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Abstract- Neural networks are widely used in pattern 

recognition, security applications and robot control. We propose 
a hardware architecture system; using Tiny Neural Networks 
(TNN) specialized in image recognition. The generic TNN 
architecture allows   expandability by means of mapping several 
Basic units (layers) and dynamic reconfiguration; depending on 
the application specific demands. One of the most important 
features of Tiny Neural Networks (TNN) is their learning ability. 
Weight modification and architecture reconfiguration can be 
carried out at run time. Our system performs shape 
identification by the interpretation of their singularities. This is 
achieved by interconnecting several specialized TNN. The 
results of several tests, in different conditions are reported in the 
paper. The system detects accurately a test shape in almost all 
the experiments performed. The paper also contains a detailed 
description of the system architecture and the processing steps. 

In order to validate the research, the system has been 
implemented and was configured as a perceptron network with 
backpropagation learning and applied to the recognition of 
shapes. Simulation results show that this architecture has 
significant performance benefits. 

 

I. INTRODUCTION 

One of the major problems in computer vision is to build 
systems with the ability to identify shapes in real world 
scenario [1], [2], [3], [4], [5], [6], [7]. The target application 
of our work is the correct identification of road traffic signs in 
images taken by a car mounted camera, [8], [9]. The basic 
technique used for this in most applications is to compare 
each portion of an image with a set of known models 
(pattern-matching). On the other hand, the approach taken in 
our work is to use specialized Tiny Neural Networks (TNN), 
making it possible to use a massively parallel architecture 
efficiently. A most important feature of Artificial Neural 
Networks (ANN) is their learning ability. Size and real-time 
considerations show that on-chip learning is necessary for a 
large range of applications [3]. 

There are several levels of parallelism in the neural 
network recognition system that we are proposing: 
Parallelism among networks, among the layers of a network, 

among neurons and among connections. All of them are 
shown on the General Architecture of the system (figure.1).  

In contrast to software implementation of ANN, hardware 
implementation provides a high level of parallelism. This 
allows us to make several computations concurrently in order 
to have a higher processing speed [10], [11], [12]. In addition, 
the hardware implementation is highly portable since it has 
minimum requirements in area and power consumption, and 
provides standalone. 

We can classify the ANN hardware implementation in two 
main categories: that based on microprocessors by using 
Digital Signal Processors (DSP) or general purpose 
processors, and that using an Application Specific Integrated 
Circuit (ASIC) or Field Programmable Gate Array (FPGA).  

The first one based on microprocessors, is more flexible 
and relatively easy to implement. However, when the network 
becomes larger (for example, in a fully connected network), it 
is not the best option: general purpose computers are 
required, and the usage and application depend on power and 
area characteristics available. 

The number of “synapses” and multipliers included in a 
fully interconnected network is proportional to the squared 
total number of neurons. The speed slows down due to the 
increase in the number of multipliers, and the chip size or 
chip area increases significantly, which becomes one of the 
critical points in  ANN design. In order to solve this problem, 
the use of hardware multipliers seems to be an option to 
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Fig. 1.  System Architecture 
  

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on June 19, 2009 at 03:09 from IEEE Xplore.  Restrictions apply.



resolve the chip size problem; as well as the design of neural 
networks without multipliers or reusable ones [13], [14].  

Our work explores multiplier re-usability based on an 
internal bus structure. Taking into account the parallelism of 
the neural network model, it is possible to map the 
architecture on array processors, obtaining a linear growth in 
the number of multipliers. We have an ideal scenario for 
ANN implementation in embedded systems. Figure 2 shows a 
network interconnected by mean of an array processor model 
[15], [16], [17], [18]. 

The main objective of this research is the design of a 
reconfigurable, efficient, low cost architecture for shape 
recognition. Robust methods for the analysis of images, and 
the implementation of a system based on specialized TNN 
have been developed for shape recognition by means of the 
analysis of some characteristics of the image (singularities). 
Traffic signal recognition and/or pedestrian recognition are 
two of the most relevant applications. These networks work 
cooperatively to obtain the classification of the image. 

