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a b s t r a c t

Multiresolution ideas, notably the wavelet transform, have been proved quite useful for

analyzing the information content of facial images. Numerous papers and research

articles have discussed the application of wavelet transform in face recognition.

However, little attention has been paid to the newly developed multiresolution tools

(contourlet, curvelet, etc.) despite their improved directional elements and other

promising abilities compared to traditional wavelet transform. In this article we

introduce the application of digital curvelet transform in conjunction with different

dimensionality reduction tools, looking particularly at the problem of facial feature

extraction from 2D images. The purpose of this paper is exploratory. We do not claim

that the results achieved here are the best possible. Rather, we aim at showing that

curvelets can serve as an effective alternative to wavelets as a feature extraction tool.

This work can be seen as a stepping stone for further research in this direction. Our

methods have been evaluated on well-known databases like ORL, Essex Grimace and

Yale face. Curvelet based results have been compared with that achieved using wavelets

and other existing techniques to show that curvelets indeed has the potential to

supersede wavelet based results.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Face recognition has been studied diligently for more
than 30 years now and has emerged as one of the most
successful applications of image analysis. Compared to
other biometrics (fingerprint or iris recognition), face
recognition might not have a superior level of accuracy,
but working with faces certainly has a number of
advantages. Firstly, the data (facial images) can be
collected using a simple camera (compare the cost and
difficulties of collecting good fingerprints or iris scan); and
secondly, the images can be collected even without the
knowledge of the subject. Clearly, from the security point
ll rights reserved.

, jwu@uwindsor.ca
of view, face recognition is a means of biometric
identification which is hassle-free and inexpensive. The
subject has become a major issue in the past decade—due
to its important real-world applications in areas like video
surveillance, smart cards, database security, telecommu-
nication, digital libraries and medical records [1]. Usually,
the available images are 2D intensity images of human
faces, which are 3D objects. So this problem can also be
seen as a task of identifying 3D objects from their 2D
images.

Feature extraction is a key step prior to face recogni-
tion. Extraction of a representative feature set can greatly
enhance the performance of any face recognition system.
Direct use of pixel values as features is not possible due to
huge dimensionality of the images. Traditionally, Principal
Component Analysis (PCA) is employed to obtain a lower
dimensional representation of the data in standard
eigenface based methods [2]. Though PCA provides
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effective approximation, the method suffers from greater
computational load and poor discriminatory power [3]. In
order to resolve these limitations of PCA, researchers
suggest the use of other dimensionality reduction tools
like Independent Component Analysis (ICA), Linear Dis-
criminant Analysis (LDA), Kernel PCA [4] and Kernel LDA
[5]. ICA is a generalization of PCA and finds not-
necessarily orthogonal basis to represent the data. Based
on the belief that ICA is capable of providing a better
probabilistic model it was used in [6] to extract facial
features and a performance improvement over PCA was
reported. Belhumeur et al. worked with Fisherfaces [7],
which involves Fisher Linear Discriminant (FLD). LDA has
been found to improve the classification accuracy of a
system when multiple images are available per class. LDA
based recognition methods aim at simultaneously max-
imizing between-class scatter and minimizing within-
class scatter. KPCA, which takes into account higher order
statistics in contrast to PCA, has also been successfully
applied in the context of face recognition [8]. More
recently, a faster and efficient technique called Binary
Two-Dimensional PCA (B-2DPCA) has been proposed [9];
this method relies on Two-Dimensional PCA (2DPCA)
based [10] decomposition for fast numerical computa-
tions. The algorithm is particularly suitable for large-scale
and high-resolution image based biometric systems. The
problem of high dimensional feature extraction has been
very well-addressed in [11,12]. Most recently tensor based
approaches [13,14] have been quite popular. Motivated by
the success of 2DLDA [15], General Tensor Discriminant
Analysis (GTDA) has been developed in [13]. This method
uses an alternating projection optimization algorithm,
which, unlike 2DLDA always converges to a solution. In
[14], another new manifold learning method called
Discriminant Locally Linear Embedding (DLLE) has been
presented. In this technique, the intra-class local geo-
metric properties are preserved according to a locally
linear embedding criterion and inter-class separability is
enforced by maximizing margins between point pairs on
different classes [14]. The method has been reported to
achieve significant performance improvement compared
to state-of-the-art gait recognition algorithms.

