Þ

Now combining (6) and (7) we get:eA1 � eA2 ’ ðm003;n003;a003;b
00
3ÞLR

where, m003 ¼ n1m2;n003 ¼ n1n2;a003 ¼ n1m2�minimumfm1n2 þm1b2 � a1n2 � a1b2;n1m2 þb1m2 � n1a2 � b1a2g; b003 ¼maxi-
mumfm1m2� m1a2 � a1m2 þ a1a2;n1n2 þ n1b2 þ b1n2 þ b1b2g � n1n2.

Case (iv) If n2 < 0; n2 þ b2 P 0 then m2 � a2L�1ðkÞ 6 0 for all k and n2 þ b2R�1ðkÞ 6 0 for k 6 Rð� n2
b2
Þ and n2 þ b2R�1ðkÞP 0

for k P Rð� n2
b2
Þ so the four subcases may arise to find the product of A1k and A2k but since we want to find the product of

A1k and A2k corresponding to k ¼ 0 and k ¼ 1 so there is need to consider only the following two subcases:

(a) If m1 � a1L�1ðkÞP 0 and n2 þ b2R�1ðkÞ 6 0 then

A1kA2k ¼ ½ðn1 þ b1R�1ðkÞÞðm2 � a2L�1ðkÞÞ; ðm1 � a1L�1ðkÞÞðn2 þ b2R�1ðkÞÞ�
Putting k ¼ 1, we get:
A1kA2k ¼ ½n1m2;m1n2�: ð8Þ

(b) If m1 � a1L�1ðkÞ 6 0 and n2 þ b2R�1ðkÞP 0 then
A1kA2k ¼ ½ minimumfðm1 � a1L�1ðkÞÞðn2 þ b2R�1ðkÞÞ; ðn1 þ b1R�1ðkÞÞðm2 � a2L�1ðkÞÞg,maximumfðm1 � a1L�1ðkÞÞðm2�
a2L�1ðkÞÞ; ðn1 þ b1R�1ðkÞÞðn2 þ b2R�1ðkÞÞ�
Putting k ¼ 0, we get:

A1kA2k ¼ ½minimumfm1n2 þm1b2 � a1n2 � a1b2;n1m2 � n1a2 þ b1m2 � b1a2g;maximumfm1m2 �m1a2 � a1m2

þ a1a2;n1n2 þ n1b2 þ b1n2 þ b1b2g�: ð9Þ

Now combining (8) and (9) we get:eA1 � eA2 ’ ðm004;n004;a004; b
00
4ÞLRwhere, m004 ¼ n1m2;n004 ¼ m1n2;a004 ¼ n1m2�minimumfm1n2 þm1b2 � a1n2 � a1b2;n1m2 � n1a2

þb1m2 � b1a2g; b004 ¼maximumfm1m2 �m1a2 � a1m2 þ a1a2; n1n2 þ n1b2 þ b1n2 þ b1b2g �m1n2.
Case (v) If n2 þ b2 < 0 then m2 � a2L�1ðkÞ 6 0 and n2 þ b2R�1ðkÞ 6 0 for all k so the following two subcases may arise:

(a) If m1 � a1L�1ðkÞP 0 then

A1kA2k ¼ ½ðn1 þ b1R�1ðkÞÞðm2 � a2L�1ðkÞÞ; ðm1 � a1L�1ðkÞÞðn2 þ b2R�1ðkÞÞ�

Putting k ¼ 1, we get:
A1kA2k ¼ ½n1m2;m1n2�: ð10Þ

(b) If m1 � a1L�1ðkÞ 6 0 then

A1kA2k ¼ ½ðn1 þ b1R�1ðkÞÞðm2 � a2L�1ðkÞÞ; ðm1 � a1L�1ðkÞÞðm2 � a2L�1ðkÞÞ�
Putting k ¼ 0, we get:
A1kA2k ¼ ½n1m2 � n1a2 þ b1m2 � b1a2;m1m2 �m1a2 � a1m2 þ a1a2�: ð11Þ
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Now combining (10) and (11) we get:eA1 � eA2 ’ ðm005;n005;a005;b
00
5ÞLR

where, m005 ¼ n1m2; n005 ¼ m1n2;a005 ¼ n1m2 � n1m2 � n1a2 þ b1m2 � b1a2; b
00
5 ¼ m1m2 �m1a2 � a1m2 þ a1a2 �m1n2.

