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Abstract

Data envelopment analysis (DEA) is a method to estimate a relative efficiency of decision making units (DMUs)

performing similar tasks in a production system that consumes multiple inputs to produce multiple outputs. So far, a

number of DEA models have been developed: The CCR model, the BCC model and the FDH model are well known as

basic DEA models. These models based on the domination structure in primal form are characterized by how to de-

termine the production possibility set from a viewpoint of dual form; the convex cone, the convex hull and the free

disposable hull for the observed data, respectively.

In this study, we suggest a model called generalized DEA (GDEA) model, which can treat the above stated basic

DEA models in a unified way. In addition, by establishing the theoretical properties on relationships among the GDEA

model and those DEA models, we prove that the GDEA model makes it possible to calculate the efficiency of DMU

incorporating various preference structures of decision makers. Furthermore, we propose a dual approach to GDEA,

GDEAD and also show that GDEAD can reveal domination relations among all DMUs.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Data envelopment analysis (DEA) was suggested by Charnes, Cooper and Rhodes (CCR), and built on
the idea of Farrell [10] which is concerned with the estimation of technical efficiency and efficient frontiers.

The CCR model [5,6] generalized the single output/single input ratio efficiency measure for each decision

making unit (DMU) to multiple outputs/multiple inputs situations by forming the ratio of a weighted sum

of outputs to a weighted sum of inputs. DEA is a method for measuring the relative efficiency of DMUs

performing similar tasks in a production system that consumes multiple inputs to produce multiple out-

puts. The main characteristics of DEA are that (i) it can be applied to analyze multiple outputs and
* Corresponding author. Tel./fax: +81-87-8642246.

E-mail address: yun@eng.kagawa-u.ac.jp (Y.B. Yun).

0377-2217/$ - see front matter � 2003 Elsevier B.V. All rights reserved.

doi:10.1016/S0377-2217(03)00140-1

Downloaded from http://www.elearnica.ir

mail to: yun@eng.kagawa-u.ac.jp


88 Y.B. Yun et al. / European Journal of Operational Research 157 (2004) 87–105
multiple inputs without preassigned weights, (ii) it can be used for measuring a relative efficiency based on
the observed data without knowing information on the production function and (iii) decision makers�
preferences can be incorporated in DEA models. Later, Banker, Charnes and Cooper (BCC) suggested a

model for estimating technical efficiency and scale inefficiency in DEA. The BCC model [2] relaxed the

constant returns to scale assumption of the CCR model and made it possible to investigate whether the

performance of each DMU was conducted in region of increasing, constant or decreasing returns to scale

in multiple outputs and multiple inputs situations. In addition, Tulkens [20] introduced a relative efficiency

to non-convex free disposable hull (FDH) of the observed data defined by Deprins et al. [9], and for-

mulated a mixed integer programming to calculate the relative efficiency for each DMU. Besides basic
models as mentioned in the above, a number of extended models have been studied, for example, cone

ratio model [8], polyhedral cone ratio model [7], Seiford and Thrall�s model [16], Wei and Yu�s model [21],

and so on.

On the other hand, relationships between DEA and multiple criteria decision analysis (MCDA) have

been studied from several viewpoints by many authors. Belton [3], and Belton and Vickers [4] measured an

efficiency as a weighted sum of input and output. Stewart [17] showed the equivalence between the CCR

model and some linear value function model for multiple outputs and multiple inputs. Joro et al. [13]

proved structural correspondences between DEA models and multiple objective linear programming using
an achievement scalarizing function proposed by Wierzbicki [22]. Especially, various ways of introducing

preference information into DEA formulations have been developed. Golany [11] suggested a so-called

target setting model, which allows decision makers to select the preferred set of output levels given the input

levels of a DMU. Thanassoulis and Dyson [19] introduced models that can be used to estimate alternative

output and input levels, in order to render relatively inefficient DMUs efficient. Zhu [23] proposed a model

that calculates efficiency scores incorporating the decision makers� preference informations, whereas Ko-

rhonen [14] applied an interactive technique to progressively reveal preferences. Halme et al. [12] evaluated

an efficiency of DMU in terms of pseudo-concave value function, by considering a tangent cone of the
feasible set at the most preferred solution of decision maker. Agrell and Tind [1] showed correspondences

among the CCR model [5], the BCC model [2] and the FDH model [20] and MCDA model according to the

property of a partial Lagrangean relaxation. Yun et al. [24] suggested a concept of ‘‘value free efficiency’’

in the observed data.

In this study, we propose a generalized model for DEA, so-called GDEA model, which can treat basic

DEA models, specifically, the CCR model, the BCC model and the FDH model in a unified way. In ad-

dition, we show theoretical properties on relationships among the GDEA model and those DEA models,

and the GDEA model makes it possible to calculate the efficiency of DMUs incorporating various pre-
ference structures of decision makers. Finally, we suggest a dual approach GDEAD to GDEA and show

also that GDEAD can reveal domination relations among all DMUs.
2. Basic DEA models

In the following discussion, we assume that there exist n DMUs to be evaluated. Each DMU consumes

varying amounts of m different inputs to produce p different outputs. Specifically, DMUj consumes
amounts xj :¼ ðxijÞ of inputs (i ¼ 1; . . . ;m) and produces amounts yj :¼ ðykjÞ of outputs (k ¼ 1; . . . ; p). For

these constants, which generally take the form of observed data, we assume xij > 0 for each i ¼ 1; . . . ;m and

ykj > 0 for each k ¼ 1; . . . ; p. Further, we assume that there are no duplicated units in the observed data.

