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A new finite time position synchronised control approach for parallel manipulators is proposed using a fast
terminal sliding mode (TSM). By developing a novel synchronisation and coupling position error, a non-
singular fast TSM is proposed in coupling position error space. The proposed controller can guarantee position
error and synchronisation error converge to zero in a finite time simultaneously without requiring the explicit
using system dynamic model. The corresponding stability analysis is presented to lay a foundation for
theoretical understanding to the underlying issues as well as safe operation for real systems. An illustrative
example is demonstrated in support of the effectiveness of the proposed approach.
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1. Introduction

Parallel manipulators have been widely studied due to
their higher accuracy, higher stiffness and higher load-
carrying capacity in comparison with serial manip-
ulator. By virtue of their merits, parallel manipulators
can be used as actuators for high-precision operation
of large payload, such as flight simulator, astronomical
telescopes and precision machining (Dasgupta and
Mruthyunjaya 2000; Merlet 2000). In spite of their
smart configurations, trajectory tracking control algo-
rithm is essential and indispensable for achieving high-
precision operation in industrial applications, because
the control algorithm directly affects the efficiency and
success of manipulator operations. In the system and
control community, the parallel manipulator is a
typical multi-input multi-output (MIMO) non-linear
system, which can serve as a test bed for high-
performance controller (Kim, Cho and Lee 2005). So
far, much attention has been attracted in research and
application of trajectory tracking control of parallel
manipulators. Generally, the tracking control of par-
allel manipulators can be classified as two kinds of
approaches (Su, Sun, Lu and Mills 2006): model-free
control approaches (Chiacchio, Pierrot, Sciavicco and
Siciliano 1993; Amirat, Francois, Pontnau and
Dafaoui 1996; Ghorbel, Chetelat, Gunawardana
and Longchamp 2000) and mode-based control

approaches (Lin and McInroy 2003; Kim et al. 2005;

Zhu, Tao, Yao and Cao 2008). The position of

synchronised control issue is not addressed in these

traditional control approaches, that is, these

control schemes only concern the asymptotical con-

vergence of position tracking errors but are not

concerned with how these errors converge to equilib-

rium point.
Considering the closed-loop kinematic chain mech-

anism that comprises parallel manipulators, all actu-

ated joints should be controlled to move in a

synchronous manner. Poor synchronisation of these

actuated joints will result in diminished tracking

accuracy or even damage the manipulator. To improve

the trajectory tracking accuracy of parallel manipula-

tors, the so-called position of synchronised control

approach has been developed, such as, model-free

approach (Su et al. 2006; Sun, Lu, Mills and Wang

2006) and model-based approach (Lu 2005; Lu, Mills

and Sun 2006). By explicitly using synchronisation

error and coupling error technique (Sun 2003;

Rodriguez-Angeles and Nijmeijer 2004), the traditional

synchronised control approach can stabilise the track-

ing error of each actuated joint to equilibrium point

asymptotically in a synchronous manner. From an

experimental comparison study of these synchronised

control approaches, (Lu, Mills and Sun 2007)
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demonstrate that model-based synchronised control
can achieve better performance than mode-free ones
but the structure of model-based synchronised control-
ler is much more complex than the model-free one due
to the complexity of the parallel manipulator dynamic
model. It is not an easy job to estimate the dynamic
model of parallel manipulator in practice and the
complexity controller structure will lead extensive on-
line calculations. Though the model-free synchronised
controller is simple and can be implemented easily, the
operation precision needs to be further improved. It
should be noticed that all of the aforementioned control
approaches proposed for parallel manipulator can only
achieve asymptotic stability, which requires infinite
time to converge to equilibrium point. To get fast
convergence rate, control gains need to be greatly
increased in asymptotic stability controller design. The
high gain request is undesirable and cannot be
implemented in practice. Consequently, it is important
to develop a fast convergent synchronised control
approach accommodating both theory and applications
for parallel manipulator tracking control.

Terminal sliding mode control (TSMC) is a finite
time stability control approach, which offers some
superior properties such as finite time convergence,
and strong robustness to systems uncertainties (Feng,
Yu and Man 2002; Hong, Xu and Huang 2002). This
control approach is particularly useful for high-
precision control as it speeds up the converge rate
near an equilibrium point. Some achievements have
been acquired for serial manipulators tracking control
(Man and Yu 1997; Yu 1998; Barambones and
Etxebarria 2002; Feng et al. 2002; Yu, Yu,
Shirinzadeh and Man 2005). However, most of the
existing TSMC are mode-based without addressing the
position synchronisation issue. Though singularity is
addressed explicitly by literatures (Feng et al. 2002; Yu
et al. 2005), these TSMC cannot deliver fast conver-
gence as system states are far away from the equilib-
rium point on the terminal sliding mode (TSM).
Yu and Man (2002) present a fast TSMC scheme for
single-input single-output (SISO) system, which can
achieve fast and finite time convergence both at
distance from and at a close range of the equilibrium.
This approach cannot be directly used for a parallel
manipulator due to its MIMO dynamical nature. Note
that the aforementioned TSMC are all model-based
approaches, which need intensive online computation.
Recently, a new fast non-singularity TSMC (Zhao, Li
and Gao 2008) has been developed for serial manip-
ulator, which does not require the explicit use of robot
dynamic model. This new TSMC is simple and
applicable. However, position synchronisation does
not accommodate in this control approach. It must be
extended for parallel position synchronised control.