Another way to handle huge dimensionality in face
recognition problems is to employ dimensionality reduc-
tion tools on some kind of transformation domain. In [16],
the authors argued that, when raw images are subjected to
PCA, the correlation of facial features is not well-reflected
in eigenspace. So, they suggested using Gabor filter to
extract facial features first and then use PCA to classify the
features optimally. It has been claimed that several
problems like, deformation of face images due to in-plane
in-depth rotation, illumination and contrast variation can
be solved by extracting facial features using Gabor filters.
Nowadays, multiresolution analysis is often performed as a
pre-processing step to dimensionality reduction. The most
popular multiresolution analysis tool is the wavelet trans-
form. It has enjoyed a wide-spread popularity in the field of
face recognition [17,18]. In wavelet analysis an image is
usually decomposed at different scales or resolutions using
a wavelet basis vector. Thereafter, the component which
corresponds to the maximum variance is selected for

 
 

 

further operation. This way, the image can be represented
by a small number of wavelet coefficients and the effect of
variable facial appearances (expression variation, illumina-
tion variation, facial detail variation, etc.) on the classifica-
tion systems can also be lessened in turn. Another
approach has been introduced of late by Pang et al. in
[19]. They have used Gabor-based Region Covariance
Matrices (RCM) for face recognition problems. From the
experiments performed on FERET, it has been shown that
the proposed methodology provides significant improve-
ment over the conventional RCM framework.

Over the past two decades, following the success of
wavelets, a series of new multiresolution analysis tools
like, ridgelets [20], contourlets [21], etc. were developed.
‘Curvelet transform’ [22–24], developed by Candes and
Donoho is a recent addition to this list. Compared to
wavelets, curvelets have improved directional elements
and better ability to represent edges and other singula-
rities along curves. Curvelets, being a relatively new
concept has not yet been very popular. So far, its
successful applications have been found mostly in the
fields of image processing, e.g. image denoising [23],
image compression [25], image fusion [26], contrast
enhancement [27], image deconvolution [28], high quality
image restoration [29], astronomical image representation
[30] etc; but not much work has been done to explore the
potential of curvelet transform to solve pattern recogni-
tion problems. In some recent works, Majumdar showed
that curvelets can serve as the basis for pattern recogni-
tion problems like character recognition [31]. Curvelet
based face recognition has been discussed in [32–34]. In
[33], a SVM based face recognition system has been
developed, which uses curvelet coefficients without
employing any dimensionality reduction. In our previous
work [32], curvelet transform has been employed to
extract features from bit quantized facial images, where
we showed that curvelets can indeed supersede the
performance of wavelets. The work presented in [34] is
an extension of [32]. In [34], the authors used the bit-
quantized images to extract curvelet features at five
different resolutions. A total of 15 sets of approximate
coefficients are collected and used to train 15 Support
Vector Machines. The results are fused using majority
voting. However, working with large number of curvelet
features (as done in all previous face recognition
works with curvelets) can be computationally expensive.
So, the natural aim is to reduce the dimension further. In
this article a thorough study of application of digital
curvelet transform in conjunction with dimensionality
reduction tools like PCA and LDA will be presented. The
proposed methods have been evaluated by carrying out
different experiments on three well-known databases: ORL,
Essex Grimace and Yale Face Database. Our prime objective
has been to explore the potential of curvelet transform to
be used as an alternative feature extraction tool.