Combining the results of all five cases the following result is obtained:

If eA1 ¼ ðm1;n1;a1; b1ÞLR and eA2 ¼ ðm2;n2;a2; b2ÞLR are two L-R flat fuzzy numbers such that m1 � a1 < 0;m1 P 0 and eA2 is
any L-R flat fuzzy number, then eA1 � eA2 ’ ðm01;n01;a01; b

0
1ÞLR , where, m01 ¼ minimumfm1m2;n1m2g;n01 ¼ max-

imumfm1n2;n1n2g;a01 ¼ minimumfm1m2;n1m2g�minimumfm1n2 þ m1b2 � a1n2 � a1b2; n1m2 � n1a2 þ b1m2 � b1a2g;
b01 ¼maximumfm1m2 �m1a2 � a1m2 þ a1a2;n1n2 þ n1b2þ b1n2 þ b1b2g�maximumfm1n2;n1n2g. h

 
 

 

Proposition 4.2. If eA1 ¼ ðm1; n1;a1; b1ÞLR and eA2 ¼ ðm2;n2;a2; b2ÞLR are two L-R flat fuzzy numbers such that m1 < 0 and n1 P 0
then eA1 � eA2 ’ ðm02; n02;a02; b

0
2ÞLR, where, m02 ¼ minimum fm1n2;n1m2g;n02 ¼ maximum fm1m2;n1n2g;a02 ¼ mini-

mumfm1n2;n1m2g� minimum fm1n2 þm1b2 � a1n2 � a1b2;n1m2 � n1a2 þ b1m2 � b1a2g; b02 ¼ maximum fm1m2 �m1a2

�a1m2 þ a1a2;n1n2 þ n1b2 þ b1n2 þ b1b2g� maxi-mum fm1m2;n1n2g.
Proof. Similar to Proposition 4.1. h
Proposition 4.3. If eA1 ¼ ðm1;n1;a1; b1ÞLR and eA2 ¼ ðm2;n2;a2; b2ÞLR are two L-R flat fuzzy numbers such that n1 < 0 and
n1 þ b1 P 0 then eA1 � eA2 ’ ðm03;n03;a03; b

0
3ÞLR, where, m03 ¼ minimum fm1n2; n1n2g;n03 ¼ maximum fn1m2;m1m2g;a03 ¼ mini-

mum fm1n2;n1n2g� minimum fm1n2 þm1b2 � a1n2 � a1b2;n1m2 � n1a2 þ b1m2 � b1a2g; b03 ¼ maximum fm1m2 �m1a2

�a1m2 þ a1a2;n1n2 þ n1b2 þ b1n2 þ b1b2g� maximum fn1m2;m1m2g.
Proof. Similar to Proposition 4.1. h
Proposition 4.4. If eA1 ¼ ðm1;n1;a1; b1ÞLR and eA2 ¼ ðm2;n2;a2; b2ÞLR are two L-R flat fuzzy numbers such that n1 þ b1 < 0 theneA1 � eA2 ’ ðm04;n04;a04; b
0
4ÞLR, where, m04 ¼ minimum fm1n2;n1n2g;n04 ¼ maximum fm1m2;n1m2g;a04 ¼ minimum fm1n2;n1n2g�

minimum fm1n2 þm1b2 � a1n2 � a1b2;n1n2 þ n1b2 þ b1n2 þ b1b2g; b04 ¼ maximum fn1m2 � n1a2 þ b1m2 � b1a2;m1m2�
m1a2 � a1m2 þ a1a2g� maxi-mum fm1m2;n1m2g.
Proof. Similar to Proposition 4.1. h
Proposition 4.5. If eA1 ¼ ðm1;n1;a1; b1ÞLR and eA2 ¼ ðm2;n2;a2; b2ÞLR are two L-R flat fuzzy numbers such that m1 � a1 P 0 theneA1 � eA2 ’ ðm05;n05;a05; b
0
5ÞLR, where, m05 ¼ minimum fm1m2;n1m2g;n05 ¼ maximum fm1n2;n1n2g;a05 ¼ minimum fm1m2;n1m2g�

minimum fm1m2 �m1a2 � a1m2 þ a1a2;n1m2 � n1a2 þ b1m2 � b1a2g; b05 ¼ maximum fm1n2 þm1b2 � a1n2 � a1b2;

n1n2 þ n1b2 þ b1n2 þ b1b2g� maxi-mum fm1n2;n1n2g.
Proof. Similar to Proposition 4.1. h

4.2. New product corresponding to the existing product �

In this section, new product corresponding to the existing product � is introduced.

Proposition 4.6. If eA1 ¼ ðm1;n1;a1; b1ÞLR and eA2 ¼ ðm2;n2;a2; b2ÞLR are two L-R flat fuzzy numbers such that m1 � a1 P 0 theneA1 � eA2 ’ ðm01;n01;a01; b
0
1ÞLR, where, m01 ¼ minimum fm1m2;n1m2g;n01 ¼ maximum fm1n2;n1n2g;a01 ¼ minimum

fm1m2;n1m2g� minimum fm1n2 þm1b2 � a1n2;n1m2 � n1a2 þ b1m2g; b01 ¼ maximum fm1m2 �m1a2� a1m2;n1n2þ
n1b2 þ b1n2g� maximum fm1n2; n1n2g.
Proof. The proposed results may be obtained by considering the following five cases:

Case (i) Neglecting the terms a1b2 and b1b2 from the results obtained in Case (i) of Proposition 4.1, we get
A1kA2k ¼ ½m1m2;n1n2� for k ¼ 1 and A1kA2k ¼ ½m1n2 þm1b2 � a1n2; n1n2 þ n1b2 þ b1n2� for k ¼ 0. Combining the both, we
get
eA1 � eA2 ’ ðm001;n001;a001;b

00
1ÞLR
where, m001 ¼ m1m2;n001 ¼ n1n2;a001 ¼ m1m2 �m1n2 þm1b2 � a1n2; b
00
1 ¼ n1n2 þ n1b2 þ b1n2 � n1n2.
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Case (ii) Neglecting the terms a1b2; b1a2;a1a2 and b1b2 from the results obtained in Case (ii) of Proposition 4.1, we get
A1kA2k ¼ ½ minimum fm1n2 þm1b2 � a1n2;n1m2 � n1a2 þ b1m2g; maximum fm1m2 �m1a2 � a1m2;n1n2 þ n1b2 þ b1n2g�
for k ¼ 0 and A1kA2k ¼ ½m1m2;n1n2� for k ¼ 1. Combining the both, we geteA1 � eA2 ’ ðm002;n002;a002;b

00
2ÞLR

where, m002 ¼ m1m2;n002 ¼ n1n2;a002 ¼ m1m2� minimum fm1n2 þm1b2 � a1n2 �m1m2;n1m2 � n1a2 þ b1m2g; b002 ¼ maximum
fm1m2 �m1a2 � a1m2;n1n2 þ n1b2 þ b1n2g � n1n2.