In this study, a new finite time position synchro-
nised control is proposed for parallel manipulator with
fast TSMC. In light of the synchronisation principle
for mechanical systems (Sun 2003; Sun, Shao and Feng
2007), a novel position coupling error is proposed for
parallel manipulator synchronised control. By incor-
porating this novel coupling error into the new fast
TSMC approach (Zhao et al. 2008), a new finite time
position synchronised control is developed for a
parallel manipulator. The proposed approach can
guarantee that the position tracking error and syn-
chronisation error converge to zero in a finite time,
namely, this approach can regulate position tracking
while coordinating the actuated joints of parallel
manipulator to move in a synchronous manner. It
should be noted that the proposed approach is
different from the existing synchronised position con-
trol and traditional TSMC. In comparison with
existing synchronised position control for parallel
manipulator, by defining a new synchronisation error
and coupling position error, the proposed approach
can achieve finite time stability, which is desired by
industrial applications, while all of the existing
synchronised position control (Lu 2005; Lu et al.
2006; Su et al. 2006; Sun et al. 2006) can only achieve
asymptotical stability. In comparison with traditional
TSMC, the proposed approach does not require
explicit use of a dynamic model in controller design
and addresses position synchronisation and fast con-
vergence on TSM explicitly for parallel manipulator—
while the traditional TSMC (Man and Yu 1997; Yu
1998; Barambones and Etxebarria 2002; Feng et al.
2002; Yu et al. 2005) is a model-based approach
developed for a serial manipulator, it does not address
the position synchronisation and fast convergence on
TSM. The proposed approach has higher precision due
to the position synchronisation, and TSM techniques
are explicitly employed in the controller design.
It should be noticed that the control structure of the
proposed approach is much simpler than the model-
based synchronised control approach, which makes the
propose approach implement easily in practice.

In summary, this study takes into the following two
considerations. The first is, for applications, the
proposed approach may offer an alternative, but
more effective position synchronised control for par-
allel manipulator. The second is, for theory, TSMC
and synchronised control have been important and
challenging topics in theoretical studying. Recently,
TSMC (Yu 1998; Barambones and Etxebarria 2002;
Feng et al. 2002; Yu et al. 2005;) and mechanical
synchronised control (Blekhman, Fradkov, Nijmeijer
and Pogromsky 1997; Huijberts, Nijmeijer and
Willems 2000; Sun 2003) have been extensively studied.
Hopefully, to establish a basis for further development,
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the study can provide a new insight and application
incentive in aspect of the theoretical development.

The rest of this article is organised as follows.
In Section 2, the problem formulation is given.
In Section 3, the main results of this article are
presented. The finite time position synchronised con-
troller is developed for parallel manipulators and the
corresponding stability is also presented. In Section 4,
an illustrative example is described to initially validate
the proposed approach. Finally, in Section 5, some
concluding remarks are given.

2. Problem formulation

In this section, the finite time position synchronised
control problem will be formulated. It includes a
dynamic model of parallel manipulator, the definition
of synchronisation error, new coupling position error
and non-singular TSM.

2.1. Dynamic model of parallel manipulator

Figure 1 illustrates a general parallel manipulator. The
manipulator has a moving platform, a base platform
and six chains. Each chain is composed of a prismatic
joint and two spherical joints with only the prismatic
joint actuated (the chain is also called leg in this
article). This manipulator is categorised as 6-SPS type,
where S and P represent prismatic and spherical joints,
respectively. The 6-SPS presents the general configu-
ration of parallel manipulators. The controller devel-
oped for it can be easily applied to other types of
parallel manipulator.

As shown in Figure 1, the inertial frame O�XYZ is
fixed at the base platform with its origin at the geometry
centre of the base platform, the body-fixed frame
(moving frame) P� xyz is attached to the mass origin
of the moving platform. The 6 degrees of freedom
(6DOF) are translations along the X, Y, Z axes and
the rotations about the axis O� X, O� Y, O� Z.

The work space coordinates of the mass centre of
moving platform can be written as

P ¼ X Y Z � � �
� �T

ð1Þ

where X, Y, Z represent the translations and �, �, �
represent the rotations. q ¼ q1, . . . , qn½ �

T is length of
legs, which represents generalised coordinates. The
relationship between P and q is

_P tð Þ ¼ J tð Þð Þ
�1 _q tð Þ ð2Þ

where J tð Þ is a Jacobian matrix.
By using the natural orthogonal complement

method, the dynamic model of parallel manipulator
can be derived in joint space (Lu et al. 2006; Sun et al.
2006):

M qð Þ €qþ C q, _qð Þ _qþ G qð Þ ¼ � ð3Þ

where q 2 R
n�1 is the generalised coordinate,

M qð Þ 2 R
n�n is the inertia matrix, C q, _qð Þ 2 R

n�n is
the Coriolis and centrifugal force coefficient matrix,
G qð Þ 2 R

n�1 is the gravity force vector, � 2 R
n�1 is the

actuating force vector. This dynamic model has the
following properties that will be used in controller
design (Lu et al. 2006; Su et al. 2006; Sun et al. 2006):

(P1) The inertia matrix MðqÞ is a symmetric and
positive definite matrix and satisfies mI �M � �mI for
some constants m, �m4 0, where I 2 R

n�n is an identity
matrix.
(P2) 1=2 _M qð Þ � C q, _qð Þ 2 R

n�n is always skew sym-
metric matrix for all t � 0.

The technical purpose of this study is to design a
finite time position synchronised controller with TSM
without using a dynamic model explicitly. By incorpor-
ating synchronisation error and coupling position error
into the TSMC, the proposed approach can guarantee
position error and the synchronisation error converges
to zero in a finite time simultaneously. To achieve this
purpose, synchronisation error, coupling position error
and fast TSM will be developed as follows.

2.2. Synchronisation error and coupling
position error

To further improve position tracking accuracy of
parallel manipulator, a special kinematic relationship
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Figure 1. Coordinates of 6-SPS parallel manipulator.
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is maintained among their closed-loop chains. It also

means that the motion of actuated joints needs to be

coordinated in tracking operation. The key to coordi-

nate actuated joints is position synchronisation.

According to the particular problem, synchronisation

of physical systems can be illustrated by a synchronisa-

tion function (Blekhman et al. 1997; Huijberts et al.

2000). Suppose that the actuated joints are subject to

the following synchronisation function (Sun et al.