The main restriction comes with the complexity of the 
information contained in the image data, because they are 
sensible to changes of the environment. It is then necessary to 
have a recognition system that allows dynamic 
reconfiguration [1], [19]. 

It is necessary to develop an architecture that allows 
optimum usage of hardware resources, due to the limitations 
in power and available area. The suggested system is formed 
by small Perceptron multilevel networks, and was 
implemented in an Altera Cyclone II FPGA. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

II. SYSTEM ARCHITECTURE CHARACTERISTICS OF THE FPGA 
BASED APPROACH 

The requirements of recurrent learning processes can be 
satisfied by the reconfiguration and flexibility of FPGAs, 
[11], [20], [21]. Weight modification and architecture 
reconfiguration can be carried out during run time. 

When talking about ANN implementation, the following 
considerations should be taken into account: frequency, 
precision, configuration issues, and ANN parallelism. In 
order to improve general design characteristics, there are two 
units: basic and control units. 

Basic units (specialized neural networks) are in charge of 
signal processing and weight and bias data storage, including 
the multiplication of the weights by the inputs, the 
accumulation and the nonlinear function activation. The 
control units work on the basic of signal transmission 
including parallel processing and the algorithm work. 

By considering those units, the proposed design (as shown 
in figure 3) has an efficient architecture based on specialized 
neural networks by recognition, to be implemented in FPGAs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

III. UNITS 

For achieving the learning operation the algorithm is 
divided in three phases, known as: feed-forward, back-
propagation and up-date [22], [23], [24]. In the feed-forward 
phase the input signals propagate through the network layer 
by layer, eventually producing some response at the output of 
the network. This response is compared with the desired 
(target) response, generating error signals that are propagated 
in backward direction through the network. In this backward 
phase of operation, the free parameters of the network are 
adjusted so as to minimize the sum of square error. Finally, 
weights and biases are updated using the data obtained in the 
previous phase. The process is repeated as many times as 
necessary in order to have a trained network. Usually this 
process is made using general-purpose computers, and is 
known as off-line training. The three phases of algorithm are 
shown in figure 4. 
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Fig. 2.  Network Example 
  

 
Fig. 3.  System Architecture 
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Since the proposed architecture is auto-reconfigurable 

during the execution time, separated modules where 
developed [11], [12], [25].  

So that the system carries out an on-line reconfiguration 
[3], [16], the same learning rules should be applied 
concurrently over a new pattern. When the network is 
reconfigured, the control unit executes the learning process 
concurrently, using the training patterns stored along with the 
new pattern to be recognized. 

When the learning processes finishes, collected data are 
transmitted to the weights and bias network memories, by 
means of the control unit and pass through the 
backpropagation level, which checks the reconfiguration and 
learning of it.  

Figure 5 shows the implementation of the different levels 
of the learning algorithm. The feed-forward and update 
modules corresponding to the basic unit were implemented 
directly in the same FPGA (Altera Cyclone II), and they are 
executed concurrently in a foreground Process.  

At that moment, the uncertainty module determines if there 
is a new pattern and sends a request to the control unit to 
reconfigure the network. The backpropagation module 
corresponding to on line learning was implemented in the 
PowerPC processor XILINX (Virtex II), background process.  
Each module of the algorithm follows the general architecture 
of the system proposed showed in figure 3, consisting of a 
global control and several specialized neural networks. 

 

By means of a state machine, three modes of operation of 
the system were defined. In the Initialization mode, the 
system loads the initial values of the weights and biases, and 
begins the Classification mode. In this mode, the network 
works in feed-forward, and when it detects that a new pattern 
has arrived it changes to the Reconfiguration mode. When 
this mode finished, the update is carried out in other to begin 
again with the classification mode. The different modes of 
operation and the states machine will be explained later in 
this paper. 

