
FPGA Implementation of an Image Recognition
System based on Tiny Neural Networks and on-line

Reconfiguration

Félix Moreno, Jaime Alarcón, Rubén Salvador and Teresa Riesgo
Centro de Electrónica Industrial, http://www.cei.upm.es

Departamento de Automática, Ingeniería Electrónica e Informática Industrial
Universidad Politécnica de Madrid.

felix.moreno@upm.es

Abstract- Neural networks are widely used in pattern

recognition, security applications and robot control. We propose
a hardware architecture system; using Tiny Neural Networks
(TNN) specialized in image recognition. The generic TNN
architecture allows expandability by means of mapping several
Basic units (layers) and dynamic reconfiguration; depending on
the application specific demands. One of the most important
features of Tiny Neural Networks (TNN) is their learning ability.
Weight modification and architecture reconfiguration can be
carried out at run time. Our system performs shape
identification by the interpretation of their singularities. This is
achieved by interconnecting several specialized TNN. The
results of several tests, in different conditions are reported in the
paper. The system detects accurately a test shape in almost all
the experiments performed. The paper also contains a detailed
description of the system architecture and the processing steps.

In order to validate the research, the system has been
implemented and was configured as a perceptron network with
backpropagation learning and applied to the recognition of
shapes. Simulation results show that this architecture has
significant performance benefits.

I. INTRODUCTION

One of the major problems in computer vision is to build
systems with the ability to identify shapes in real world
scenario [1], [2], [3], [4], [5], [6], [7]. The target application
of our work is the correct identification of road traffic signs in
images taken by a car mounted camera, [8], [9]. The basic
technique used for this in most applications is to compare
each portion of an image with a set of known models
(pattern-matching). On the other hand, the approach taken in
our work is to use specialized Tiny Neural Networks (TNN),
making it possible to use a massively parallel architecture
efficiently. A most important feature of Artificial Neural
Networks (ANN) is their learning ability. Size and real-time
considerations show that on-chip learning is necessary for a
large range of applications [3].

There are several levels of parallelism in the neural
network recognition system that we are proposing:
Parallelism among networks, among the layers of a network,

among neurons and among connections. All of them are
shown on the General Architecture of the system (figure.1).

In contrast to software implementation of ANN, hardware
implementation provides a high level of parallelism. This
allows us to make several computations concurrently in order
to have a higher processing speed [10], [11], [12]. In addition,
the hardware implementation is highly portable since it has
minimum requirements in area and power consumption, and
provides standalone.

We can classify the ANN hardware implementation in two
main categories: that based on microprocessors by using
Digital Signal Processors (DSP) or general purpose
processors, and that using an Application Specific Integrated
Circuit (ASIC) or Field Programmable Gate Array (FPGA).

The first one based on microprocessors, is more flexible
and relatively easy to implement. However, when the network
becomes larger (for example, in a fully connected network), it
is not the best option: general purpose computers are
required, and the usage and application depend on power and
area characteristics available.

The number of “synapses” and multipliers included in a
fully interconnected network is proportional to the squared
total number of neurons. The speed slows down due to the
increase in the number of multipliers, and the chip size or
chip area increases significantly, which becomes one of the
critical points in ANN design. In order to solve this problem,
the use of hardware multipliers seems to be an option to

Global
Control

System Bus

Neuronal Net1 Neuronal Net2 Neuronal Net3
Input Vector

General Architecture of the System
a) Net, b) Layers, c) Neurons, d) Links

Layer

neuron

link

Layer

neuron

link

Layer

neuron

link

Global
Control

System Bus

Neuronal Net1 Neuronal Net2 Neuronal Net3
Input Vector

General Architecture of the System
a) Net, b) Layers, c) Neurons, d) Links

Layer

neuron

link

Layer

neuron

link

Layer

neuron

link

Layer

neuron

link

Layer

neuron

link

Layer

neuron

link

Fig. 1. System Architecture

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on June 19, 2009 at 03:09 from IEEE Xplore. Restrictions apply.

resolve the chip size problem; as well as the design of neural
networks without multipliers or reusable ones [13], [14].

Our work explores multiplier re-usability based on an
internal bus structure. Taking into account the parallelism of
the neural network model, it is possible to map the
architecture on array processors, obtaining a linear growth in
the number of multipliers. We have an ideal scenario for
ANN implementation in embedded systems. Figure 2 shows a
network interconnected by mean of an array processor model
[15], [16], [17], [18].