2006).

f q1 tð Þ, q2 tð Þ, . . . , qn tð Þð Þ : c1 tð Þq1 tð Þ

¼ c2 tð Þq2 tð Þ ¼ � � � ¼ cn tð Þqn tð Þ
ð4Þ

where ciðtÞ denotes coupling coefficient of the i-th

actuated joint. This synchronisation function repre-

sents a new task requirement in kinematics. Since

Equation (4) also holds for all desired generalised

coordinates qdi ðtÞ, i ¼ 1, . . . , n, that is

f qd1 tð Þ, qd2 tð Þ, . . . , qdn tð Þ
� �

: c1 tð Þqd1 tð Þ

¼ c2 tð Þqd2 tð Þ ¼ � � � ¼ cn tð Þqdn tð Þ
ð5Þ

According to Equations (4) and (5), the following

synchronisation goal is defined

c1 tð Þe1 tð Þ ¼ c2 tð Þe2 tð Þ ¼ � � � ¼ cn tð Þen tð Þ ð6Þ

where eiðtÞ ¼ qiðtÞ � qdi ðtÞ is the position error of i-th

actuated joint.
This synchronisation goal means that in controller

design it addresses not only the convergence of

position errors eiðtÞ but also how these errors converge

to zero. The kinematic relationship among actuated

joints defined by (6) must be held. Coupling coefficient

ciðtÞ is determined in terms of kinematic characteristic

of parallel manipulators, which considers the kine-

matic relationship among actuated joints.
The synchronisation error can be defined from the

results of Su et al. (2006): when the ratio of the actual

coordinate of each actuated joint to its desired value is

equal to those of all other actuated joints, the parallel

manipulator will move in a synchronous manner and

the desired pose of the moving platform is maintained.

Then, ciðtÞ ¼
1

qd
i
ðtÞ

i ¼ 1, . . . , n, expression (6) can be

written as

e1 tð Þ

qd1 tð Þ
¼

e2 tð Þ

qd2 tð Þ
¼ � � � ¼

en tð Þ

qdn tð Þ
ð7Þ

It is obvious that ciðtÞ ! 1 as qdi ðtÞ ! 0, ciðtÞ will

be singularity at this time. The singularity will deteri-

orate control performance. It is undesired in controller

design. If these points, qdi ¼ 0, can be avoided in joint

position trajectory plan, then singularity of ciðtÞ can be

avoided.

It is convenient and convincing that the synchroni-

sation sub-goal can be divided into n sub-

goals, such as ei�1 tð Þ

qd
i�1

tð Þ
¼

ei tð Þ

qd
i
tð Þ
¼

eiþ1 tð Þ

qd
iþ1

tð Þ
, with the boundary

condition that when i ¼ 1, i� 1 ¼ n and when
i ¼ n, iþ 1 ¼ 1. Then, the position synchronisation

error can be defined as

"1 tð Þ ¼ 2
e1 tð Þ

qd1 tð Þ
�

e2 tð Þ

qd2 tð Þ
�

e6 tð Þ

qd6 tð Þ

"2 tð Þ ¼ 2
e2 tð Þ

qd2 tð Þ
�

e1 tð Þ

qd1 tð Þ
�

e3 tð Þ

qd3 tð Þ

..

.

"6 tð Þ ¼ 2
e6 tð Þ

qd6 tð Þ
�

e5 tð Þ

qd5 tð Þ
�

e1 tð Þ

qd1 tð Þ

8>>>>>>>>>>><
>>>>>>>>>>>:

ð8Þ

where "i denotes synchronisation error of i-th actuated

joint. Obviously, if the synchronisation error "i ¼ 0

for all i ¼ 1, . . . , n the synchronisation goal (7) can
be achieved automatically. Rewrite (8) in matrix

format as

"¼

21

qd1 tð Þ
�

1

qd2 tð Þ
0 � � � �

1

qd6 tð Þ

�
1

qd1 tð Þ

2

qd2 tð Þ
�

1

qd3 tð Þ
� � � 0

..

. . .
. . .

. . .
. ..

.

0 � � � �
1

qd4 tð Þ

2

qd5 tð Þ
�

1

qd6 tð Þ

�
1

qd1 tð Þ
0 � � � �

1

qd5 tð Þ

2

qd6 tð Þ

2
6666666666666664

3
7777777777777775

e1 tð Þ

e2 tð Þ

..

.

e5 tð Þ

e6 tð Þ

2
66666664

3
77777775

"¼Te ð9Þ

where " ¼ ½"1ðtÞ, . . . , "nðtÞ�
T, e ¼ ½e1ðtÞ, . . . , enðtÞ�

T and

T 2 R
n�n is synchronisation transformation matrix.

If the appropriate desired trajectory qdi ðtÞ is

selected, it can guarantee that qdi ðtÞ 6¼ 0, that is,

ci ¼ 1=qdi is bounded. Then, the synchronisation error

will be non-singular always.

Remark 1: The synchronisation error proposed by

this article (9) is different from the existing synchro-

nisation error developed for parallel manipulators.

In Su et al. (2006), it addresses the set-point tracking
issue, the coupling coefficient 1=qdi is a constant, while

the proposed approach addresses trajectory tracking,

the coupling coefficient 1=qdi ðtÞ is time varying. In Sun

et al. (2006), the synchronisation error only addresses

the kinematic relationship of every two neighbouring
actuated joints, while the proposed synchronisation

addresses the kinematic relationship between each

actuated joint and its two adjacent actuated joints.

Then, the proposed synchronisation error is more
convincing than Sun et al. (2006). In Lu et al. (2006),
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due to the forward Jacobian being employed in its
definition, the synchronisation errors are model based
and very complex, while the proposed synchronisation
error is model free and convenient for implementation.
It is known that the model-based approach will lead to
heavy online computation. In summary, the proposed
synchronisation error is convenient and convincing for
industrial application.