The p � n output matrix for the n DMUs is denoted by Y , and the m� n input matrix for the n DMUs is

denoted by X. xo :¼ ðx1o; . . . ; xmoÞ and yo :¼ ðy1o; . . . ; ypoÞ are amounts of inputs and outputs of DMUo,
which is evaluated. In addition, e is a small positive number (non-Archimedean) and 1 ¼ ð1; . . . ; 1Þ is a unit

vector.
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For convenience, the following notations for vectors in Rpþm will be used:
1 In
zo > zj () zio > zij; i ¼ 1; . . . ; p þ m;
zo = zj () zio = zij; i ¼ 1; . . . ; p þ m;
zo P zj () zio = zij; i ¼ 1; . . . ; p þ m but zo 6¼ zj:
So far, a number of DEA models have been developed. Among them, the CCR model [5,6], the BCC

model [2] and the FDH model [20] are well known as basic DEA models. These models are based on the

domination structure in primal form, and moreover these are characterized by how to determine the

production possibility set from a viewpoint of dual form; the convex cone, the convex hull and the free

disposable hull for the observed data, respectively.

2.1. The CCR model

The CCR model, which was suggested by Charnes et al. [5], is a fractional linear programming problem

and can be solved by being transformed into an equivalent linear programming one. Therefore, the primal

problem (CCR) with an input oriented model 1 can be formulated as the following:
maximize
lk ;mi

Xp
k¼1

lkyko ðCCRÞ

subject to
Xm
i¼1

mixio ¼ 1;

Xp
k¼1

lkykj 	
Xm
i¼1

mixij 5 0; j ¼ 1; . . . ; n;

lk = e; mi = e; k ¼ 1; . . . ; p; i ¼ 1; . . . ;m:
The dual problem (CCRD) to the problem (CCR) is given by
minimize
h;k;sx ;sy

h 	 eð1Tsx þ 1TsyÞ ðCCRDÞ

subject to Xk 	 hxo þ sx ¼ 0;
Yk 	 yo 	 sy ¼ 0;
k = 0; sx = 0; sy = 0;

h 2 R; k 2 Rn; sx 2 Rm; sy 2 Rp:
The �efficiency� in the CCR model is introduced as follows (Fig. 1):

Definition 1 (CCR-efficiency). A DMUo is CCR-efficient if and only if the optimal value
Pp

k¼1 l�
kyko to the

problem (CCR) equals one. Otherwise, the DMUo is said to be CCR-inefficient.

Definition 2 (CCRD-efficiency). A DMUo is CCRD-efficient if and only if for the optimal solution

ðh�; k�; s�x ; s
�
yÞ to the problem (CCRD), the following two conditions are satisfied:

i(i) h� is equal to one;

(ii) the slack variables s�x and s�y are all zero.

Otherwise, the DMUo is CCRD-inefficient.
this paper, we deal with only the input oriented model for simplicity to condense the text.
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Fig. 1. CCR efficient frontier and production possibility set generated by the CCR model from the observed data.

90 Y.B. Yun et al. / European Journal of Operational Research 157 (2004) 87–105
Note that the above two definitions are evidently equivalent.
Additionally, the production possibility set P1 in the CCR model is the convex cone (or conical hull)

generated by the observed data, since one takes a viewpoint of the fact that the scale efficiency of a DMU

is constant, that is to say, constant returns to scale. Therefore, P1 can be denoted by
P1 ¼ fðy; xÞ j Y k = y;Xk 5 x; k = 0g

and the definition of CCR-efficiency (or CCRD-efficiency) can be transformed into the following.

Definition 3.DMUo is said to be Pareto efficient in P1 if and only if there does not exist ðy; xÞ 2 P1 such that

ðy;	xÞP ðyo;	xoÞ.

The above definition will be used in Section 4.

2.2. The BCC model

The BCC model of Banker et al. [2] is formulated similarly to that for the CCR model. The dual problem
for the BCC model is obtained by adding the convexity constraint 1Tk ¼ 1 to the dual problem (CCRD) and

thus, the variable uo appears in the primal problem. The efficiency degree of a DMUo with respect to the

BCC model can be measured by solving the problem (Fig. 2)
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Fig. 2. BCC efficient frontier and production possibility set generated by the BCC model from the observed data.
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maximize
lk ;mi;uo

Xp
k¼1

lkyko 	 uo ðBCCÞ

subject to
Xm
i¼1

mixio ¼ 1;

Xp
k¼1

lkykj 	
Xm
i¼1

mixij 	 uo 5 0; j ¼ 1; . . . ; n;

lk = e; mi = e; k ¼ 1; . . . ; p; i ¼ 1; . . . ;m:
The dual problem (BCCD) to the problem (BCC) is formulated as follows:
minimize
h;k;sx ;sy

h 	 eð1Tsx þ 1TsyÞ ðBCCDÞ

subject to Xk 	 hxo þ sx ¼ 0;
Yk 	 yo 	 sy ¼ 0;
1Tk ¼ 1;

k = 0; sx = 0; sy = 0;

h 2 R; k 2 Rn; sx 2 Rm; sy 2 Rp:
The definition of �efficiency� in the BCC model is given as follows, and the two definitions are equivalent.

Definition 4 (BCC-efficiency). A DMUo is BCC-efficient if and only if the optimal value ð
Pp

k¼1 l�
kyko 	 u�oÞ

to the problem (BCC) equals one. Otherwise, the DMUo is said to be BCC-inefficient.

Definition 5 (BCCD-efficiency). A DMUo is BCCD-efficient if and only if for an optimal solution

ðh�; k�; s�x ; s
�
yÞ to the problem (BCCD), the following two conditions are satisfied:

i(i) h� is equal to one;

(ii) the slack variables s�x and s�y are all zero.

Otherwise, the DMUo is said to be BCCD-inefficient.