The rest of the paper is organized as follows: Section 2
discusses the idea of curvelet transform, followed by a
comparative study of curvelets and wavelets in Section 3.
The proposed methods are described in Section 4.
Section 5 contains experimental results and discussion;
Section 6 concludes the article and suggests future work.
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2. Curvelet transform

Curvelet transform was developed by Candes and
Donoho in 1999. Its development was motivated by the
need of image analysis [22]. The transform has improved
directional capability, better ability to represent edges and
other singularities along curves as compared to other
traditional multiscale transforms, e.g. wavelet transform.
In the past few years curvelet construction has been
redesigned in order to make it simpler to understand and
use. This second generation curvelet transform [35],
introduced in 2006 is not only simpler, but is faster and
less redundant compared to its first generation version
[24]. Curvelet transform is multiscale and multidirec-
tional. Curvelets exhibit highly anisotropic shape obeying
parabolic-scaling relationship (they take the shape of
elongated needles at finer scales). In order to implement
curvelet transform, first a 2D FFT of the image is taken.
Then the 2D Fourier frequency plane is divided into
‘parabolic’ wedges. Finally an inverse FFT of each wedge is
taken to find the curvelet coefficients at each scale j and
angle ‘. Fig. 1 (left) shows the division of wedges of the
Fourier frequency plane. The wedges are the result of
partitioning the Fourier plane in radial (concentric circles)
and angular divisions. Concentric circles are responsible
for decomposition of the image in multiple scales (used
for bandpassing the image) and angular divisions corre-
spond to different angles or orientation. Hence, to address
a particular wedge one needs to define the scale and angle
first. In the spatial domain, each wedge corresponds to a
particular curvelet at that given scale and angle. Fig. 1
(right) represents curvelets in spatial Cartesian grid
associated with a given scale and angle [35].

There are two different digital implementations of Fast
Digital Curvelet Transform (FDCT) [35]:

 
 

 

�

Fig
[35
Curvelets via USFFT (Unequally Spaced Fast Fourier
Transform).

�
 Curvelets via Wrapping.

These transforms are linear and take as input a Cartesian
array f[t1,t2], 0pt1, t2on and provide an output of discrete
coefficients. Though both the implementations use same
digital coronization, they differ in the choice of spatial
grid to translate curvelets at each scale and angle. Both the
FDCTs run in O(n2 log n) flops for n by n Cartesian arrays
Scale j
Scale j-1

Parabolic wedge

. 1. Curvelets in Fourier frequency (left) and spatial domain (right)

].
[35]. In case of wrapping a rectangular grid is assumed. All
the experimental work presented in this article use
numerically tight FDCT Wrapping, as this is the fastest
curvelet transform algorithm currently available [35]. The
algorithm has been described below.

Let f̂ ½n1;n2� denote 2D discrete Fourier transform of
f[t1,t2]. Let Uj(o) be a localizing window and ~Uj½n1;n2�

is supported on some rectangle of length L1,j and width
L2,j [35]

Pj ¼ fðn1;n2Þ : n1;0pn1on1;0 þ L1;j;n2;0pn2on2;0 þ L2;jg

(1)

Implementation steps of FDCT via Wrapping [35]:
(1)
 Apply 2D FFT and obtain Fourier samples f̂ ½n1;n2�,
�n=2pn1, n2on=2.
(2)
 For each scale j and angle ‘, form the product
~Uj;‘½n1;n2�f̂ ½n1;n2�.
(3)
 Wrap this product around the origin and obtain

f̂ j;‘½n1;n2� ¼Wð ~Uj;‘ f̂ Þ½n1;n2�, (2)

where the range n1 and n2 is now 0pn1oL1;j and
0pn2oL2;j.
(4)
 Apply the inverse 2D FFT to each f̂ j;‘ , hence collecting
the discrete coefficients.
In first two steps, the Fourier frequency plane of the image
is divided into radial and angular wedges owing to the
parabolic relationship between curvelet’s length and
width, as shown in Fig. 1. Each wedge corresponds to
curvelet coefficients at a particular scale and angle. Step 3
is basically re-indexing the data around the origin. Finally,
using inverse FFT, discrete curvelet coefficients are
collected in the spatial domain. It is not possible to delve
into the mathematical details of curvelet transform within
the scope of this paper; interested reader may refer to the
works of Candes and Donoho [22–24,35].