To design a controller that guarantees finite time
convergence of both position error e and synchroni-
sation error ", the following coupling position error
is defined

E ¼ eþ �" ð10Þ

where E 2 R
n is the coupling position error, and

� 2 R
n�n is a diagonal positive definite control gain

matrix. The higher gain �, the more enhanced the
synchronisation control will be (Sun et al. 2007).
Therefore, it should take balance in selection of �.
Substituting (9) into (10), yields

E ¼ Iþ �Tð Þe ð11Þ

where I 2 R
n�n is a identity matrix. Through selecting

the matrix � and planning trajectory appropriately, one
can guarantee the matrix ðIþ �T Þ to be non-singular-
ity. It is obvious that E ¼ 0 implies e ¼ 0 and " ¼ 0.

Remark 2: It should be noticed that the proposed
coupling position error is different from existing ones.
In Sun et al. (2006), the position error and synchronisa-
tion error are not linearly coupled in coupling position
error for the use of integration of synchronisation errorR
" dt. As a result, coupling position error convergence

to zero does not necessarily lead to convergence to zero
of position error and synchronisation error. Then it
cannot be employed in developing TSM-based position
synchronised controller for parallel manipulator. The
proposed coupling position error can guarantee both
position error and synchronisation error to converge to
zero at same time, which is appropriate for a TSM-
based position synchronised controller. In Lu (2005)
and Lu et al. (2006) coupling position error is model
based, which will result in intensive online computa-
tional work. The proposed coupling position error is
model free and simple for applications. In summary, the
proposed coupling position error is linear composition
of position error and synchronisation error, it can make
position error and synchronisation error converge to
zero simultaneously. In the following context, it can be
seen that this new coupling position is very useful for
design of finite time position synchronised controller
with TSM.

To design a finite time synchronised controller with
TSM, it is important to define TSM in coupling

position error space. The following part of this section
will address this issue.

2.3. Fast non-singular TSM and control objective

For simplicity but not losing generality, the following
notions are introduced (Haimo 1986)

sig y�ð Þ�¼ y�1
�� ���sign y�1

� �
� � � y�n
�� ���sign y�n

� �� �T
where y 2 R

n is a column vector, � is a real number,
sign �ð Þ is signum function.

To avoid singularity, the following definitions of
Er ¼ ½Er1, . . . ,Ern�

T are developed

Eri ¼
� Eij j

��1 _Ei Ei 6¼ 0

0 Ei ¼ 0

(
ð12Þ

where � ¼ p1=p2, p1, p2 are positive odd numbers and
05 p1 5 p2 5 2p1, i ¼ 1, . . . , n.

Define command vectors _r 2 R
n and €r 2 R

n as the
following

_r ¼ _qd � Iþ �Tð Þ
�1 � _Teþ�1Eþ�2sig Eð Þ�
� �

(
€r ¼ €qd � d Iþ�Tð Þ

�1

dt � _Teþ�1Eþ�2sig Eð Þ�
� �

� Iþ �Tð Þ
�1 � €T _eþ�1

_Eþ�2Er

� �
)

8>><
>>:

ð13Þ

where �1 2 R
6�6, �2 2 R

6�6 are positive diagonal
control gain matrices.

In terms of expression (13), fast non-singular TSM
is defined as

s ¼ _q� _r

_s ¼ €q� €r

�
ð14Þ

If system states reach the fast TSM, that is, s ¼ 0,
according to (14), the following equation holds.

_eþ Iþ �Tð Þ
�1 � _Teþ�1Eþ�2sig Eð Þ�
� �

¼ 0 ð15Þ

Since the matrix ðIþ �T Þ is non-singular, left
multiplied the matrix ðIþ �T Þ, expression (15) can be
written as

_Eþ�1Eþ�2sig Eð Þ�¼ 0 ð16Þ

Considering i-th element of expression (16)

_Ei þ �
1
iiEi þ �

2
ii Eij j

�sign Eið Þ ¼ 0 ð17Þ

where �1ii 4 0 and �2ii 4 0 are the ii-th term of matrix �1

and �2, respectively, i ¼ 1, . . . , n.
If the initial value of Ei at time t ¼ 0 is Ei 0ð Þ 6¼ 0,

relaxation time tj for the solution of system (17) is
given as (Yu et al. 2005)

ti ¼
1

�1ii 1� �ð Þ
ln
�1ii Ei 0ð Þ
�� ��1��þ�2ii

�2ii
ð18Þ
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Remark 3: Expression (18) means that the coupling

position error converges to zero in a finite time along

the fast TSM. According to definition of coupling

position error (11), as Ei ¼ 0, "i ¼ 0 and ei ¼ 0 at the

same time. Note that the traditional TSM only includes

position error (Yu et al. 2005), while the proposed

TSM (14) considers convergence of both position error

and synchronisation error.

Remark 4: �1E guarantees system states to achieve

fast convergence along TSM as they are far away from

equilibrium point. �2sigðEÞ
� guarantees system states

to achieve fast convergence along TSM as they near the

equilibrium point. Traditional TSMC for robot manip-

ulators have not addressed the fast convergence along

TSM when system states are far away from equilibrium

(Man and Yu 1997). It should be noticed that Feng

et al. (2002) has developed a novel non-singular TSM

but this approach cannot achieve fast convergence of

system states along TSM.

Remark 5: Due to 1=25�5 1, �� 15 0. Before the

errors dynamics reach the TSM, the cross-coupling

error Ei may be zero (Ei ¼ 0 and _Ei 6¼ 0) at some

points, and therefore Eri in expression (12) may tend to

infinity at these points. To guarantee the bounded

property, Eri is defined as zero at these points. After

the error dynamics reach the TSM in expression (16),

Eri can be written as (Man and Yu 1997)

Eri ¼ �� �
1
ii Eij j

�sign Eið Þ þ �
2
ii Eij j

2��1sign Eið Þ
� �

Since 1=25 �5 1, Eri is bounded in coupling position

error space.

Remark 6: With the specified Er in (12) the singularity

problem can be avoided in the control law. It should be

noticed that it is different from conventional TSMC

approach. Control law u0 of conventional TSMC

approach (Man and Yu 1997) is set to be zero as

arbitrary position error ei tð Þ ¼ 0, i ¼ 1, . . . , n. It can be

seen in the next section that the control law of this

article needs not to be zero at these points.