The main objective of this research is the design of a
reconfigurable, efficient, low cost architecture for shape
recognition. Robust methods for the analysis of images, and
the implementation of a system based on specialized TNN
have been developed for shape recognition by means of the
analysis of some characteristics of the image (singularities).
Traffic signal recognition and/or pedestrian recognition are
two of the most relevant applications. These networks work
cooperatively to obtain the classification of the image.

The main restriction comes with the complexity of the
information contained in the image data, because they are
sensible to changes of the environment. It is then necessary to
have a recognition system that allows dynamic
reconfiguration [1], [19].

It is necessary to develop an architecture that allows
optimum usage of hardware resources, due to the limitations
in power and available area. The suggested system is formed
by small Perceptron multilevel networks, and was
implemented in an Altera Cyclone II FPGA.

II. SYSTEM ARCHITECTURE CHARACTERISTICS OF THE FPGA
BASED APPROACH

The requirements of recurrent learning processes can be
satisfied by the reconfiguration and flexibility of FPGAs,
[11], [20], [21]. Weight modification and architecture
reconfiguration can be carried out during run time.

When talking about ANN implementation, the following
considerations should be taken into account: frequency,
precision, configuration issues, and ANN parallelism. In
order to improve general design characteristics, there are two
units: basic and control units.

Basic units (specialized neural networks) are in charge of
signal processing and weight and bias data storage, including
the multiplication of the weights by the inputs, the
accumulation and the nonlinear function activation. The
control units work on the basic of signal transmission
including parallel processing and the algorithm work.

By considering those units, the proposed design (as shown
in figure 3) has an efficient architecture based on specialized
neural networks by recognition, to be implemented in FPGAs.

III. UNITS

For achieving the learning operation the algorithm is
divided in three phases, known as: feed-forward, back-
propagation and up-date [22], [23], [24]. In the feed-forward
phase the input signals propagate through the network layer
by layer, eventually producing some response at the output of
the network. This response is compared with the desired
(target) response, generating error signals that are propagated
in backward direction through the network. In this backward
phase of operation, the free parameters of the network are
adjusted so as to minimize the sum of square error. Finally,
weights and biases are updated using the data obtained in the
previous phase. The process is repeated as many times as
necessary in order to have a trained network. Usually this
process is made using general-purpose computers, and is
known as off-line training. The three phases of algorithm are
shown in figure 4.

multiplier

adder

X1X2Xn

12ω
11ω

1nω

22ω
21ω

2nω

2nω
1nω

nnω

Array processor

* *

+ +
MAC

multiplier

adder

X1X1X2X2XnXn

12ω
11ω

1nω

12ω 12ω
11ω 11ω

1nω 1nω

22ω
21ω

2nω

22ω
21ω

2nω

22ω 22ω
21ω 21ω

2nω 2nω

2nω
1nω

nnω

2nω
1nω

nnω

2nω 2nω
1nω 1nω

nnω nnω

Array processor

* *

+ +
MAC

Fig. 2. Network Example

Fig. 3. System Architecture

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on June 19, 2009 at 03:09 from IEEE Xplore. Restrictions apply.

Since the proposed architecture is auto-reconfigurable

during the execution time, separated modules where
developed [11], [12], [25].

So that the system carries out an on-line reconfiguration
[3], [16], the same learning rules should be applied
concurrently over a new pattern. When the network is
reconfigured, the control unit executes the learning process
concurrently, using the training patterns stored along with the
new pattern to be recognized.

When the learning processes finishes, collected data are
transmitted to the weights and bias network memories, by
means of the control unit and pass through the
backpropagation level, which checks the reconfiguration and
learning of it.

Figure 5 shows the implementation of the different levels
of the learning algorithm. The feed-forward and update
modules corresponding to the basic unit were implemented
directly in the same FPGA (Altera Cyclone II), and they are
executed concurrently in a foreground Process.

At that moment, the uncertainty module determines if there
is a new pattern and sends a request to the control unit to
reconfigure the network. The backpropagation module
corresponding to on line learning was implemented in the
PowerPC processor XILINX (Virtex II), background process.
Each module of the algorithm follows the general architecture
of the system proposed showed in figure 3, consisting of a
global control and several specialized neural networks.

By means of a state machine, three modes of operation of
the system were defined. In the Initialization mode, the
system loads the initial values of the weights and biases, and
begins the Classification mode. In this mode, the network
works in feed-forward, and when it detects that a new pattern
has arrived it changes to the Reconfiguration mode. When
this mode finished, the update is carried out in other to begin
again with the classification mode. The different modes of
operation and the states machine will be explained later in
this paper.