Case (iii) Neglecting the terms a1b2; b1a2;a1a2 and b1b2 from the results obtained in Case (iii) of Proposition 4.1, we get
A1kA2k ¼ ½n1m2;n1n2� for k ¼ 1 and A1kA2k ¼ ½ minimum fm1n2 þm1b2 � a1n2;n1m2 þ b1m2 � n1a2g; maximum
fm1m2 �m1a2 � a1m2;n1n2 þ n1b2 þ b1n2g� for k ¼ 0. Combining the both, we get

 
 

 

eA1 � eA2 ’ ðm003;n003;a003;b
00
3ÞLR
where, m003 ¼ n1m2;n003 ¼ n1n2;a003 ¼ n1m2� minimum fm1n2 þm1b2 � a1n2;n1m2 þ b1m2 � n1a2g; b003 ¼ maximum
fm1m2 �m1a2 � a1m2;n1n2 þ n1b2 þ b1n2g � n1n2.

Case (iv) Neglecting the terms a1b2; b1a2, a1a2 and b1b2 from the results obtained in Case (iv) of Proposition 4.1 we get
A1kA2k ¼ ½n1m2;m1n2� for k ¼ 1 and A1kA2k ¼ ½ minimum fm1n2 þm1b2 � a1n2;n1m2 � n1a2 þ b1m2g; maximum
fm1m2 �m1a2 � a1m2;n1n2 þ n1b2 þ b1n2g� for k ¼ 0. Combining the both, we get
eA1 � eA2 ’ ðm004;n004;a004;b

00
4ÞLR
where, m004 ¼ n1m2; n004 ¼ m1n2;a004 ¼ n1m2� minimum fm1n2 þm1b2 � a1n2;n1m2 � n1a2 þ b1m2g; b004 ¼ maximum fm1m2�
m1a2 � a1m2;n1n2 þ n1b2 þ b1n2g �m1n2.

Case (v) Neglecting the terms b1a2 and a1a2 from the results obtained in Case (v) of Proposition 4.1, we get
A1kA2k ¼ ½n1m2;m1n2� for k ¼ 1 and A1kA2k ¼ ½n1m2 � n1a2 þ b1m2;m1m2 �m1a2 � a1m2� for k ¼ 0. Combining the both,
we get
eA1 � eA2 ’ ðm005;n005;a005;b

00
5ÞLR
where, m005 ¼ n1m2;n005 ¼ m1n2;a005 ¼ n1m2 � n1m2 � n1a2 þ b1m2; b
00
5 ¼ m1m2 �m1a2 � a1m2 �m1n2.

Combining the results of all five cases the following result is obtained:

If eA1 ¼ ðm1;n1;a1; b1ÞLR and eA2 ¼ ðm2;n2;a2; b2ÞLR are two L-R flat fuzzy numbers such that m1 � a1 < 0;m1 P 0 and eA2 is
any L-R flat fuzzy number, then
eA1 � eA2 ’ ðm01;n01;a01;b
0
1ÞLR;
where, m01 ¼ minimum fm1m2;n1m2g;n01 ¼ maximum fm1n2;n1n2g;a01 ¼ minimum fm1m2;n1m2g� minimum
fm1n2 þm1b2 � a1n2;n1m2 � n1a2 þ b1m2g; b01 ¼ maximum fm1m2 �m1a2 � a1m2;n1n2 þ n1b2 þ b1n2g� maximum
fm1n2;n1n2g. h
Proposition 4.7. If eA1 ¼ ðm1;n1;a1; b1ÞLR and eA2 ¼ ðm2;n2;a2; b2ÞLR are two L-R flat fuzzy numbers such that m1 < 0 and n1 P 0
then eA1 � eA2 ’ ðm02; n02;a02; b