Substituting (13) and (14) into dynamic equation

(3), yields

M qð Þ_sþC q, _qð Þs¼�M qð Þ€r�C q, _qð Þ_r�G qð Þþ � ð19Þ

Several technical assumptions are employed for

finite time position synchronised controller design.

(A1) The desired joint position trajectory qd and its

time derivatives _qd and €qd are bounded signals. qdi 6¼ 0,

ði ¼ 1, . . . , nÞ all the time.
(A2) jjMðqÞjj, jjCðq, _qÞjj and jjGðqÞjj are bounded if

q and _q are bounded (Sun et al. 2006).
(A3) The matrix ðIþ �T Þ is non-singular.

Remark 7: In this article, �k k denotes L2 norm for
vector and induced norm for matrix, respectively.
�max �ð Þ/�min �ð Þ represents maximum/minimum eigenva-
lue of the matrix.

Remark 8: Assumption (A2) seems to be restrictive.
If the actuated joints position q and velocity _q are large
or cannot be bounded, it means that q and _q cannot
converge to their desired values qd and _qd. This also
means that the equilibrium of the closed-loop system is
unstable and the controller is not designed well. If the
controller is designed appropriately, q and _q will be
bounded. Later, in Section 4, simulation results will
show that assumption (A2) is reasonable.

Remark 9: If the control gain matrix � and the
desired trajectory qd are designed appropriately one
can guarantee the matrix ðIþ �T Þ to be non-singular
always.

The control objective of this article can be
summarised as: under assumption (A1)–(A3), design
a controller in coupling position error space to
guarantee system states to reach fast TSM (14) in a
finite time. According to the definition of fast TSM,
the coupling position error will converge to equilib-
rium point along fast TSM in a finite time (18) with
fast convergence rate. In light of the definition of
coupling position error (10), both position error (6)
and synchronisation error (8) will converge to zero in a
finite time simultaneously.

3. Finite time position synchronised controller design

and stability analysis

To make coupling position error converge to equilib-
rium point in a finite time, the following control law is
developed.

� ¼ �K1sig sð Þ��K2sþ KM €rþ KC _rþ KG

� sign sð Þ DM €rk k þ DC _rk k þ DG
� �

ð20Þ

where K1,K2 2 R
n�n are positive definite diagonal

feedback control gain matrices, KM,KC 2 R
n�n,

KG 2 Rn are positive definite diagonal feedforward
control gain matrices and vector, respectively, DM, DC

and DG are positive real numbers, sign sð Þ ¼
½signðs1Þ, . . . , signðsnÞ�

T.

Remark 10: �K1sig sð Þ��K2s denotes fast TSM-type
reaching law, which can make system states reach the
TSM with fast rate in a finite time. By using this
technique, the chattering can also be avoided in the
operation (Yu et al. 2005).

Remark 11: KM €rþ KC _rþ KG is feedforward part,
which is used to compensate for the effect caused by
�MðqÞ€r� Cðq, _qÞ_r� GðqÞ in dynamic equation (19).
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Remark 12: �sign sð ÞðDM €rk k þ DC _rk k þ DG
Þ is satura-

tion control used to compensate for non-linear
effect caused by the errors between the feedforward
control gains and the modelling parameters, which was
used in Utkin (1977) and Slotine and Sastry (1983)
with stability analysis.

Remark 13: The proposed control approach (20)
can achieve finite time stability in coupling position
error space, while the existing parallel manipulator
synchronised control approach (Lu 2005; Lu et al.
2006; Su et al. 2006; Sun et al. 2006) only can achieve
asymptotic stability. The high gains are required in
asymptotic stability control approach, which cannot be
implemented in practice. It is obvious that the
proposed controller does not explicitly use dynamic
model parameters, while the existing TSMC
approaches are all model-based without addressing
the position synchronisation issue. In a word, the
proposed control approach is simple and applicable,
which can guarantee that position error and synchro-
nisation error converge to zero in a finite time
simultaneously.

A control gain tuning strategy is proposed as
follows: first, select DM

¼ 0, DC
¼ 0 and DG

¼ 0, tune
the control gains K1, K2, K

M, KC and KG using a trial-
and-error method. The controller at this time is a
normal feedforward/feedback control. Second, gradu-
ally increase DM, DC and DG from zero to introduce the
saturation control. Finally, the previous tuned gains
may need to be changed slightly, utilising trial-
and-error method.

For stability analysis, several lemmas and defini-
tions are presented in appendices A and B. In light of
these lemmas and definitions, the following theorem is
stated, which is the main result of this article.

Theorem 1: Under assumptions (A1)–(A3), consider
dynamic equation (19) of parallel manipulators subject
to control law (20). If DM

� jjKM �MðqÞjj,
DC
� jjKC � Cðq, _qÞjj, DG

� jjKG � GðqÞjj, both of
position error e and synchronisation error " converge
to zero in a finite time at the same time.