 

IV. SPECIALIZED TINY NEURAL NETWORKS 

Considering the problems of size and scalability, we 
propose a design based on the mathematical model of the 
neural networks, similar to the model shown in figure 6(a).  

 
As explained above, the synapse number is limited 

(network size) by the size of the internal memory of FPGA 
[26]. In addition, the network architecture (number of neurons 
and number of layers) is also limited by the hardware 
resources [27]. In order to avoid these difficulties, a Basic 
Processing Unit is suggested as the central component of the 
network. This unit is called the Knowledge Unit (KWU) and 
can be modified to configure a neuron or a number of them in 
order to create one of the layers of the network, obtaining 
different topologies according to the programming of the 
internal registers of the system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6b shows the model of a Basic Learning Unit. The 

hardware architecture is obtained by mapping the high level 
algorithmic model of the Perceptron neural network into the 
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Fig. 5.  Algorithms Segmentation for Learning Operation 
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equivalent module hardware. A data input vector (coming 
from the acquisition and pre-processing levels) and the 
external buses system (address, data and control) is used to 
interconnect the knowledge units with the general control of 
the system [8]. 

According to our research it is necessary to know the 
degree of parallelism (taking into account the hardware 
resources) of the algorithm, in order to trade off the 
development and hardware resources consumption when 
implemented. With the suggested model, the Basic Learning 
Unit architecture has an almost complete parallel 
functionality, providing the best development with the 
minimum resources. 

All hardware neurons (Basic Units), are formed by a MAC 
Unit (multiplier and accumulator), a Serial Unit (multiplexer), 
and the Non-lineal Functions calculator, all of them 
interconnected by a parallel system bus as shown on figure 
6b. 

MAC Units are connected through the internal data bus to 
their weight memories and to the series of input data (input 
vector). Let us suppose that we have an input layer of N 
neurons. By means of this architecture it is possible to carry 
out N operations in parallel with serial input data because of 
the simultaneous access of the memories, through the internal 
structure of bus. Therefore, the weight and bias memories 
have been implemented in the RAM modules embedded in 
the FPGA. These modules allow being accessed 
independently, so faster memory accesses are achieved thanks 
to this distributed memory scheme.  

The design of the Basic Unit should include a level in 
which output data are obtained (output vector) in order to 
balance cost and development. This internal output contains 
the results of the first layer neurons and it is used as an input 
vector on the network’s hidden or the output layers.  

All of the MAC units makes parallel calculations ending up 
into an architecture with a high hardware resources 
consumption, so resources are optimized by an adder and a 
block which activates the non-lineal function used into the 
Basic Unit design; this way, the Learning Unit architecture 
has an input vector and an output vector for the information 
transfer (feed-forward), through the different network layers, 
being able to implement several neural networks, Perceptron 
Multilayer (PM), [18].  

As a special case, when talking about a Perceptron 
Multilayer network and due to the little number of neurons on 
the exit layer, it is not necessary to use a Serial Unit because 
cost and development trade off does not have a negative 
impact on the architecture. There is an adder and an 
activation function by output neuron; the bias memory has 
been implemented with registers in the same adder, reducing 
the RAM cost and achieving resource optimization. We can 
see the architecture of an exit layer unit on figure 7. 

Having the Learning Unit, it is easy to have a neural 
network interconnecting two or more Basic Units; depending 
on the number of layers those neurons have (Modular and 
Scalable features of the Architecture). The interconnection is 

performed by an internal bus that transfers the data vectors of 
the previous stage. The data flow is controlled by a control 
unit through a protocol which indicates to the next layer on 
the network, the beginning and end of the information vector. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
With the Basic and Control units designed, a new layer of 

the neural network, which we will call the Learning Generic 
Unit can be designed. This is the basic module in the network 
and gives the modular characteristic to the system, which 
enables the Perceptron networks with several neurons and 
layers to be implemented. 