IV. SPECIALIZED TINY NEURAL NETWORKS

Considering the problems of size and scalability, we
propose a design based on the mathematical model of the
neural networks, similar to the model shown in figure 6(a).

As explained above, the synapse number is limited

(network size) by the size of the internal memory of FPGA
[26]. In addition, the network architecture (number of neurons
and number of layers) is also limited by the hardware
resources [27]. In order to avoid these difficulties, a Basic
Processing Unit is suggested as the central component of the
network. This unit is called the Knowledge Unit (KWU) and
can be modified to configure a neuron or a number of them in
order to create one of the layers of the network, obtaining
different topologies according to the programming of the
internal registers of the system.

Figure 6b shows the model of a Basic Learning Unit. The

hardware architecture is obtained by mapping the high level
algorithmic model of the Perceptron neural network into the

Backpropagation
Module

Update
Module

Feedforward
Module

Backpropagation
Module

Backpropagation
Module

Update
Module
Update
Module

Feedforward
Module

Feedforward
Module

Fig. 4. Sequential Algorithm for Learning Operation

Update
Module

Feedforward
Module

Backpropagation
Module

Reconfiguration

Foreground
Process

Background
Process

Update
Module
Update
Module

Feedforward
Module

Feedforward
Module

Backpropagation
Module

Backpropagation
Module

Reconfiguration

Foreground
Process

Background
Process

Fig. 5. Algorithms Segmentation for Learning Operation

Data Bus Input Vector

DataOut

WEIGHTS

MEMORY MAC* SERIALIZER**

BIAS

+n

BIAS ADDER
ACTIVATION

FUNCTION

LAYER CONTROL

CONTROL

DATA

* MAC = MULTIPLY ACCUMULATE

**NOT IN OUTPUT LAYER

b) Electronic Model
Basic Processing Unit of ANN

X1

Xn

X2

W1

b1

p

1
+ f1

a = f (Wp +b)

a

a) Mathematic Model
Layer of S Neurons, abbreviated notation

R

R x 1
S x R

S x 1

S x 1 S x 1

S = Number of Neurons

Data Bus Input Vector

DataOut

WEIGHTS

MEMORY MAC* SERIALIZER**

BIAS

+n

BIAS ADDER
ACTIVATION

FUNCTION

LAYER CONTROL

CONTROL

DATA

* MAC = MULTIPLY ACCUMULATE

**NOT IN OUTPUT LAYER

b) Electronic Model
Basic Processing Unit of ANN

Data Bus Input Vector

DataOut

WEIGHTS

MEMORY MAC* SERIALIZER**

BIAS

+n

BIAS ADDER
ACTIVATION

FUNCTION

LAYER CONTROL

CONTROL

DATA

* MAC = MULTIPLY ACCUMULATE

**NOT IN OUTPUT LAYER

Data Bus Input Vector

DataOut

WEIGHTS

MEMORY MAC* SERIALIZER**

BIAS

+n

BIAS ADDER
ACTIVATION

FUNCTION

LAYER CONTROL

CONTROL

DATA

* MAC = MULTIPLY ACCUMULATE

**NOT IN OUTPUT LAYER

b) Electronic Model
Basic Processing Unit of ANN

X1

Xn

X2

W1

b1

p

1
+ f1

a = f (Wp +b)

a

a) Mathematic Model
Layer of S Neurons, abbreviated notation

R

R x 1
S x R

S x 1

S x 1 S x 1

S = Number of Neurons

X1

Xn

X2

W1

b1

p

1
+ f1

X1X1X1

XnXnXn

X2X2X2

W1

b1

p

1
+ f1

a = f (Wp +b)

a

a) Mathematic Model
Layer of S Neurons, abbreviated notation

R

R x 1
S x R

S x 1

S x 1 S x 1

S = Number of Neurons

Fig. 6. TNN Model

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on June 19, 2009 at 03:09 from IEEE Xplore. Restrictions apply.

equivalent module hardware. A data input vector (coming
from the acquisition and pre-processing levels) and the
external buses system (address, data and control) is used to
interconnect the knowledge units with the general control of
the system [8].

According to our research it is necessary to know the
degree of parallelism (taking into account the hardware
resources) of the algorithm, in order to trade off the
development and hardware resources consumption when
implemented. With the suggested model, the Basic Learning
Unit architecture has an almost complete parallel
functionality, providing the best development with the
minimum resources.

All hardware neurons (Basic Units), are formed by a MAC
Unit (multiplier and accumulator), a Serial Unit (multiplexer),
and the Non-lineal Functions calculator, all of them
interconnected by a parallel system bus as shown on figure
6b.