3. Wavelet vs. curvelet

The sparsity of Fourier series is destroyed due to
discontinuities (Gibbs phenomenon); it requires a large
number of terms to reconstruct a discontinuity in Fourier
series within a good accuracy. Later, wavelets are found to
have the ability to solve the problems of Fourier series, as
they are localized and multiscale. However, though
wavelets do work efficiently in one-dimension, they fail
to represent higher dimensional singularities effectively
due to limited orientation selectivity. Wavelets and
related classical multiresolution ideas exploit a limited
dictionary made up of roughly isotropic elements occur-
ring at all scales and locations [36]. These dictionaries do
not exhibit highly anisotropic elements and there are only
a fixed number of directional elements (standard ortho-
gonal wavelet transforms have wavelets with primarily
vertical, primarily horizontal and primarily diagonal
orientations) independent of scale. Images do not always
exhibit isotropic scaling and thus these limitations of
wavelets call for other kinds of multiscale representation.
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The most interesting fact about curvelets is that it has
been developed specially to represent objects with ‘curve-
punctuated smoothness’ [36] i.e. objects which display
smoothness except for discontinuity along a general
curve; images with edges would be good example of this
kind of objects. Wavelet transform has been profusely
employed to address different problems of pattern
recognition and computer vision because of their cap-
ability of detecting singularities. But, though wavelets are
good at representing point singularities in both 1D and 2D
signals, they fail to detect curved singularities efficiently.
Fig. 2 shows the edge representation capability of wavelet
(left) and curvelet transform (right). For the square shape
of wavelets at each scale, more wavelets are required for
an edge representation than that compared to the number
of required curvelets, which are of elongated needle
shape. One more novelty of curvelet transform is that it
is based on anisotropic scaling principal, whereas wave-
lets rely on isotropic scaling.

Let us consider an image function f, which has a
discontinuity across a curve and is otherwise smooth; if it
is approximated by the best m terms in Fourier expansion,
the squared error is given by [37]

kf � ~f
F

mk
2 / m�1=2; m!þ1

For wavelets,

kf � ~f
W

m k
2 / m�1; m!þ1

For curvelets, we have

kf � ~f
C

mk
2 / logðm3Þm�2; m!þ1

which approaches the ideal reconstruction rate asympto-
tically. The main idea here is that the edge discontinuity is
better approximated by curvelets than wavelets. To
summarize, wavelet transform suffers from the following
limitations:
�
 Edge representation—though wavelets perform better
than FFT, it is not optimal.

�
 Crude directional elements independent of scale.

�
 No highly anisotropic element.

Curvelet transform is capable of solving the above
problems. At any scale j, curvelets provide a sparse
representation O(2j/2) of the images compared to wavelets
O(2j). Now, we will empirically try to show that similar (or
better) accuracy can be achieved using curvelet transform
as the bases of face recognition.
4. Curvelet based face recognition

In the previous section, we have argued theoretically,
that curvelet transform, because of its improved direc-
tional elements and highly anisotropic scaling property
can provide an equally good (or superior) basis for face
recognition compared to wavelets. To validate this
empirically, various experiments have been designed
and performed. Our face recognition system is divided
into two stages: training stage and classification stage.
During training, curvelet transform is applied to decom-
pose the images into curvelet subbands. It has been stated
repeatedly that curvelets are very good at representing
objects with ‘curve-punctuated smoothness’ [36], i.e.
objects which display smoothness except for discontinuity
along a general curve. Facial images with edges are good
examples of this kind of objects. Say, the images are
represented by eight bits, i.e. 256 gray levels. In such an
image two very close regions can have differing pixel
values. Such a gray scale image will then have a lot of
‘‘curved edges’’ (which are typically curved in facial
images)—and consequently the curvelet transform will
capture this crucial edge information. Extracted curvelet
coefficients can then be directly fed to a classifier to
perform the identification task. An image of size, say
64�64, when decomposed using curvelet transform at
scale 3 (coarse, fine, finest) and angle 8 will produce 1
approximate (coarse) subband of size 21�21 and 24
detailed coefficients of slightly larger size. Working with
such large number of feature vectors is extremely
expensive. Hence it is of utmost importance to determine
a representative set of features. Selection of subbands has
been done on the basis of the amount of variance they
account for. We have selected the coarse coefficients, (as
they account for the maximum variance and contain
maximum energy of the image-data) and a set of fine
coefficients with next highest amount of total variance.
Thus selecting the appropriate curveletfaces reduces the
dimension of the original image (represented as a vector)
from 1�4096 to 1�1258. Yet a feature vector of length
1�1258 needs some kind of dimensionality reduction.
Traditional dimensionality reduction methods like PCA/
LDA can be applied on the selected subbands thereafter
and an efficient and representative dataset can be
produced. A simple Nearest Neighbor (NN) classifier is
used to carry out the recognition task. Unless mentioned
otherwise, a scale value of 3 has been used through out
this work, in order to strike a balance between the speed
and performance of the system. It has been observed that
higher scale (4 or 5) has shown only marginal improve-
ment or even no improvement in terms of recognition
accuracy. Fig. 3 shows the curvelet subbands for a sample
face taken from ORL dataset. These curvelet decomposed
images are named ‘CURVELETFACES’. Digital curvelet
transform (scale ¼ 2, angle ¼ 8) is applied on the original
image of size 112�92. This produces 1 approximate
(75�61) and eight detailed curvelet coefficients (four of
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Fig. 3. Curvelet transform of faces: first image in the first row is the original image, second image in the first row is the approximate coefficients and