These units are also the basic modules on the huge 
architectures on FPGAs platforms, having a growing system 
on internal networks and the whole one. A growing and 
modular system is achieved when the modular control unit is 
designed. 

The modular design of the Control unit of the network 
layers avoids the need for global control and a completely 
modular and scalable system is obtained. The main activities 
carried out by the Control Unit are signal transmission and 
learning algorithm execution. 

The state machine of the Control Unit has been designed to 
improve the system performance. This state machine has been 
carefully created and has three different ways of 
implementing the algorithm (figure 8) as explained 
previously. 

The characteristics of the design allow that several 
networks execute the classification process in parallel, and 
meanwhile concurrently the training process could be 
executed in another one TNN. 

In order to maintain the processing speed of a TNN in 
hardware and its versatility in simulations, the reconfiguration 
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of the neural network on its different hardware levels has to 
be possible (Reconfiguration features). Different researches 
have revealed that general purpose processors can be used in 
order to reprogram the neural network. We could also use 
FPGAs to modify the bus structure and the Basic Unit 
possessing by means of the change in the configuration 
registers [21]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The characteristics of the design allow that several 

networks execute the classification process in parallel, and 
meanwhile concurrently the training process could be 
executed in another one TNN. 

In order to maintain the processing speed of a TNN in 
hardware and its versatility in simulations, the reconfiguration 
of the neural network on its different hardware levels has to 
be possible (Reconfiguration features). Different researches 
have revealed that general purpose processors can be used in 
order to reprogram the neural network. 

The way in which general purpose processors are used is 
better although it is not completely successful with regard a 
the processing speed and required areas; in any case, the 
reconfigurable hardware networks are limited when 
programming but they have more processing speed, they use 
a smaller area and they can be included in an integrated 
circuit (system on-chip). Due to the characteristics of the 
suggested system, it can be considerate to be a heterogeneous 
architecture, combining the activities from the general 
purpose processors (programming availability) and those of 
the FPGAs (parallel processing and execution speed).  

The specialized network design has an Uncertainty stage 
(module). The basic function of the module is to determine if 
the output data sequence corresponds to the training pattern 

or if it is similar to it, generating a valid signal for the 
recognition. On the other hand, if the Uncertainty module 
detects similar points on a probability range between 50% 
and 75%, a signal for reconfiguration is produced [28]. 
Uncertainty stages are visible on Figure 9. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When the reconfiguration takes place, the global control 

system executes several processes concurrently: input vector 
acquisition, data attachment to training memory, new training 
vectors (target) and on-line training execution (including the 
new learning pattern).  

 
When training is finished, the hardware stages have been 

reconfigured: training memories (content and dimensions), 
and weight and bias memories have been updated, with new 
values obtained at the end of the process. 

 

V. INTERCONNECTION OF THE SPECIALIZED TNN TO THE 
GLOBAL CONTROL SYSTEM 

The system designed is highly parallel and able to execute 
several tasks at the same time. The networks in our system 
are also cooperative in order to solve complex issues through 
small networks. As an example of the system application, the 
networks can be trained to identify special points on an 
image. These points are characteristic elements of shape 
(singularities) such as right-angled corners, round segments 
and acute-angled corners. These singularities are used for the 
recognition of rectangular, circular and triangular shapes. 
Autonomous robots or intelligent systems for cars use this 
kind of system [29].  