The presence of the constraint 1Tk ¼ 1 in the dual problem (BCCD) yields that the production possibility

set P2 in the BCC model is the convex hull generated by the observed data. Therefore, P2 can be obtained as
P2 ¼ fðy; xÞ j Y k = y;Xk 5 x; 1Tk ¼ 1; k = 0g
and the definition of BCC-efficiency (or BCCD-efficiency) can be transformed into the following:

Definition 6.DMUo is said to be Pareto efficient in P2 if and only if there does not exist ðy; xÞ 2 P2 such that

ðy;	xÞP ðyo;	xoÞ.

The above definition will be used in Section 4.

2.3. The FDH model

Adding the constraints kj 2 f0; 1g for each j ¼ 1; . . . ; n, to the problem (BCCD), the FDH model by

Tulkens [20] is formulated as follows:
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minimize
h;k;sx;sy

h 	 eð1Tsx þ 1TsyÞ ðFDHDÞ

subject to Xk 	 hxo þ sx ¼ 0;
Yk 	 yo 	 sy ¼ 0;
1Tk ¼ 1; kj 2 f0; 1g for each j ¼ 1; . . . ; n;
k = 0; sx = 0; sy = 0;

h 2 R; k 2 Rn; sx 2 Rm; sy 2 Rp:
However, here it is seen that the problem (FDHD) is a mixed integer programming problem, and hence

the traditional linear optimization methods cannot apply to it. An optimal solution is obtained by means of

a simple vector comparison procedure to the end.

For a DMUo, the optimal solution h� to the problem (FDHD) is equal to the value R�
o defined by
R�
o ¼ min

j2DðoÞ
max
i¼1;...m

xij
xio

� �
; ð1Þ
where DðoÞ ¼ fj j xj 6 xo and yj = yo; j ¼ 1; . . . ; ng.
R�
o is substituted for h� as the efficiency degree for DMUo in the FDH model. Also, the �efficiency� in the

FDH model is given in the following.

Definition 7 (FDH-efficiency). A DMUo is FDH-efficient if and only if R�
o equals to one. If R�

o < 1, the

DMUo is said to be FDH-inefficient.

Definition 8 (FDHD-efficiency). A DMUo is FDHD-efficient if and only if for an optimal solution

ðh�; k�; s�x ; s
�
yÞ to the problem (FDHD), the following two conditions are satisfied (Fig. 3):

i(i) h� is equal to one;

(ii) the slack variables s�x and s�y are all zero.

Otherwise, the DMUo is said to be FDHD-inefficient.

The above two definitions are equivalent forms, and the production possibility set P3, which is a free

disposable hull, is given by
P3 ¼ fðy; xÞ j Y k = y;Xk 5 x; 1Tk ¼ 1; kj 2 f0; 1g; j ¼ 1; . . . ; ng: ð2Þ
A

B

C

E

2

3

64 5

1

5

2

0 1 83

4

input

D

6

7 9 10

F
FDH efficient frontier

P3

output

G

Fig. 3. FDH efficient frontier and production possibility set generated by the FDH model from the observed data.
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Besides, the definition of FDH-efficiency (or FDHD-efficiency) can be transformed into the following:

Definition 9.DMUo is said to be Pareto efficient in P3 if and only if there does not exist ðy; xÞ 2 P3 such that

ðy;	xÞP ðyo;	xoÞ.

The above definition will be used in Section 4.
3. GDEA based on parametric domination structure

In this section, we formulate the GDEA model based on a domination structure and define a new

�efficiency� in the GDEA model. Next, we establish relationships between the GDEA model and basic

DEA models mentioned in Section 2.
Now, we formulate a generalized DEA model by employing the augmented Tchebyshev scalarizing

function [15]. The GDEA model, which can evaluate the efficiency in several basic models as special cases,

is the following:
maximize
D;lk ;mi

D ðGDEAÞ

subject to D 5 ~dj þ a
Xp
k¼1

lkðyko

 
	 ykjÞ þ

Xm
i¼1

mið 	 xio þ xijÞ
!
; j ¼ 1; . . . ; n;

Xp
k¼1

lk þ
Xm
i¼1

mi ¼ 1;

lk; mi = e; k ¼ 1; . . . ; p; i ¼ 1; . . . ;m;
where a > 0 is appropriately given according to given problems, and ~djðj ¼ 1; . . . ; nÞ is the value of mul-

tiplying the maximal component of ðy1o 	 y1j; . . . ; ypo 	 ypj;	x1o þ x1j; . . . ;	xmo þ xmjÞ by its corresponding

weight. (For example, if ðy1o 	 y1j;	x1o þ x1jÞ ¼ ð2;	1Þ, then ~dj ¼ 2l1.)

Note that when j ¼ o, the right-hand side of the inequality constraint in the problem (GDEA) is zero,

and hence its optimal value is not greater than zero. We define �efficiency� in the GDEA model as follows.

Definition 10 (a-efficiency). For a given positive number a, DMUo is defined to be a-efficient if and only if

the optimal value to the problem (GDEA) is equal to zero. Otherwise, DMUo is said to be a-inefficient.

3.1. Relationships between GDEA and DEA

In this subsection, we establish theoretical properties on relationships among efficiencies in the basic

DEA models and that in the GDEA model.

Theorem 1. DMUo is FDH-efficient if and only if DMUo is a-efficient for some sufficiently small positive
number a.

Proof (only if part). Let D�, ðl�
1; . . . ; l

�
pÞ and ðm�1; . . . ; m�mÞ be the optimal solution for the DMUo. Negate that

DMUo is a-efficient for some sufficiently small positive a. Then for any sufficiently small positive a, D� < 0,

that is,
~dj þ a
Xp
k¼1

l�
kðyko

 
	 ykjÞ þ

Xm
i¼1

m�i ð 	 xio þ xijÞ
!