others are detailed coefficients at eight angles; all the images are resized to same dimension for the purpose of illustration only.
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them are of size 66�123 and rest four are of size
149�54) for eight different angles. Fig. 3 shows these
nine curvelet coefficients. The images though are of
different size, have been resized to same size only for
the sake of neat presentation.
4.1. Recognition using curvelet based PCA

PCA has been successfully applied on wavelet decom-
posed images which resolves the limitations of using PCA
directly [3,38]. Inspired by the success of subband PCA
and superiority of curvelets over wavelets, PCA has been
applied on curvelet decomposed images for dimension-
ality reduction; a representational basis is formed. Curve-
let transform presents the edge information efficiently
and forms a set of distinctive features for the images. In
classification stage the test images are subjected to the
same operations and they are transformed to the same
representational basis. A simple distance based classifier
like NN classifier has been employed. Curvelet parameters
are set to scale ¼ 3 and angle ¼ 8. PCA has been applied
on the selected subbands. This solves the problem of
computational load. With PCA, it is always an issue to
select the optimum number of principal components. This
has been studied by varying the number of eigenvectors
and showing the corresponding variation in recognition
accuracy.
4.2. Recognition using curvelet based LDA

Researchers argue that PCA suffers from poor discri-
minatory power and prefer LDA over PCA. LDA is said to be
able to improve inter-class separability by maximizing
within-class similarity as well as between-class variance.
We have employed LDA in stead of PCA this time. After
decomposing the images using curvelet transform, LDA
has been performed on the resulting approximate curve-
letfaces. A matrix S ¼ S�1

w Sb is derived, where Sw is the
within-class scatter matrix and Sb is the between-class
scatter matrix [39]. Then n numbers of eigenvectors
corresponding to largest n eigenvalues are selected.
During the experiments n has been varied to study the
change in recognition accuracy.
4.3. PCA+LDA framework

LDA, though successfully applied for face recognition
problems, encounters two major difficulties [40]. Firstly,
the size of the training set is often less than the
dimensionality of images. In such cases, the traditional
LDA algorithm fails as the within-class scatter matrix
becomes singular. Secondly, computational difficulty
occurs while working with such high-dimensional im-
age-vectors. In high-dimensional and singular cases, LDA
is often performed on a PCA transformed space. In this
method each image is subjected to curvelet transform in
order to extract the intrinsic features of the facial images.
The selected curvelet subimages are then projected on
eigenspace using PCA. Now on this PCA transformed
space, LDA is performed; where there is no possibility of
the within-scatter matrix to be degenerate. Then the
resultant PCA+LDA features extracted from curvelet
decomposed images form the final feature set for
classification. The test images undergo a similar process
and are converted to the same PCA+LDA representational
basis. NN rule is used for identification.