The decision to have the communication of the global 
control system through a bus structure was taken after 
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Fig. 8 System Operation 

Signal
Valid

> Threshold

COMPARATOR
DETECTOR
SEQUENCE

DETECTOR
UNCERTAINTY

cha

CONTROL

CONTROLDATA OUT

Signal
No-Valid

Reconfig

Uncertainty stage: Comparator, 
Detector Sequence, Detector Uncertainty

Signal
Valid

> Threshold

COMPARATOR
DETECTOR
SEQUENCE

DETECTOR
UNCERTAINTY

cha

CONTROL

CONTROLDATA OUT

Signal
No-Valid

Reconfig

Signal
Valid

> Threshold

COMPARATOR
DETECTOR
SEQUENCE

DETECTOR
UNCERTAINTY

cha

CONTROL

CONTROLDATA OUT

Signal
No-Valid

Reconfig

Uncertainty stage: Comparator, 
Detector Sequence, Detector Uncertainty

 
 
Fig. 9 Uncertainty Module 

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on June 19, 2009 at 03:09 from IEEE Xplore.  Restrictions apply.



consideration of the efficiency level that we wanted to 
achieve. In this way the memory blocks share the same space 
on the system and can be accessed with a logic address, 
having as a result a distributed system of the memories on the 
networks with a centralized control. The addressing mode 
was considered to be the optimum model because it does not 
require a redundant memory for the networks, and only 
during the reconfiguration process can there exists a 
redundancy in the network memories that have to be 
reconfigured, achieving a more rapid convergence of the 
algorithm. See figure 10, for the networks interconnection to 
the global control. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 shows the general diagram of the system, 

including the learning memory. That memory is a non volatile 
one and has all the required training patterns for the 
specialized networks training.  

The reconfiguration takes place at the moment at which a 
new image must be recognized. Therefore, the architecture 
has to be modified, and the new training patterns and the 
targets added to the memory. When the training process ends, 
the memories are updated and the network has the recognition 
connections. 

According to the research, there are different forms of 
reconfiguration on a neural network. During the execution 
time, the number of neurons on the input layer can be 
modified or we can give enough knowledge to the network by 
changing the training memory content. The either of both 
methods leads us to the image recognition. 

Depending on available hardware resources and the 
applications of the system, a dynamic reconfiguration is 
possible when the image is part of the same group. 
Specialized cooperative networks, where installed for 
reconfiguration to be held in the control section, acquire more 
knowledge as new images are recognized. 

 

VI. RESULTS 

The weight and bias data stored in the memory modules 
were obtained by the off-line learning, using a 
backpropagation algorithm. Simulation software was 
developed using Matlab and Simulink, Neural Network 
Toolbox.  

The results obtained in the specialized networks simulation 
for images recognition are as follows: 

 
In order to obtain the data of the memories of weights, 450 

patterns of training with different characteristics have been 
used, taking into account the fact that all correspond to an 
image of the same class (rectangular, circular and triangular 
shapes) 

The training method works in batch mode, which means 
that once all the entries were presented, the learning stage 
updates the weights and bias according to the decreasing 
moment of the gradient and an adaptive learning scale [23].  

Some Maltab results are shown on figure 11, where the 
graph shows the stages used for the algorithm to converge 
with the targets of the parameters [30]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As an example of the application of the system for the 

recognition of signals by means of singularities, figure 11a 
shows the number of necessary iterations of training for one 
of the networks specialized in recognizing acute-angled 
corners. 

Figure 11b, shows the results of the system (uncertainty 
module) when they present/display 30 images that contain the 
vectors that are characteristic in a correct sequence 
corresponding to the recognition of triangular signals. A 
region of 6x5 (columns*rows) pixels has been used to detect 
the singularities. The classification mode has been 
implemented as a series of regions processing. First, the ROI 
extractor detects the RoI (Region of Interest), figure 12, sized 
60x45 pixels, and stores it in the internal embedded RAM 
memory. Then, successive vector of characteristic are 
extracted from the RoI, and sent to the TNN to be processed. 
So, dividing the RoI in 6x5 sized-regions, results in 10x9 data 
input vector in one RoI. This is the actual amount of data 
being processed in each image field, resulting in 90 vectors of 

weights of 
the neuron 1

weights of the 
N neurons

Neuronal Specialized
Network

Control address map

weights and bias memories of
the neuronal specialized network

Address space
“Window”