0
2ÞLR,where, m02 ¼ minimumfm1n2;n1m2g;n02 ¼ maximum fm1m2;n1n2g;a02 ¼ minimum

fm1n2;n1m2g� minimum fm1n2 þm1b2 � a1n2; n1m2 � n1a2 þ b1m2g; b02 ¼ maximum fm1m2 �m1a2 � a1m2;

n1n2 þ n1b2 þ b1n2g� maximum fm1m2;n1n2g.
Proof. Similar to Proposition 4.6. h
Proposition 4.8. If eA1 ¼ ðm1;n1;a1; b1ÞLR and eA2 ¼ ðm2;n2;a2; b2ÞLR are two L-R flat fuzzy numbers such that n1 < 0 and
n1 þ b1 P 0 then eA1 � eA2 ’ ðm03;n03;a03; b

0
3ÞLR, where, m03 ¼ minimum fm1n2;n1n2g;n03 ¼ maximum fn1m2;m1m2g;a03 ¼ mini-

mum fm1n2;n1n2g� minimum fm1n2 þm1b2 � a1n2;n1m2 � n1a2 þ b1m2g; b03 ¼ maximum fm1m2 �m1a2 � a1m2;

n1n2 þ n1b2 þ b1n2g� maximum fn1m2;m1m2g.
Proof. Similar to Proposition 4.6. h
Proposition 4.9. If eA1 ¼ ðm1;n1;a1; b1ÞLR and eA2 ¼ ðm2;n2;a2; b2ÞLR are two L-R flat fuzzy numbers such that n1 þ b1 < 0 theneA1 � eA2 ’ ðm04;n04;a04; b
0
4ÞLR, where, m04 ¼ minimum fm1n2;n1n2g;n04 ¼ maximum fm1m2;n1m2g;a04 ¼ minimum fm1n2;n1n2g�
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minimum fm1n2 þm1b2 � a1n2;n1n2 þ n1b2 þ b1n2g; b04 ¼maxi-mum fn1m2 � n1a2 þ b1m2;m1m2 �m1a2 � a1m2g�maximum
fm1m2;n1m2g.

 
 

Proof. Similar to Proposition 4.6. h
 

Proposition 4.10. If eA1 ¼ ðm1;n1;a1; b1ÞLR and eA2 ¼ ðm2;n2;a2; b2ÞLR are two L-R flat fuzzy numbers such that m1 � a1 P 0 theneA1 � eA2 ’ ðm05;n05;a05; b
0
5ÞLR,

where, m05 ¼ minimum fm1m2;n1m2g;n05 ¼ maximum fm1n2;n1n2g;a05 ¼ minimum fm1m2; n1m2g� minimum
fm1m2 �m1a2 � a1m2;n1m2 � n1a2 þ b1m2g; b05 ¼ maximum fm1n2 þm1b2 � a1n2;n1n2 þ n1b2 þ b1n2g� maximum
fm1n2;n1n2g.

Proof. Similar to Proposition 4.6. h
Remark 7. Let eA1 ¼ ðm1;a1; b1ÞLR and eA2 ¼ ðm2;a2; b2ÞLR be two L-R fuzzy numbers then to find eA1 � eA2 and eA1 � eA2 put
m1 ¼ n1;m2 ¼ n2 in the Proposition 4.1 to 4.10. To find the product of triangular fuzzy numbers or trapezoidal fuzzy numbers
put LðxÞ ¼ RðxÞ ¼ maximumf0;1� xg in the proposed product of L-R fuzzy numbers or L-R flat fuzzy numbers.
5. Proposed Mehar’s method

In this section, to overcome the limitations of the existing methods [9–13], a new method, named as Mehar’s method, is
proposed to find the fuzzy optimal solution of fully FLP problems P3.

The same method can also be used to find the fuzzy optimal solution of the fully FLP problems P1; P2 and P4 as well as
other existing FLP problems [2–8].