Proof: Consider the following Lyapunov function

V ¼ 1
2 s

TM qð Þs ð21Þ

Differentiating V with respect to time, yields

_V ¼ sTM qð Þ_sþ 1
2 s

T _M qð Þs ð22Þ

Considering the closed-loop dynamic Equations
(19) and (22) can be written as

_V ¼ sT 1
2

_M qð Þ � C q, _qð Þ
� �

sþ sT�

� sTM qð Þ€r� sTC q, _qð Þ_r� sTG qð Þ ð23Þ

Applying property (P2), yields

_V ¼ sT� � sTM qð Þ€r� sTC q, _qð Þ_r� sTG qð Þ ð24Þ

Substituting control law (20) into Equation (24),

it can be given

_V ¼ �sTK1sig sð Þ��sTK2sþ sTKM €rþ sTK C _rþ sTK G

� sTsign sð Þ DM €rk k þ DC _rk k þ DG
� �

� sTM qð Þ€r� sTC q, _qð Þ_r� sTG qð Þ ð25Þ

Expression (25) also can be written as

_V ¼ �sTK1sig sð Þ��sTK2sþ sT KM �M qð Þ
� �

€r

þ sT KC � C q, _qð Þ
� �

_rþ sT KG � G qð Þ
� �

� sj j DM €rk k þ DC _rk k þ DG
� �

ð26Þ

In terms of Lemma 2 (Appendix A), sk k � sj j,

it yields

_V � �sTK1sig sð Þ��sTK2sþ sT
�� �� KM �M qð Þ

�� �� €rk k

þ sT
�� �� KC � C q, _qð Þ

�� �� _rk k þ sT
�� �� KG � G qð Þ

�� ��
� sk k DH €rk k þ DC _rk k þ DG

� �
ð27Þ

Inequality (27) can be written as

_V �� sTK1sig sð Þ��sTK2s� sk k €rk k DM
� KM �M qð Þ
�� ��� �

� sk k _rk k DC
� KC � C q, _qð Þ
�� ��� �

� sk k DG
� KC � G qð Þ
�� ��� �

ð28Þ

If control gains DM, DC, DG are selected appropri-

ately to make the conditions DM
�
��KM �MðqÞ

��,
DC
�
��KC � Cðq, _qÞ

��, DG
�
��KG � GðqÞ

�� hold, it

yields the following inequality

_V � �sTK1sig sð Þ��sTK2s ð29Þ

Since K2 is a positive definite matrix, sTK2s � 0.

The following inequality holds

_V � �sTK1sig sð Þ�¼ �
Xn
i¼1

ki sij j
1þ�

ð30Þ

Since

X6
i¼1

ki sij j
1þ� � kmin

X6
i¼1

sij j
1þ�

� kmin
2

�m

	 
1þ�=2 X6
i¼1

�m

2
s2i

 !1þ�=2

� aV �,

where a ¼ kminð2= �mÞ1þ�=2 4 0, 05 � ¼ 1þ �=25 1.

The following inequality holds

_V � �aV � ð31Þ

Since V is clearly a positive definite function and
_V is negative semi-definite, the closed-loop systems (19)
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is Lyapunov stable. Moreover, in light of results on
differential inequalities (Definition 1, Lemmas 3 and 4,
see Appendix B), s ¼ 0 in a finite time ~t ¼
V1��ðt0Þ=kð1� �Þ. This means that fast TSM is reached
in a finite time. According to (18), Ei converges to zero
along the fast TSM in a finite time ti ¼ 1=�1ii�
ð1� �Þ lnð�1ii Eið0Þ

�� ��1��þ�2ii=�2iiÞ. From ~t and ti, it follows
that Ei ¼ 0 in a finite time t � tTi with

tTi ¼ ~tþ ti ð32Þ

In terms of the definition of coupling position
error E, both the position error ei and the synchronisa-
tion error "i converge to zero in a finite time t � tTi
simultaneously. œ

Remark 14: Note that DM
�
��KM �MðqÞ

��,
DC
� kKC � Cðq, _qÞk, DG

�
��KG � GðqÞ

�� are required
to be held to guarantee inequalities (28) and (29)
to be satisfied. One can use trial-and-error method
to acquire DM, DC and DG in controller
implementation.

Remark 15: Note that in control law (20), signum
function sign �ð Þ may cause chattering. To avoid this
problem, the function tanh �ð Þ can be used to instead of
sign �ð Þ in practical controller implementation.

4. An illustrative example

Six degrees of freedom SPS-type Stewart Platform is
a general parallel manipulator. Control approach
developed for it can easily be applied to other types
of industrial parallel manipulator.

To demonstrate the performance of the proposed
approach, unexceptional simulations were considered
as the first step in validation of theoretical design.
Simulations were performed in Matlab SimMechnics
toolbox; the model was downloaded from the website
of Mathworks company: http://www.mathworks.com/
matlabcentral/fileexchange/loadFile.do? objectType¼
file&objectId¼2334

Desired trajectories in work space were

X tð Þ ¼

0:1 0 � t � 1

0:2t� 0:1 1 � t � 2

0:3 2 � t � 3

�0:2tþ 0:9 3 � t � 4

0:1 4 � t

8>>>>>><
>>>>>>:

,

Y tð Þ ¼

0:1 0 � t � 2

0:2t� 0:3 2 � t � 3

0:3 3 � t � 4

�0:2tþ 1:1 4 � t � 5

0:1 5 � t

8>>>>>><
>>>>>>:

,

Z tð Þ ¼
0:5tþ2:5 0� t� 1

3 1� t

�
,

� tð Þ ¼

0 0� t� 1

0:025t�0:025 1� t� 5

0:1 5� t

8><
>: , � tð Þ ¼ 0,� tð Þ ¼ 0:

The parameters of 6DOF Stewart Platform are
given in Table 1.

For comparison purpose, three control algorithms
including the proposed approach, asymptotic stability
synchronous tracking control (ASSTC) developed by
Sun et al. (2006) and traditional proportional-integral-
derivative (PID) control were used to control the
system respectively. The ASSTC controller is presented
in Appendix C. It should be noticed that the proposed
approach is different from ASSTC in synchronisation
error, coupling position error and the controller itself.
The proposed approach can achieve finite time
stability, but ASSTC can only achieve asymptotic
stability.

The selected control gains of the three control
algorithms are listed in Table 2, where the control
gains of PID control were chosen the values used in
Matlab Demo directly. By using trial-and-error
method, the control gains of the proposed approach
and ASSTC are determined individually, so that the
best trajectory tracking performance for each control-
ler tested is achieved.

Note that the feedback control gains of ASSTC
(Kri, K"i) and PID (KP, KI, KD) are much larger than
the ones of the proposed control (K1, K2). The high
gains are not desired in industrial applications.