Neuronal Specialized
Network

Neuronal Specialized
Network

Physical address 

Physical address
Logical address 

weights of 
the neuron 1

weights of the 
N neurons

Neuronal Specialized
Network

Control address map

weights and bias memories of
the neuronal specialized network

Address space
“Window”

Neuronal Specialized
Network

Neuronal Specialized
Network

Physical address 

Physical address
Logical address 

 
Fig. 10 System Memory Map (a) Training

(b) Simulation

(a) Training

(b) Simulation  
Fig. 11 Training Results 

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on June 19, 2009 at 03:09 from IEEE Xplore.  Restrictions apply.



30 pixels each one. This has been accomplished by sweeping 
the RoI, and by sending each vector of characteristics to the 
TNN, and by storing the result associated to each region. In 
this way, probability maps of possible detected singularities 
are obtained so that the uncertainty stage can decide whether 
a signal has been detected or not, as shown in figure 11b. 

 
 
 
 
 
 
 
 
 
 
 
 
 
In addition, further simulations in MATLAB, have 

established that a Q8.16 format is accurate enough to quantify 
weights and biases. This reduction in the bit width leads to a 
reduction in the resources consumed by the network. But 
more importantly, a great increase in the maximum operating 
frequency is also achieved. This is a key factor if we want to 
enhance the system. 

As a design premise we have always had in mind a design 
for reuse methodology. Therefore, a big effort has been made 
to specify as many generic hardware modules as possible. For 
this reason, the architecture and VHDL description of the 
TNN has been improved so that later versions, apart from the 
basic functionality mentioned above, make possible their 
building N-layer, m-output perceptrons in the easiest and 
most-automated way possible. These features have been 
incorporated so that we shall be able, in the future, to test the 
system architecture on larger FPGAs. 

Preliminary synthesis (no synthesis effort or optimizations 
directed to the synthesizer) results for Altera CYCLONE 
EP1C20F400C6 and CYCLONE-II EP2C35F672C6 devices 
have been obtained with the Altera Quartus II (v. 6.0) 
software package. The proposed architecture (Q8.16) fits in 
one CYCLONE device, but remaining resources, mainly 
memory, are a bit scarce. Therefore, the system has also been 
implemented in the CYCLONE-II device. Functional and 
post-fitting simulations with  Mentor Graphics ModelSim 
simulation environment show how the real-time restrictions 
imposed on the system and the functional specifications are 
met. 

 
 
 
 
 
 
 

Fitting results are included for the whole Recognition 
System (see figure 13). The implemented TNN has 30 
neurons in the input layer, and 3 in the output layer. Fitting 
details for the most important blocks of the architecture are 
also shown. 

Figure 14 shows fitting results for the Learning Algorithm 
execute on-line over the XILINX VIRTEX-II PowerPc, when 
the Reconfiguration Mode is needed. This Learning 
Algorithm was coded in C language (400 code lines). Some 
interesting data are:  

• Learning Rate α = 0.1: Reconf. Time = 0.3sec., with 
12 iterations. 

• Learning Rate α = 0.01. Reconf. Time = 0.8 sec., with 
58 iterations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

VII. CONCLUSIONS 

We have proposed and designed a new hardware 
architecture system for neural network based on specialized 
Tiny Neural Networks (TNN) for image recognition. One of 
the most important features of Tiny Neural Networks (TNN) 
is their on-line learning ability. Those TNN are also 
cooperative in order to solve complex recognition problems. 
As an example of the system application, TNN can be trained 
to identify special points on an image. These points are 
characteristic elements of shape (singularities) such as right-
angled corners, round segments and acute-angled corners. 
Autonomous robots or intelligent systems for cars use this 
kind of system. 
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Fig. 12 Traffic Sign Recognition 
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Fig. 13 TNN Implementation 
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