The steps of the Mehar’s method for solving fully FLP problems P3 are as follows:

Step 1: Assuming ~aij ¼ ðaij; bij;aij; bijÞLR, ~xj ¼ ðxj; yj;a00j ; b
00
j ÞLR, ~bi ¼ ðbi; gi; ci; diÞLR and ~cj ¼ ðpj; qj;a0j; b

0
jÞLR the fully FLP problem

P3 can be written as:
Maximize ðor MinimizeÞ
Xn

j¼1

ððpj; qj;a0j;b
0
jÞLR � ðxj; yj;a00j ;b

00
j ÞLRÞ
subject to

Xn

j¼1

ðaij; bij;aij; bijÞLR � ðxj; yj;a00j ;b
00
j ÞLR �;
;	 ðbi; gi; ci; diÞLR; i ¼ 1;2; . . . ;m
where, ðxj; yj;a00j ; b
00
j ÞLR is a L-R flat fuzzy number.

Step 2: Assuming ðpj; qj;a0j; b
0
jÞLR � ðxj; yj;a00j ; b

00
j ÞLR ’ ðsj; tj;a000j ; b

000
j ÞLR and ðaij; bij;aij; bijÞLR � ðxj; yj;a00j ; b

00
j ÞLR ’ ðmij; nij; c0ij; d

0
ijÞLR

the fully FLP problem, obtained in Step 1, can be written as:
Maximizeðor MinimizeÞ
Xn

j¼1

ðsj; tj;a000j ;b
000
j ÞLR
subject to

Xn

j¼1

ðmij;nij; c0ij; d
0
ijÞLR �;
;	 ðbi; gi; ci; diÞLR; i ¼ 1;2; . . . ;m
where, ðxj; yj;a00j ; b
00
j ÞLR is a L-R flat fuzzy number.

Step 3: Using the Yager’s ranking approach [17], the fully FLP problem, obtained in Step 2, can be written as:
Maximize ðor MinimizeÞ R
Xn

j¼1

ðsj; tj;a000j ;b
000
j ÞLR

 !

subject to

R
Xn

j¼1

ðmij;nij; c0ij; d
0
ijÞLR

 !
6;¼;P Rðbi; gi; ci; diÞLR; i ¼ 1;2; . . . ;m;
where, xj 6 yj;a00j P 0; b00j P 0.
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Step 4: Solve the crisp linear programming problem, obtained in Step 3, to find the optimal solution xj; yj;a00j ; b
00
j and put

their values in ~xj ¼ ðxj; yj;a00j ; b
00
j ÞLR to find the fuzzy optimal solution.

Step 5: Find the fuzzy optimal value of fully FLP problem by putting ~xj in
Pn

j¼1~cj � ~xj.

Remark 8. In Section 5, with the help of proposed product, a new method, by modifying the existing method [9], is proposed
for solving fully FLP problems with inequality constraints. On the same direction, the existing method [14,15] can also be
modified for solving fully FLP problems with equality constraints.

 
 

 

6. Advantages of the Mehar’s method over the existing method

In this section, advantages of the Mehar’s method over existing method are discussed.
The main advantage of the Mehar’s method over existing methods [9–13] is that fully FLP problems which can be

solved by using the existing methods can also be solved by using the Mehar’s method but there may exist several fully
FLP problems which can not be solved by any of the existing methods [9–13] but can be solved by using the Mehar’s
method.

6.1. Fuzzy optimal solution of chosen fully FLP problems

To show the advantages of the Mehar’s method and also to illustrate the Mehar’s method the fully FLP problem,
chosen in Example 3.3, which can not be solved by any of the existing methods [9–13] is solved by using the Mehar’s
method.

The fuzzy optimal solution of the fully FLP problem, chosen in Example 3.3, by using the Mehar’s method can be obtained
by using the following steps:

Step 1: Assuming ~x1 ¼ ðx1; y1;a1; b1ÞLR; ~x2 ¼ ðx2; y2;a2; b2ÞLR the chosen fully FLP problem can be written as:
Maximize ð4;4;0;0ÞLR � ðx1; y1;a1; b1ÞLR � ð1;1;1;1ÞLR � ðx2; y2;a2; b2ÞLR