< 0 for some j 6¼ o: ð3Þ
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The necessary and sufficient condition so that the above inequality (3) holds for any sufficiently small

positive a is that
~dj ¼ max
k¼1;...;p
i¼1;...;m

fl�
kðyko 	 ykjÞ; m�i ð	xio þ xijÞg < 0 ð4Þ
and since ðl�
1; . . . ; l

�
pÞ and ðm�1; . . . ; m�mÞ are strictly positive, the inequality (4) implies that ðyj;	xjÞ >

ðyo;	xoÞ for some j 6¼ o. Thus, j 2 DðoÞ and maxi¼1;...;m fxij=xiog < 1, which means that R�
o ¼ minj2DðoÞ

maxi¼1;...;m fxij=xiog < 1. This contradicts the assumption that DMUo is FDH-efficient, and therefore

DMUo is a-efficient for some sufficiently small positive a.
(if part) Suppose that DMUo is FDH-inefficient. Then R�

o < 1, which yields that there exists some

j 2 DðoÞ ¼ fj j xj 6 xo and yj = yo; j ¼ 1; . . . ; ng such that maxi¼1;...;m fxij=xiog < 1. Thus, yj = yo and

xj < xo for such a j. For any positive ðl1; . . . ; lpÞ and ðm1; . . . ; mmÞ, we have
lkðyko 	 ykjÞ 5 0; k ¼ 1; . . . ; p and mið	xio þ xijÞ < 0; i ¼ 1; . . . ;m: ð5Þ
From inequalities of the above (5), the following inequalities hold:
~dj ¼ max
k¼1;...;p
i¼1;...;m

flkðyko 	 ykjÞ; mið	xio þ xijÞg 5 0 ð6Þ
and
Xp
k¼1

lkðyko

 
	 ykjÞ þ

Xm
i¼1

mið 	 xio þ xijÞ
!

< 0: ð7Þ
Multiplying (7) by any positive a and adding to (6) yields that
~dj þ a
Xp
k¼1

lkðyko

 
	 ykjÞ þ

Xm
i¼1

mið 	 xio þ xijÞ
!

< 0 for some j;
which is a contradiction to the a-efficiency for some sufficiently small positive a. Hence, it has been shown

that the DMUo is FDH-efficient. �

Theorem 2. DMUo is BCC-efficient if and only if DMUo is a-efficient for some sufficiently large positive
number a.

Consider the problem (GDEA) in which the constraint
Pp

k¼1 lkyko ¼
Pm

i¼1 mixio is added to the problem

(GDEA):
maximize
D;lk ;mi

D ðGDEAÞ

subject to D 5 ~dj þ a
Xp
k¼1

lkðyko

 
	 ykjÞ þ

Xm
i¼1

mið 	 xio þ xijÞ
!
; j ¼ 1; . . . ; n;

Xp
k¼1

lkyko 	
Xm
i¼1

mixio ¼ 0;

Xp
k¼1

lk þ
Xm
i¼1

mi ¼ 1;

lk; mi = e; k ¼ 1; . . . ; p; i ¼ 1; . . . ;m:
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Theorem 3. DMUo is CCR-efficient if and only if DMUo is a-efficient for some sufficiently large positive a
when regarding the problem (GDEA) as the problem (GDEA).

The proof of Theorems 2 and 3 follows along the lines of the one of Theorem 1. From the stated

theorems, it is seen that the FDH-efficiency, the BCC-efficiency and the CCR-efficiency for each DMU can

be evaluated by varying the parameter a in the problem (GDEA) from a sufficiently small value to a

sufficiently large one. It cannot be known a prior how small/large is sufficiently small/large, and hence the

value of a is empirically given. What is important is to see how the efficiency of each DMU changes by
varying the value of a.

3.2. An illustrative example

Here, we explain the a-efficiency in the GDEA model with a simple illustrative example and reveal

domination relations among all DMUs by GDEA.

Assume that there are six DMUs which consume one input to produce one output, as seen in Table 1.

Table 2 shows the results of efficiency in the basic DEA models and a-efficiency in the GDEA model. In
the upper half part of Table 2, we see that a DMU is efficient if the optimal value is equal to one in the CCR

model, the BCC model and the FDH models, respectively. The lower half part of Table 2 shows the a-
efficiency by changing a parameter a. It can be seen that if a ¼ 0:1, the a-efficiency of each DMU is the same

as the FDH-efficiency. If a ¼ 10, the a-efficiency of each DMU is the same as the BCC-efficiency, and

moreover if a ¼ 10 in the problem (GDEA), then the a-efficiency is equivalent to the CCR-efficiency.

Furthermore, Figs. 4–6 represent the efficient frontier generated by varying a in the GDEA model.

Through this example, it was shown that by varying the value of parameter a, various efficiency of the

basic DEA models can be measured in a unified way on the basis of this GDEA model, and furthermore the
relationships among efficiency for these models become transparent.
Table 1

An example of 1-input and 1-output

DMU A B C D E F

Input 2 3 4.5 4 6 5.5

Output 1 3 3.5 2 5 4

Table 2

The optimal values in basic DEA models and GDEA model

DMU A B C D E F

CCR model 0.50 1.00 0.78 0.50 0.83 0.73

BCC model 1.00 1.00 0.83 0.63 1.00 0.75

FDH model 1.00 1.00 1.00 0.75 1.00 1.00

(i) a ¼ 10 (GDEA) )9.33 0.00 )3.25 )11.33 )0.73 )3.74
(ii) a ¼ 10 0.00 0.00 )2.10 )11.00 0.00 )3.35
(iii) a ¼ 3 0.00 0.00 0.00 )4.00 0.00 )0.55
(iv) a ¼ 1 0.00 0.00 0.00 )2.00 0.00 0.00

(v) a ¼ 0:1 0.00 0.00 0.00 )1.10 0.00 0.00



Fig. 4. Efficient frontier generated by the GDEA model with a;0.
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4. GDEA based on production possibility

In this section, we consider a dual approach to GDEA introduced in Section 3. We formulate the

GDEAD model based on the production possibility set and define �efficiency� in the GDEAD model. Next,

we establish relationships between the GDEAD model and dual models to basic DEA models mentioned

in Section 2.