Figures 2 and 3 illustrate the tracking performance
in work space and joint space, respectively. The dotted
lines are the desired trajectory, the solid lines are the
performance with the proposed control, the dashed
lines are the performance with ASSTC, and the dash
dotted lines are the performance with PID. From these
two figures, one can see that the proposed control can
track the desired trajectory in a finite time. However,
ASSTC and PID can only achieve asymptotic stability.
Figure 2 shows that the PID control has overshoot
during the response process, which is not expected in
industry application. The corresponding joint tracking
performances illustrated in Figure 3 shows the desired
joint trajectory qdi 6¼ 0.

Figures 4–6 illustrate the attitude errors of upper
platform, position errors of actuated joints and
synchronisation errors, respectively. The solid lines
are the errors with the proposed control, the dashed
lines are the errors with ASSTC, and the dash dotted
lines are the errors with PID. From comparing these
figures, one can see that the tracking performances
are improved by using the proposed control approach.

836 D. Zhao et al.



It is important that the synchronisation errors with
the proposed control and ASSTC are much smaller
than those with PID control. Large synchronisation
errors may damage the manipulator in practice. These
three figures indicate that the system enters steady state
after t � 1s. Table 3 lists the maximum absolute values
of upper platform attitude errors, actuated joint
position errors and synchronisation errors after
t � 1s. Table 3 shows that the performance of the
proposed and ASSTC are better than PID. It can also
be seen from these data that the proposed approach is
almost as good as in synchronised operation but is
better than ASSTC in work space tracking and joint
space tracking operation.

From Figures 4–6, one can see the attitude
position error, joint position error and synchronisation
error of the proposed approach converge to zero in
finite time. These results also mean that the saturation
control �sign sð ÞðDM

k€rk þ DC
k_rk þ DG

Þ have strong
robustness, which can eliminate the non-linear effect

caused by the errors between the feedforward control
gains and the modelling parameters.

The torque output by each actuated joint is
shown in Figure 7. From this figure one can see that
the control input of three control algorithms are
similar and bounded. This figure also means that the
proposed control can achieve better performance
than ASSTC and PID with them.

5. Conclusions

This article has studied the issues associated with the
finite time position synchronised control for parallel
manipulators with fast TSM. A novel synchronisation
error and coupling position error are proposed. In light
of them, a non-singular fast TSM is designed. The
proposed approach can guarantee position error and
synchronisation error to converge to zero without
requiring the explicit use of a system dynamic model.

Table 1. Parameters of the Stewart Platform manipulator.

Variable Description Value Unit

m Mass of the moving platform 1216:9 kg

IX, IY IZð Þ Mass moment of inertia of moving platform about X,YðZ Þ 304:48ð608:46Þ kgm2

mdð Þi Mass of lower part of i-th leg 92:11 kg

muð Þi Mass of upper part of i-th leg 51:81 kg

IdX, IdY IdZð Þ Moment of inertia of lower of i-th leg (in local frame) 43:02ð0:156Þ kgm2

IuX, IuY, IuZð Þ Moment of inertia of upper of i-th leg (in local frame) 24:17ð0:023Þ kgm2

T1 � � �T6 The joints position of the upper platform with respect to
moving frame

T1[0.6428 �0.7660 0]
T2[0.6428 0.7660 0]
T3[0.3420 0.9397 0]
T4[�0.9848 0.1736 0]
T5[�0.9848 �0.1736 0]
T6[0.3420 �0.9397 0]

m

B1 � � �B6 The joints position of the lower platform with respect to
inertia frame

B1[2.9971 �0.1309 0]
B2[2.9971 0.1309 0]
B3[�1.3852 2.6610 0]
B4[�1.6119 2.5302 0]
B5[�1.6119 �2.5302 0]
B6[�1.3852 �2.6610 0]

m

Table 2. Control gains of the three controllers.

Controllers Gains

The proposed control � ¼ diag 10f g, �1 ¼ diag 10f g, �2 ¼ diag 10f g, � ¼ 3
5,

K1 ¼ diag 50, 000f g, K2 ¼ diag 50, 000f g, � ¼ 3
5,

KM ¼ diag 0:1f g, KC ¼ diag 0:1f g, KG ¼ diag 300f g,
DM
¼ 0:008, DC

¼ 0:008, D G ¼ 200

ASSTC � ¼ 10, ~� ¼ diagf10g, ~KM
i ¼ 1, ~KC

i ¼ 1,
~KG
i ¼ 300, DM

i ¼ 0:008, DC
i ¼ 0:008, DG

i ¼ 200,
kri ¼ 100, 000, K"i ¼ 100, 000

PID KP ¼ diagf2, 000, 000g, KI ¼ diagf10, 000g,KD ¼ 4500
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Figure 2. Tracking performance in workspace.

Figure 3. Tracking performance in joint space.
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Figure 4. Attitude errors of the moving platform.

Figure 5. Position errors of actuated joints.
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Table 3. Maximum absolute errors.

Maximum absolute errors The proposed control ASSTC PID

X Position error of platform (m) 0:0014 0:0033 0:0074
Y Position error of platform (m) 0:0015 0:0031 0:0076
Z Position error of platform (m) 0:0037 0:0088 0:0095
� Orientation error of platform (rad) 0:0004 0:0010 0:0014
� Orientation error of platform (rad) 0:0005 0:0006 0:0014
� Orientation error of platform (rad) 0:0001 0:0001 0:0001
Position error of actuated joint 1 (m) 0:0027 0:0060 0:0073
Position error of actuated joint 2 (m) 0:0027 0:0063 0:0072
Position error of actuated joint 3 (m) 0:0030 0:0069 0:0075
Position error of actuated joint 4 (m) 0:0029 0:0064 0:0077
Position error of actuated joint 5 (m) 0:0035 0:0078 0:0072
Position error of actuated joint 6 (m) 0:0033 0:0079 0:0072
Synchronisation error "1 0:0061 0:0029 0:0069
Synchronisation error "2 0:0044 0:0051 0:0099
Synchronisation error "3 0:0036 0:0028 0:0054
Synchronisation error "4 0:0039 0:0038 0:0118
Synchronisation error "5 0:0029 0:0022 0:0049
Synchronisation error "6 0:0044 0:0051 0:0139