MAC Units are connected through the internal data bus to
their weight memories and to the series of input data (input
vector). Let us suppose that we have an input layer of N
neurons. By means of this architecture it is possible to carry
out N operations in parallel with serial input data because of
the simultaneous access of the memories, through the internal
structure of bus. Therefore, the weight and bias memories
have been implemented in the RAM modules embedded in
the FPGA. These modules allow being accessed
independently, so faster memory accesses are achieved thanks
to this distributed memory scheme.

The design of the Basic Unit should include a level in
which output data are obtained (output vector) in order to
balance cost and development. This internal output contains
the results of the first layer neurons and it is used as an input
vector on the network’s hidden or the output layers.

All of the MAC units makes parallel calculations ending up
into an architecture with a high hardware resources
consumption, so resources are optimized by an adder and a
block which activates the non-lineal function used into the
Basic Unit design; this way, the Learning Unit architecture
has an input vector and an output vector for the information
transfer (feed-forward), through the different network layers,
being able to implement several neural networks, Perceptron
Multilayer (PM), [18].

As a special case, when talking about a Perceptron
Multilayer network and due to the little number of neurons on
the exit layer, it is not necessary to use a Serial Unit because
cost and development trade off does not have a negative
impact on the architecture. There is an adder and an
activation function by output neuron; the bias memory has
been implemented with registers in the same adder, reducing
the RAM cost and achieving resource optimization. We can
see the architecture of an exit layer unit on figure 7.

Having the Learning Unit, it is easy to have a neural
network interconnecting two or more Basic Units; depending
on the number of layers those neurons have (Modular and
Scalable features of the Architecture). The interconnection is

performed by an internal bus that transfers the data vectors of
the previous stage. The data flow is controlled by a control
unit through a protocol which indicates to the next layer on
the network, the beginning and end of the information vector.

With the Basic and Control units designed, a new layer of

the neural network, which we will call the Learning Generic
Unit can be designed. This is the basic module in the network
and gives the modular characteristic to the system, which
enables the Perceptron networks with several neurons and
layers to be implemented.

These units are also the basic modules on the huge
architectures on FPGAs platforms, having a growing system
on internal networks and the whole one. A growing and
modular system is achieved when the modular control unit is
designed.

The modular design of the Control unit of the network
layers avoids the need for global control and a completely
modular and scalable system is obtained. The main activities
carried out by the Control Unit are signal transmission and
learning algorithm execution.

The state machine of the Control Unit has been designed to
improve the system performance. This state machine has been
carefully created and has three different ways of
implementing the algorithm (figure 8) as explained
previously.

The characteristics of the design allow that several
networks execute the classification process in parallel, and
meanwhile concurrently the training process could be
executed in another one TNN.

In order to maintain the processing speed of a TNN in
hardware and its versatility in simulations, the reconfiguration

Data Bus Input Vector

Out

WEIGHTS

MEMORY MAC*

BIAS

+

BIAS ADDER
ACTIVATION

FUNCTION

LAYER CONTROL

CONTROL

DATA

* MAC = MULTIPLY ACCUMULATE

+

+

Out

Out

Data Bus Input Vector

Out

WEIGHTS

MEMORY MAC*

BIAS

+

BIAS ADDER
ACTIVATION

FUNCTION

LAYER CONTROL

CONTROL

DATA

* MAC = MULTIPLY ACCUMULATE

+

+

Out

Out

Fig. 7 Basic Unit Output Layer

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on June 19, 2009 at 03:09 from IEEE Xplore. Restrictions apply.

of the neural network on its different hardware levels has to
be possible (Reconfiguration features). Different researches
have revealed that general purpose processors can be used in
order to reprogram the neural network. We could also use
FPGAs to modify the bus structure and the Basic Unit
possessing by means of the change in the configuration
registers [21].

The characteristics of the design allow that several

networks execute the classification process in parallel, and
meanwhile concurrently the training process could be
executed in another one TNN.

In order to maintain the processing speed of a TNN in
hardware and its versatility in simulations, the reconfiguration
of the neural network on its different hardware levels has to
be possible (Reconfiguration features). Different researches
have revealed that general purpose processors can be used in
order to reprogram the neural network.

The way in which general purpose processors are used is
better although it is not completely successful with regard a
the processing speed and required areas; in any case, the
reconfigurable hardware networks are limited when
programming but they have more processing speed, they use
a smaller area and they can be included in an integrated
circuit (system on-chip). Due to the characteristics of the
suggested system, it can be considerate to be a heterogeneous
architecture, combining the activities from the general
purpose processors (programming availability) and those of
the FPGAs (parallel processing and execution speed).