To begin with, an output–input vector zj of a DMUj; j ¼ 1; . . . ; n, and output–input matrix Z of all

DMUs respectively, denoted by
zj :¼
yj
	xj

� �
; j ¼ 1; . . . ; n; and Z :¼ Y

	X

� �
:

In addition, we denote a ðp þ mÞ � n matrix Zo by Zo :¼ ðzo; . . . ; zoÞ, where o is the index of DMU to be

evaluated.

The production possibility sets in the CCR model, the BCC model and the FDH model in Section 2

are reformulated as follows:
P 0
1 ¼ fz j Zk = z; k = 0g;

P 0
2 ¼ fz j Zk = z; 1Tk ¼ 1; k = 0g;

P 0
3 ¼ fz j Zk = z; 1Tk ¼ 1; kj 2 f0; 1g; j ¼ 1; . . . ; ng
and the �efficiencies� in these models are redefined.

Definition 11. DMUo is said to be Pareto efficient in P 0
1 if and only if there does not exist ðy;	xÞ 2 P 0

1 such

that ðy;	xÞP ðyo;	xoÞ.

Definition 12. DMUo is said to be Pareto efficient in P 0
2 if and only if there does not exist ðy;	xÞ 2 P 0

2 such

that ðy;	xÞP ðyo;	xoÞ.

Definition 13. DMUo is said to be Pareto efficient in P 0
3 if and only if there does not exist ðy;	xÞ 2 P 0

3 such

that ðy;	xÞP ðyo;	xoÞ.

Remark 1 [13]. Here, the Definitions 11–13 are corresponding to the CCR-efficiency (or CCRD-efficiency),

BCC-efficiency (or BCCD-efficiency) and the FDH-efficiency (or FDHD-efficiency), respectively.

Here, dual problem to the problem (GDEA) introduced in Section 3 is formulated as follows:
minimize
x;j;k;sz

x 	 e1Tsz ðGDEADÞ

subject to faðZo 	 ZÞ þ Dzgk 	 x þ sz þ jzo ¼ 0;
1Tk ¼ 1;

k = 0; sz = 0;
where x ¼ ðx; . . . ;xÞ and a is a given positive number. A ðp þ mÞ � n matrix Dz :¼ ðd1; . . . ; dnÞ is a matrix

ðZo 	 ZÞ replaced by 0, except for the maximal component (if there exist plural maximal components, only
one is chosen from among them) in each column. Especially, it is seen that when j is fixed at 0, the problem

(GDEAD) becomes the dual problem to the problem (GDEA), since j is the dual variable to the second

constraint in the problem (GDEA).
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We define an �efficiency� for a DMUo in the GDEAD model.

Definition 14 (aD-efficiency). For a given positive a, DMUo is said to be aD-efficient if and only if the

optimal solution ðx�; j�; k�; s�z Þ to the problem (GDEAD) satisfies the following two conditions:

i(i) x� is equal to zero;

(ii) the slack variable s�z is zero.

Otherwise, DMUo is said to be aD-inefficient.

We, particularly, note that for an optimal solution ðx�; j�; k�; s�zÞ to the problem GDEAD, x� is not

greater than zero because of the strong duality of (GDEA) and (GDEAD) (in linear programming prob-

lem), and �non-Archimedean� property of e.

4.1. Relationships between GDEAD and DEA

In this subsection, we establish theoretical properties on relationships among efficiencies in basic DEA
models and the GDEAD model.

Theorem 4. Let j be fixed at 0 in the problem (GDEAD). DMUo is Pareto efficient in P 0
3 if and only if DMUo

is aD-efficient for some sufficiently small positive number a.

Proof (only if part). Assume that DMUo is Pareto efficient in P 0
3. Then, there does not exist k such that
zj ¼ ZkP Zok ¼ zo; ð8Þ

where k 2 fk j 1Tk ¼ 1; kj 2 f0; 1g; j ¼ 1; . . . ; ng.

Negate that DMUo is aD-efficient for some sufficiently small positive a. Then, for an optimal solution

ðx�; s�z ; k
�Þ to the problem (GDEAD), x� < 0 or s�z P 0. In other words, for any sufficiently small positive a,

the following inequality holds:
faðZo 	 ZÞ þ Dzgk� ¼ x� 	 s�z 6 0: ð9Þ

The necessary condition that the inequality (9) holds for any sufficiently small positive a is that Dzk

�
6 0.

This implies dj 6 0, for some j, since k� P 0. Besides, from the definition of d j, we have zo 	 zj 6 0. This

is a contradiction to the inequality (8).

(if part) If DMUo is aD-efficient for some sufficiently small positive a, then from the first constraint of the

problem (GDEAD), the following equality is obtained:
faðZo 	 ZÞ þ Dzgk� ¼ x� 	 s�z ¼ 0; ð10Þ

where ðx�; s�z ; k

�Þ is an optimal solution to the problem (GDEAD).