Figure 6. Synchronisation errors.
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The corresponding stability analysis and an illustra-
tive example are presented to validate the effectiveness
of the proposed approach. In comparison with the
existing synchronised control for parallel manipulator,
the proposed control can achieve higher precision
tracking performance. It is simple and can be applied
to most of the industrial parallel manipulators easily. It
should be mentioned that sound bench tests need to be
conducted by simulations and lab demonstrations
before applying the approach to control of real parallel
manipulators. For stability analysis, it assumes the
desired trajectory qdi 6¼ 0 and the matrix ðIþ �T Þ is
non-singular. These two assumptions may be strict in
some situation. The further studying for relaxing them
is under the authors’ work.
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Appendix A

Lemma 1: Assume a1 4 0, a2 4 0 and 05 c5 1, the follow-
ing inequality holds (Mitrinovic 1970)

a1 þ a2ð Þ
c
� ac1 þ ac2 ðA1Þ

Lemma 2: Suppose a ¼ ½a1, . . . , an�
T, jaj ¼ ja1j þ � � � þ janj,

kak ¼ ða21 þ � � � þ a2nÞ
1=2 represent the Euclidean norm, then the

following inequality holds

ak k � aj j ðA2Þ

Proof: For n ¼ 1, it is obvious that expression (A2) is
satisfied. For n ¼ 2, from Lemma 1, the follow inequality can
be derived

a21 þ a22
� �1=2

� a21
� �1=2

þ a22
� �1=2

ðA3Þ

Therefore

a21 þ a22
� �1=2

� a1j j þ a2j j ðA4Þ

Assume that for n ¼ k the expression (A2) holds, i.e.

a21 þ � � � þ a2k
� �1=2

� a1j j þ � � � þ akj j ðA5Þ

Then for n ¼ kþ 1

a21 þ � � � þ a2k þ a2kþ1
� �1=2

¼

h
a21 þ � � � þ a2k
� �

þ a2kþ1

i1=2
ðA6Þ

From Lemma 1, the right hand of Equation (A6) satisfies
the following inequalityh

a21 þ � � � þ a2k
� �

þ a2kþ1

i1=2
� a21 þ � � � þ a2k
� �1=2

þ a2kþ1
� �1=2

ðA7Þ

According to the expression (A6) and (A7), the following
inequality can be given

a21 þ � � � þ a2k þ a2kþ1
� �1=2

� a1j j þ � � � þ akþ1
�� �� ðA8Þ

By the principle of mathematical induction, the conclu-
sion can be drawn that the expression (A2) is satisfied for any
positive integer n. œ

Appendix B

The following results on differential inequalities will be used
for the stability analysis (Barambones and Etxebarria 2002;
Yu 1998)

Definition 1: If gðV, tÞ is a scalar function of scalars
VðtÞ, t in some open connected set D 2 R2, then a

function VðtÞ on ½t0, t1Þ is a solution of the differential
inequality

_V tð Þ � g V tð Þ, tð Þ ðB1Þ

on ½t0, t1Þ if VðtÞ is continuous on ½t0, t1Þ and its derivative on
½t0, t1Þ satisfies (B1).

Lemma 3: Let gðyðtÞ, tÞ be continuous on an open connected
set D 2 R2 and assume that the initial value problem for the
scalar equation

_y tð Þ ¼ g y tð Þ, tð Þ, g t0ð Þ ¼ y0 ðB2Þ

has a unique solution. If yðtÞ is a solution of (B2) on ½t0, t1Þ and
VðtÞ is a solution of (B1) on ½t0, t1Þ with Vðt0Þ � yðt0Þ, then
VðtÞ � yðtÞ for t0 � t5 t1.

Lemma 4: Assume that a continuous positive definite function
V tð Þ satisfies the differential inequality

_V tð Þ � �kV� tð Þ, 8t � t0, V t0ð Þ � 0 ðB3Þ

where k4 0, 05 �5 1 are constants. Then, for any given t0,
VðtÞ satisfies the inequality

V1�� tð Þ � V1�� t0ð Þ � k 1� �ð Þ t� t0ð Þ, t0 � t � t1 ðB4Þ

and VðtÞ ¼ 0, 8t � t1, with t1 given by t1 ¼ t0þ
V1��ðt0Þ=kð1� �Þ.

Appendix C

ASSTC control law of Sun et al. (2006) is given as follows
Synchronisation error

~"1 ¼ c1e1 � c2e2

~"2 ¼ c2e2 � c3e3

..

.

~"n ¼ cnen � c1e1

8>>>><
>>>>:

ðC1Þ

where ci is the coupling coefficient of i-th actuated joint.
Coupling position error

e�i ¼ ciei þ �

Z t

0

~"i !ð Þ � ~"i�1 !ð Þð Þd! ðC2Þ

where � is a positive coupling parameter, ! is a variable from
time zero to t, when i ¼ 1, i� 1 ¼ n.

Command vector ui

ui ¼ ci _q
d
i þ _ctDqi þ � "i � "i�1ð Þ þ�ei ðC3Þ

Linear sliding mode

~ri ¼ ui � ci _qi ¼ _ei þ ~�ei ðC4Þ

ASSTC control law

�i ¼ ~KM
i c�1i _ui � _ci _qið Þ þ ~KC

i c
�1
i ui þ ~KG

i þ sign c�1i ri
� �

KN
i tð Þ

þ Kri tð Þc
�1
i ri þ cTi K"i "i � "i�1ð Þ

KN
i tð Þ ¼ DM

i c�1i _ui � _ci _qið Þ
�� ��þDC

i c�1i ui
�� ��þDG

i ðC5Þ

where ~KM
i , ~KC

i ,
~KG 4 0 are positive feedforward control

gains, Kri,K"i 4 0 are positive feedback gains,
DM

i ,DC
i ,D

G
i 4 0 are scalars.
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