5. Experimental results

5.1. Datasets

5.1.1. ORL database [41]

This database contains 10 different images of each of
40 distinct subjects taken between April 1992 and April
1994 at Olivetti Research Laboratory, Cambridge, UK. For
some subjects, the images were taken at different times,
varying the lighting, facial expressions (open/closed eyes,
smiling/not smiling) and facial details (glasses/no glasses).
All the images were taken against a dark homogeneous
background with the subjects in an upright, frontal
position (with tolerance for some side movement). The
images are in ‘.pgm’ format and of dimension 92�112
(width�height) 8-bit gray levels (Fig. 4).

5.1.2. Essex Grimace database [42]

A sequence of 20 images each for 18 individuals
consisting of male and female subjects was taken, using
a fixed camera. During the sequence the subjects move
their head and make grimaces which get more extreme
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Fig. 5. Sample images from Essex Grimace.

Fig. 4. Sample images from ORL.

Fig. 6. Sample images from Yale face.
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towards the end of the sequence. There is about 0.5 s
between successive frames in the sequence. Images are
taken against a plain background, with very little variation
in illumination. The images are in ‘.jpg’ format and of size
180�200 (Fig. 5).

5.1.3. Yale face database [43]

The Yale face database contains 165 grayscale images
in GIF format (320�243) of 15 individuals. There are 11
images per subject, one per different facial expression or
configuration: center-light, w/glasses, happy, left-light, w/
no glasses, normal, right-light, sad, sleepy, surprised, and
wink (Fig. 6).

5.2. Implementation and experimental results

To design the experiments, we randomly selected five
images per subject for ORL database, eight images per
subject for Essex Grimace and six images per subject for
Yale face database as prototype and used the rest for
testing. A five-fold cross-validation has been performed in
each case. The color images of Essex Grimace dataset have
been converted to gray-scale images, as color information
does not have much contribution in this edge-based
method. As a preprocessing step, the images have been
reduced to half of their size. ORL images have not been
resized. For curvelet based PCA and PCA+LDA framework,
resized images are decomposed using curvelet transform
at scale ¼ 3 and angle ¼ 8. For extraction of curvelet
discriminant features, scale value is changed to 4, in order
to avoid within-scatter matrix singular cases as men-
tioned in Section 4.3. This produces 33 components,
including 1 approximate and 32 detailed subbands. We
have worked with two subbands only. To further reduce
the dimensionality of feature vectors PCA/LDA/PCA+LDA is
applied on these approximate components. After the
curvelet sub-images are projected to desired feature-
space, a simple distance based (L1 Norm) NN classifier is
employed to perform the identification task. Number of
principal components is varied to display how recognition
rate changes with selection of eigenvectors. The recogni-
tion rates for these three approaches are shown in Figs. 7,
9 and 11. These results have been achieved by averaging
the recognition rates of five different rounds of face
recognition. However, the imaging system is not perfect
and facial images can be noisy. Hence evaluation of our
system under various noise levels. Noise with mean 0 and
variance 0–0.2 has been added to the input images and
recognition error rate has been graphed against noise level
for three subspaces, considering 60 components each
time. Results under noisy condition are shown in Figs. 8,
10 and 12.
5.3. Comparative study

In Section 5.2, different results of curvelet based PCA/
LDA/PCA+LDA techniques have been presented. In order to
establish the reliability of the proposed methods we have
compared them against well-established existing techni-
ques like standard eigenface based methods and wavelet
based methods. For wavelet based schemes, a 3-level
wavelet decomposition using standard ‘Haar’ wavelet (as
it is often used in wavelet based face recognition methods)
was performed. Feature size is 60 for each case; ratio of
training and test images remains same as before. We have
duplicated some recently developed techniques to com-
pare with curvelet based results: wavelet based kernel
Associative Memory (kAM) [44], wavelet based weighted
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Fig. 7. Curvelet based results for ORL.

Fig. 8. System performance under noisy condition (ORL).

Fig. 9. Curvelet based results for Essex Grimace.

Fig. 10. System performance under noisy condition (Essex Grimace).