Suppose that DMUo is not Pareto efficient in P 0
3. Then there exists z 2 P 0

3 such that zP zo. This means that
zj ¼ Zk̂P Zok̂ ¼ zo; k̂ 2 f1Tk̂ ¼ 1; k̂j 2 f0; 1g; j ¼ 1; . . . ; ng: ð11Þ

From the expression (11), d j 6 0 for j : k̂j ¼ 1 and Dzk̂6 0. Multiplying the inequality of (11) by an arbi-

trary positive a and adding it to Dzk̂ yields
faðZo 	 ZÞ þ Dzgk̂ ¼ x̂ 	 ŝz 6 0
and thus, ðx̂; ŝz; k̂Þ is a feasible solution of the problem (GDEAD). However, this contradicts to the fact that

the expression (10) holds for ðx�; s�z ; k
�Þ. �

The proofs of the following theorems follow along the lines of the one of Theorem 4.
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Theorem 5. Let j be fixed at 0 in the problem (GDEAD). DMUo is Pareto efficient in P 0
2 if and only if DMUo

is aD-efficient for some sufficiently large positive number a.

Theorem 6. DMUo is Pareto efficient in P 0
1 if and only if DMUo is aD-efficient for some sufficiently large

positive number a.

4.2. Optimal solutions to (GDEAD)

In this subsection, we explain the meaning of optimal solutions x�; j�; k�; s�z ¼ ðs�y; s�xÞ to the problem

(GDEAD). x� gives the measurement of relative efficiency for DMUo. In other words, it represents the

degree how inefficient DMUo is, that is, how far DMUo is from the efficient frontier generated with the

given a. j is a dual variable to the constraint
Pp

k¼1 lkyko ¼
Pm

i¼1 mixio in the primal problem (GDEA) and

therefore, we put j ¼ 0 when considering the FDH and the BCC efficiency. k� :¼ ðk�
1; . . . ; k

�
nÞ represents a

domination relation between DMUo and another DMUs. That is, it means that the DMUo is dominated

by DMUj if kj for some j 6¼ o is positive. s�x represents the slack of inputs and s�y does the surplus of outputs

for performance of the DMUo.
Consider an illustrative example as shown in Table 3. Table 4 shows the results of the CCR-efficiency,

BCC-efficiency and FDH-efficiency, respectively, in the example.

Table 5 shows the optimal solution ðx�;j�; k�; s�zÞ to the problem (GDEAD) (e ¼ 10	6) when a is given as

10	6 and j is fixed at 0. Table 6 shows the optimal solution ðx�; j�; k�; s�zÞ to the problem (GDEAD)
Table 3

An example of 1-input and 1-output

DMU A B C D E F G

Input 2 3 8 6 5 10 7

Output 1 3 6 2 4 6 4

Table 4

Optimal value in the problems (CCR), (BCC) and (FDH)

DMU CCR model BCC model FDH model

A 0.5 1 1

B 1 1 1

C 0.75 1 1

D 0.333 0.417 0.5

E 0.8 0.933 1

F 0.6 0.8 0.8

G 0.571 0.667 0.714

Table 5

Optimal solution to (GDEAD) with a ¼ 10	6 and fixed j ¼ 0

DMU x� k� s�z ¼ ðs�y ; s�xÞ
A 0 k�

A ¼ 1 ð0; 0Þ
B 0 k�

B ¼ 1 ð0; 0Þ
C 0 k�

C ¼ 1 ð0; 0Þ
D )0.5 k�

B ¼ k�
E ¼ 0:5 ð0; 0Þ

E 0 k�
E ¼ 1 ð0; 0Þ

F 0 k�
C ¼ 1 ð0; 2Þ

G 0 k�
E ¼ 1 ð0; 2Þ



Table 6

Optimal solution to (GDEAD) with a ¼ 10 and fixed j ¼ 0

DMU x� k� s�z ¼ ðs�y ; s�xÞ
A 0 k�

A ¼ 1 ð0; 0Þ
B 0 k�

B ¼ 1 ð0; 0Þ
C 0 k�

C ¼ 1 ð0; 0Þ
D )17.803 k�

A ¼ 0:765, k�
B ¼ 0:235 ð0; 0Þ

E )0.441 k�
B ¼ 0:631, k�

C ¼ 0:369 ð0; 0Þ
F 0 k�

C ¼ 1 ð0; 20Þ
G )8.281 k�

B ¼ 0:378, k�
C ¼ 0:622 ð0; 0Þ
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(e ¼ 10	6) when a is given by 10 and j is fixed at 0. Finally, Table 7 shows the optimal solution

ðx�; j�; k�; s�zÞ to the problem (GDEAD) (e ¼ 10	6) when a is given as 100. Also, we can see that the FDH-

efficiency, BCC-efficiency and CCR-efficiency are equivalent to the a-efficiency, respectively, from the result

of Tables 5–7 and Figs. 7–9. In other words, the FDH-efficiency, BCC-efficiency and CCR-efficiency can be

obtained by changing the parameter a in the GDEAD model.

Now, we interpret the value of optimal solution ðx�; j; k�; s�zÞ to the problem (GDEAD). x� gives the
measurement of relative efficiency for DMUo, and DMU with non-zero x� is inefficient. Moreover, it

represents the degree how inefficient DMUo is, that is, how far DMUo is from the efficient frontier gen-

erated with given a. For example, DMUs in Table 7 are arranged in the following order by their efficiencies:
A
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Fig. 7. Efficient frontier generated by GDEAD model with a ¼ 10	6 and fixed j ¼ 0.