� �
. subject to
ð2;5;5;2ÞLR � ðx1; y1;a1; b1ÞLR � ð�1;5;1;2ÞLR � ðx2; y2;a2;b2ÞLR � ð�17;45;25;46ÞLR

ð1;2;1;1ÞLR � ðx1; y1;a1; b1ÞLR � ð3;5;2;2ÞLR � ðx2; y2;a2;b2ÞLR 
 11;39;
193

5
;
168

5

� �
LR
where, ðx1; y1;a1; b1ÞLR; ðx2; y2;a2; b2ÞLR are L-R flat fuzzy numbers.
Step 2: Using the arithmetic operations, proposed in Section 4, the fully FLP problem, obtained in Step 1, can be written

as:
Maximize ((minimum f4x1;4x1g, maximum f4y1;4y1g, minimum f4x1;4x1g-minimum f4x1 � 4a1;4x1 � 4a1g, maximum

f4y1 þ 4b1;4y1 þ 4b1g-maximum f4y1;4y1g)LR�(minimum fx2; x2g, maximum fy2; y2g, minimum fx2; x2g� minimum
f0;2x2 � 2a2g, maximum f0;2y2 þ 2b2g� maximum fy2; y2g)LR). subject to
(minimum f2x1;5x1g, maximum f2y1;5y2g, minimum f2x1;5x1g-minimum f�3y1 � 3b1;7x1 � 7a1g, maxi-
mumf7y1 þ 7b1;�3x1 þ 3a1g-maximumf2y1;5y2g)LR�(minimum f�y2;5x2g, maximum f�x2;5y2g, minimum f�y2;5x2g-
minimumf�2y2 � 2b2;7x2 � 7a2g, maximum f�2x2 þ 2a2;7y2 þ 7b2g-maximumf�x2;5y2g)LR)�(-17,45,25,46)LR (minimum
fx1;2x1g, maximum fy1;2y1g, minimum fx1;2x1g-minimum f0;3x1 � 3a1g, maximum f0;3y1 þ 3b1g-maximum fy1;2y1g)LR -
� (minimum f3x2;5x2g, maximum f3y2;5y2g, minimumf3x2;5x2g-minimum fx2 � a2;7x2 � 7a2g, maxi-
mumfy2 þ b2;7y2 þ 7b2g-maximum f3y2;5y2g)LR
 11;39; 193

5 ; 168
5

� �
LRwhere, ðx1; y1;a1; b1ÞLR; ðx2; y2;a2; b2ÞLR are L-R flat fuzzy

numbers.
Step 3: Using minimum ða; bÞ ¼ aþb

2 � a�b
2

�� ��, maximum ða; bÞ ¼ aþb
2 þ a�b

2

�� �� and Step 3 of the Mehar’s method the fully FLP
problem, obtained in Step 2, can be written as:

Maximize 2x1 � a1 þ 2y1 þ b1 þ 1
2 x2 � 1

4 a2 � 1
4 jx2 � a2j þ 1

2 y2 þ 1
4 b2 þ 1

4 jy2 þ b2j
� �

. subject to
11
2

y1 þ 2b1 þ
11
2

x1 � 2a1 �
1
2
j3y1 þ 3b1 þ 7x1 � 7a1j þ

9
2

y2 þ
5
2

b2 þ
9
2

x2 �
5
2
a2 � jy2 þ b2 þ

7
2

x2 �
7
2
a2j �

3
2
jx1j �

1
2
jy2

þ 5x2j þ
3
2
jy1j þ

1
2
jx2 þ 5y2j þ

1
2
j7y1 þ 7b1 þ 3x1 � 3a1j þ jx2 � a2 þ

7
2

y2 þ
7
2

b2j 6 77

3x1 �
3
2
a1 �

3
2
jx1 � a1j þ 8x2 � 4a2 � 3jx2 � a2j �

1
2
jx1j � jx2j þ 3y1 þ

1
2
jy1j þ 8y2 þ jy2j þ

3
2

b1 þ
3
2
jy1 þ b1j þ 4b2

þ 3jy2 þ b2j ¼ 95

x1 6 y1; x2 6 y2;a1 P 0;a2 P 0; b1 P 0;b2 P 0:



Table 1
Results of the chosen fully FLP problems.