Fig. 11. Curvelet based results for Yale.

Fig. 12. System performance under noisy condition (Yale).

T. Mandal et al. / Signal Processing 89 (2009) 2345–2353 2351

 
 

 

modular PCA [45] and discriminant waveletfaces using
Nearest Feature Line (NFL) classifier [46]. Recognition
rates reported in Table 1 are achieved after a five-fold
cross-validation.
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Table 1
Comparative study.

Method Recognition accuracy (%)

ORL Essex Yale

Standard eigenface [2] 92.2 69.4 76.0

Waveletface [3] 92.5 92.5 83.3

Curveletface 94.5 97.2 82.6

Waveletface+PCA [3] 94.5 98.5 84.0

Waveletface+LDA [46] 94.7 100 84.6

Waveletface+weighted modular PCA [45] 95.0 98.4 83.6

Waveletface+LDA+NFL [46] 95.2 100 83.5

Curveletface+LDA 95.6 100 83.5

Waveletface+kAM [44] 96.6 100 84.0

Curveletface+PCA 96.6 100 83.9

Curveletface+PCA+LDA 97.7 100 92.0

T. Mandal et al. / Signal Processing 89 (2009) 2345–23532352

 
 

 

5.4. Discussion

Various results presented in Sections 5.2 and 5.3
demonstrate that high recognition accuracy can be
achieved using curvelet subspaces for face recognition. It
seems that for Essex Grimace database (Fig. 9) recognition
rate is almost perfect for all curvelet based methods,
indicating the robustness of curvelet based approaches
against extreme expression variation. Our techniques have
been found to be robust against significant variation in
illumination and facial details (present in ORL and Yale) as
well. For all the databases, most prominently for Yale
database (Fig. 11), PCA-LDA framework shows significant
performance improvement over the PCA based and LDA
based schemes. Though, LDA is usually expected to do
better than PCA, it is not reflected in our experimental
study as we have worked with small databases. LDA is
particularly suited for high-dimensional data and can be
outperformed by PCA otherwise. When compared to
standard techniques like eigenface and waveletface based
methods, curvelets show promise. Even simple curvelet
features alone can outperform standard eigenface and
waveletface. Curveletface and PCA–LDA framework works
the best and shows 5.5% and 5.2% gain in accuracy over
eigenface and waveletface for ORL. In [33] an average
recognition accuracy of 92% for ORL database is reported.
Using training and test sets of same size our curvelet-PCA
framework shows an improvement of about 4.6% and
PCA–LDA scheme shows 5.7% performance improvement
over the proposed method in [33]. In case of Yale dataset,
results of curvelet subspaces and wavelet subspaces are
comparable, though curvelet based PCA–LDA scheme is
able to achieve almost 8% higher matching rate. In Section
3 we argued that since curvelets are capable of capturing
the crucial edge information, they can perform compe-
tently as the bases of face recognition. By comparing the
results of curvelets with wavelets, its nearest cousin, we
can definitely prove our point—curvelets are an efficient
or even better alternative to wavelets. However, the trade
off is, wavelet features are faster to compute, while
curvelets can provide high accuracy. It has been found
empirically, that in a standard personal computer with
2 GHz AMD processor and 1 GB RAM computation of
wavelet features is almost 1.5 times faster than that of
curvelet’s using same image size and a decomposition
level of 3. Increasing curvelet’s scale or angle parameters
can improve the accuracy, but has the overhead of extra
computation time.

6. Conclusion

The main contribution of this paper is the identifica-
tion of three new feature spaces to address the problem of
human face recognition from still images. These feature
spaces are based on the PCA/LDA/PCA+LDA spaces of the
features extracted by a new multiresolution analysis tool
called digital curvelet transform. This is the first time
curvelet subspaces are being explored. It is unlikely that
the best possible results can be produced in this initial
attempt. Rather, our work can be considered as a stepping
stone for future works in this direction. Future work is
suggested towards developing a complete curvelet based
face recognition system and working on newly developed
dimensionality reduction methods like 2DPCA, B-2DPCA.
Performance of employing different classification meth-
ods can also be studied.
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