Table 7

Optimal solution to (GDEAD) with a ¼ 100 and non-fixed j

DMU x� k� s�z ¼ ðs�y ; s�xÞ j�

A )131.333 k�
C ¼ 1 (0, 0) 368.667

B 0 k�
B ¼ 1 (0, 0) 0

C )41.143 k�
B ¼ 1 (0, 0) )57.357

D )249.5 k�
C ¼ 1 (0, 0) 75.25

E )32.778 k�
B ¼ 1 (0, 0) )33.444

F )75.0 k�
C ¼ 1 (0, 0) )12.5

G )90.545 k�
C ¼ 1 (0, 0) 27.364
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Fig. 8. Efficient frontier generated by GDEAD model with a ¼ 10 and fixed j ¼ 0.
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Fig. 9. Efficient frontier generated by GDEAD model with a ¼ 100 and non-fixed j.
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0 ¼ B > E > C > F > G > A > D:
Thus, DMU B with the best efficiency is on the efficient frontier, but the worst DUM D is farthest from it.

As mentioned in the above, j is a dual variable to the constraint
Pp

k¼1 lkyko ¼
Pm

i¼1 mixio in the primal

problem (GDEA) which can generates the efficiency equivalent to the CCR model. Thus, j is not fixed

in the case of obtaining the CCR efficiency.

k� :¼ ðk�
1; . . . ; k

�
nÞ represents a domination relation between DMUo and another DMUs. That is, it

means that the DMUo is dominated by DMUj if kj for some j 6¼ o is positive. For example, as seen in Table

5, the optimal solution for the DMU D is k�
B ¼ 0:5 and k�

E ¼ 0:5, and hence DMU D is dominated by DMU

B and DMU E (see Fig. 7). In addition, in Table 6, the optimal solution for the DMU E is k�
B ¼ 0:631 and

k�
C ¼ 0:369, and hence DMU E is dominated by linear combination of DMU B and DMU C (see Fig. 8). 2
e domination set in the GDEA model does not necessarily agree with the reference one by the existing DEA models. The

ce points themselves are of domination set, or a part of their linear combination is of domination set.
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s�x represents the slack of inputs and s�y does the surplus of outputs for performance of the DMUo. For
instance, in Table 5 DMU G has the optimal solution x� ¼ 0; k�

E ¼ 1 and s�x ¼ 2, and it is a-inefficient

because s�x is not equal to zero although x� ¼ 0. It implies that DMU G has the larger surplus amount

of input than DMU E with the same output.
5. Comparison between GDEA and DEA models

Now, we compare the efficiency in basic DEA models and the GDEA model for the data in Taylor et al.
[18]. The data for thirteen Mexican commercial banks in two years (1990–1991) is from Taylor et al. [18]. As

shown in Table 8, each bank has the total income as the single output. Total income is the sum of a bank�s
interest and non-interest income. Total deposits and total non-interest expense are the two inputs used to

generate the output. Interest income includes interest earned from loan activities. Total non-interest income

includes dividends, fees, and other non-interest revenue. The total deposits input variable includes the

bank�s interest paying deposit liabilities. Total non-interest expense includes personnel and administrative

costs, commissions paid, banking support fund contributions and other non-interest operating costs. Thus,

we evaluate the efficiency for each bank with the annual data, that is, consider a-efficiency corresponding to
several values a ¼ 0:1, 0.5, 1, 10, 15 (only 1991) and 103. Therefore, Tables 9 and 10 represent the results of

analyses by the basic DEA models and the GDEA model.

As shown in tables, the GDEA model with a ¼ 0:1 provides FDH efficiency. It means that there is no

change in a-efficient DMUs for smaller a than 0.1. In addition, the GDEA model with a ¼ 10 yields BCC

efficiency in Table 9, while a ¼ 15 does in Table 10. Also, there is no change in a-efficiency of DMUs, even if

taking greater a than 10 or 15. Moreover, CCR-efficiency can be conducted by taking a sufficiently large in

the GDEA model adding the constraint xT
o m ¼ yT

ol. From this fact, we see that the number of efficient

DMUs decreases as a parameter a increases in general. Particularly, note the a-efficiency for a ¼ 0:5 and 1:
This represents an intermediate efficiency between FDH-efficiency and BCC-efficiency.

In practice, among decision making problems, there exist the cases that it is impossible to correspond to

a special value judgments of decision makers such as the CCR efficiency, the BCC efficiency. In contrast to
Table 8

Input and output values for 13 Mexican banks, 1990–1991 (billions of nominal pesos)