Example Fuzzy optimal value

Existing methods [10–13] Existing method [9] Proposed Mehar’s method

3.1 Not Applicable � 192
31 ;

128
31 ;

6932
93

� �
LR � 192

31 ;
128
31 ;

6932
93

� �
LR

3.2 Not Applicable 1427
167 ;

956
167 ;

1427
167

� �
LR

1427
167 ;

956
167 ;

1427
167

� �
LR

3.3 Not Applicable Not Applicable 2091
122 ;

2091
122 ;

583
122 ;

583
122

� �
LR

3.4 Not Applicable Not Applicable 2579
110 ;

2579
110 ;

67
110 ;

67
110

� �
LR
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Step 4: Solving the crisp non-linear programming problem, obtained in Step 3, the optimal solution is x1 ¼ 377
122 ;

x2 ¼ 583
122 ; y1 ¼ 377

122 ; y2 ¼ 583
122 ;a1 ¼ 0;a2 ¼ 0; b1 ¼ 0; b2 ¼ 0. Putting these values in ~x1 ¼ ðx1; y1;a1; b1ÞLR; ~x2 ¼ ðx2; y2;a2; b2ÞLR,

the fuzzy optimal solution is ~x1 ¼ 377
122 ;

377
122 ; 0;0

� �
LR; ~x2 ¼ 583

122 ;
583
122 ;0;0

� �
LR.

Step 5:Putting the values of ~x1 and ~x2, obtained from Step 4, in ðð4;4; 0;0ÞLR � ~x1 � ð1;1;1;1ÞLR � ~x2Þ the fuzzy optimal va-
lue is 2091

122 ;
2091
122 ;

583
122 ;

583
122

� �
LR.
7. Results and discussion

To compare the existing methods [9–13] and Mehar’s method the results of the chosen fully FLP problems, obtained by
using the existing methods and Mehar’s method, are shown in Table 1.

The results shown in Table 1 can be explained as follows:

(i) The existing methods [10–13] can be used only for solving such fully FLP problems in which some or all the param-
eters are represented by triangular or trapezoidal fuzzy numbers. Since, in the fully FLP problems, chosen in Example
3.1, Example 3.2, Example 3.3 and Example 3.4 all the parameters are represented by L-R fuzzy numbers or L-R flat
fuzzy numbers so none of the chosen problems can be solved by the existing methods [10–13].

(ii) The existing method [9] can be used only for solving such fully FLP problems in which some or all the parameters are
represented by non-negative or non-positive L-R fuzzy numbers. Since, in the fully FLP problems, chosen in Example
3.1 and Example 3.2 all the parameters are represented by non-negative or non-positive L-R fuzzy numbers so these
problems can be solved by the existing method [9]. However, in the fully FLP problems, chosen in Example 3.3 and
Example 3.4, all the parameters are represented by unrestricted L-R flat fuzzy numbers so these problems can not
be solved by the existing method [9].

(iii) The proposed Mehar’s method can be used for solving such fully FLP problems in which some or all the parameters are
represented by unrestricted L-R fuzzy numbers or L-R flat fuzzy numbers. So, all the chosen problems can be solved by
the Mehar’s method.

8. Conclusions

On the basis of the present study, it can be concluded that all the fully FLP problems which can be solved by the existing
methods [9–13] can also be solved by the proposed Mehar’s method. However, there exist several fully FLP problems which
can be solved by the proposed Mehar’s method but can not be solved by any of the existing methods [9–13]. Hence, it is
better to use proposed Mehar’s method as compared to the existing methods [9–13] for solving fully FLP problems.
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