Bank 1990 1991

Deposits Non-interest

expense

Interest income

plus non-inter-

est income

Deposits Non-interest

expense

Interest income

plus non-inter-

est income

(1) Banamex 35313.90 2500.88 14247.10 57510.90 3670.33 15764.60

(2) Bancomer 34504.60 2994.70 12682.10 59965.00 3872.40 15877.00

(3) Serfin 30558.20 1746.50 11766.40 46987.20 2709.20 12694.10

(4) Intermac 7603.53 1011.40 3422.40 13458.00 1165.20 4212.20

(5) Cremi 1977.18 1628.80 2889.10 5108.97 760.60 2102.70

(6) Bancreser 2405.00 140.70 1050.50 3314.32 190.80 1681.10

(7) MercNort 2146.06 338.30 1320.10 3714.72 463.30 1377.40

(8) BCH 2944.00 260.8 1410.00 3728.00 402.90 1794.10

(9) Confia 1962.34 266.60 1568.00 3324.43 364.90 1944.40

(10) Bancen 1815.73 196.70 946.20 2544.96 242.70 848.80

(11) Promex 1908.23 251.30 1162.80 3080.00 320.40 1251.40

(12) Banoro 1372.78 169.60 598.20 2799.00 224.40 810.50

(13) Banorie 488.17 71.90 340.80 680.88 86.80 373.00



Table 9

DEA Mexican bank analysis, 13 banks, 1990

Bank 1990

CCR BCC FDH GDEA

h Class h RTS h Class a ¼ 103

ðxT
o m ¼ yT

o lÞ
a ¼ 10 a ¼ 1 a ¼ 0:5 a ¼ 0:1

(1) Banamex 0.816 NE 1.000 D 1.000 E )123.46 0.00 0.00 0.00 0.00

(2) Bancomer 0.646 NE 0.890 – 1.000 E )744.67 )7282.88 )358.41 0.00 0.00

(3) Serfin 0.902 NE 1.000 D 1.000 E )11.88 0.00 0.00 0.00 0.00

(4) Intermac 0.573 NE 0.809 – 1.000 E )285.50 )1648.99 0.00 0.00 0.00

(5) Cremi 1.000 E 1.000 C 1.000 E 0.00 0.00 0.00 0.00 0.00

(6) Bancreser 1.000 E 1.000 C 1.000 E 0.00 0.00 0.00 0.00 0.00

(7) MercNort 0.750 NE 0.757 – 0.914 NE )126.73 )1078.91 )149.92 )102.55 )19.69
(8) BCH 0.829 NE 0.837 – 1.000 E )70.89 )390.60 )11.27 )0.08 0.00

(9) Confia 1.000 E 1.000 C 1.000 E 0.00 0.00 0.00 0.00 0.00

(10) Bancen 0.778 NE 0.803 – 1.000 E )94.29 )390.09 )8.06 0.00 0.00

(11) Promex 0.782 NE 0.797 – 1.000 E )79.50 )506.79 )29.08 )6.76 0.00

(12) Banoro 0.588 NE 0.644 – 1.000 E )299.20 )606.52 )12.81 0.00 0.00

(13) Banorie 0.862 NE 1.000 I 1.000 E )58.55 0.00 0.00 0.00 0.00

Output is total interest and non-interest income; inputs are total deposits and non-interest expense. E: efficient; D: decreasing returns to

scale (RTS); I: increasing returns to scale; NE: not efficient; C: constant returns to scale.

Table 10

DEA Mexican bank analysis, 13 banks, 1991

Bank 1991

CCR BCC FDH GDEA

h Class h RTS h Class a ¼ 103

ðxT
o m ¼ yT

o lÞ
a ¼ 15 a ¼ 10 a ¼ 1 a ¼ 0:5 a ¼ 0:1

(1) Banamex 0.531 NE 1.000 D 1.000 E )181.32 0.00 0.00 0.00 0.00 0.00

(2) Bancomer 0.511 NE 1.000 D 1.000 E )281.95 0.00 0.00 0.00 0.00 0.00

(3) Serfin 0.532 NE 1.000 D 1.000 E )136.52 0.00 0.00 0.00 0.00 0.00

(4) Intermac 0.569 NE 0.908 – 1.000 E )257.11 )717.26 0.00 0.00 0.00 0.00

(5) Cremi 0.704 NE 0.772 – 1.000 E )282.58 )3134.25 )1957.76 0.00 0.00 0.00

(6) Bancreser 1.000 E 1.000 C 1.000 E 0.00 0.00 0.00 0.00 0.00 0.00

(7) MercNort 0.634 NE 0.638 – 0.892 NE )284.80 )4371.50 )2999.54 )385.14 )212.60 )42.31
(8) BCH 0.826 NE 0.828 – 0.906 NE )112.88 )1481.79 )982.50 )99.34 )60.03 )15.61
(9) Confia 1.000 E 1.000 C 1.000 E 0.00 0.00 0.00 0.00 0.00 0.00

(10) Bancen 0.592 NE 0.612 – 1.000 E )253.70 )1621.77 )1075.07 )50.54 0.00 0.00

(11) Promex 0.705 NE 0.715 – 1.000 E )191.64 )2262.34 )1504.08 )74.49 0.00 0.00

(12) Banoro 0.535 NE 0.554 – 1.000 E )295.19 )1410.08 )934.00 )80.67 )5.37 0.00

(13) Banorie 0.937 NE 1.000 I 1.000 E )73.42 0.00 0.00 0.00 0.00 0.00

Output is total interest and non-interest income; inputs are total deposits and non-interest expense. E: efficient; D: decreasing returns

to scale (RTS); I: increasing returns to scale; NE: not efficient; C: constant returns to scale.
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the existing DEA models, the GDEA model can incorporate his/her various value judgment by changing a
parameter a, and then several kinds of efficiency of the basic DEA models can be measured in a unified way

on the basis of the GDEA model. Furthermore, the relationships among efficiency for these models become

transparent by considering GDEA.
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6. Conclusions

In this paper, we suggested the GDEA model based on parametric domination structure, and defined a-
efficiency in the GDEA model. In addition, we investigated theoretical properties on relationships between

the GDEA model and existing DEA models, specifically, the CCR model, the BCC model and the FDH

model. And then, it was proved that the GDEA model makes it possible to evaluate efficiencies of several

DEA models in a unified way, and to incorporate various preference structures of decision makers.

Through a numerical example, it has been shown that the mutual relations among all DMUs can be
grasped by varying a in the GDEA model. Furthermore, we proposed the GDEAD model based on pro-

duction possibility as a dual approach to GDEA, and defined aD-efficiency in the GDEAD model. Also, we

clarified the relations between the GDEAD model and existing DEA dual models, and interpreted the

meaning of an optimal value to the problem (GDEAD). As a result, it is possible to make a quantitative

analysis for inefficiency on the basis of surplus of inputs and slack of outputs. Moreover, through an il-

lustrative example, it has been shown that GDEAD can reveal domination relations among all DMUs. It is

expected from the obtained results in this study that GDEA is useful for evaluating the efficiency

of complex management systems in business, industry and social problems.
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