The specialized network design has an Uncertainty stage
(module). The basic function of the module is to determine if
the output data sequence corresponds to the training pattern

or if it is similar to it, generating a valid signal for the
recognition. On the other hand, if the Uncertainty module
detects similar points on a probability range between 50%
and 75%, a signal for reconfiguration is produced [28].
Uncertainty stages are visible on Figure 9.

When the reconfiguration takes place, the global control

system executes several processes concurrently: input vector
acquisition, data attachment to training memory, new training
vectors (target) and on-line training execution (including the
new learning pattern).

When training is finished, the hardware stages have been

reconfigured: training memories (content and dimensions),
and weight and bias memories have been updated, with new
values obtained at the end of the process.

V. INTERCONNECTION OF THE SPECIALIZED TNN TO THE
GLOBAL CONTROL SYSTEM

The system designed is highly parallel and able to execute
several tasks at the same time. The networks in our system
are also cooperative in order to solve complex issues through
small networks. As an example of the system application, the
networks can be trained to identify special points on an
image. These points are characteristic elements of shape
(singularities) such as right-angled corners, round segments
and acute-angled corners. These singularities are used for the
recognition of rectangular, circular and triangular shapes.
Autonomous robots or intelligent systems for cars use this
kind of system [29].

The decision to have the communication of the global
control system through a bus structure was taken after

State Machine of the System
a) Initialization b) Classification c) Reconfiguration

Initial
State

Load Weights
Layer_In

Load Weights
Layer_Out

Classification

Execute
Layer_In

Execute
Layer_Out

Reconfiguration

Signal
Recognition

Load new
shape

Read training
Memory

Up Date
Memory

Initialization

State Machine of the System
a) Initialization b) Classification c) Reconfiguration

Initial
State

Load Weights
Layer_In

Load Weights
Layer_Out

Classification

Execute
Layer_In

Execute
Layer_Out

Reconfiguration

Signal
Recognition

Load new
shape

Read training
Memory

Up Date
Memory

Initialization
Initial
State

Load Weights
Layer_In

Load Weights
Layer_Out

Classification

Execute
Layer_In

Execute
Layer_Out

Reconfiguration

Signal
Recognition

Load new
shape

Read training
Memory

Up Date
Memory

Initialization

Fig. 8 System Operation

Signal
Valid

> Threshold

COMPARATOR
DETECTOR
SEQUENCE

DETECTOR
UNCERTAINTY

cha

CONTROL

CONTROLDATA OUT

Signal
No-Valid

Reconfig

Uncertainty stage: Comparator,
Detector Sequence, Detector Uncertainty

Signal
Valid

> Threshold

COMPARATOR
DETECTOR
SEQUENCE

DETECTOR
UNCERTAINTY

cha

CONTROL

CONTROLDATA OUT

Signal
No-Valid

Reconfig

Signal
Valid

> Threshold

COMPARATOR
DETECTOR
SEQUENCE

DETECTOR
UNCERTAINTY

cha

CONTROL

CONTROLDATA OUT

Signal
No-Valid

Reconfig

Uncertainty stage: Comparator,
Detector Sequence, Detector Uncertainty

Fig. 9 Uncertainty Module

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on June 19, 2009 at 03:09 from IEEE Xplore. Restrictions apply.

consideration of the efficiency level that we wanted to
achieve. In this way the memory blocks share the same space
on the system and can be accessed with a logic address,
having as a result a distributed system of the memories on the
networks with a centralized control. The addressing mode
was considered to be the optimum model because it does not
require a redundant memory for the networks, and only
during the reconfiguration process can there exists a
redundancy in the network memories that have to be
reconfigured, achieving a more rapid convergence of the
algorithm. See figure 10, for the networks interconnection to
the global control.

Figure 3 shows the general diagram of the system,

including the learning memory. That memory is a non volatile
one and has all the required training patterns for the
specialized networks training.

The reconfiguration takes place at the moment at which a
new image must be recognized. Therefore, the architecture
has to be modified, and the new training patterns and the
targets added to the memory. When the training process ends,
the memories are updated and the network has the recognition
connections.

According to the research, there are different forms of
reconfiguration on a neural network. During the execution
time, the number of neurons on the input layer can be
modified or we can give enough knowledge to the network by
changing the training memory content. The either of both
methods leads us to the image recognition.

Depending on available hardware resources and the
applications of the system, a dynamic reconfiguration is
possible when the image is part of the same group.
Specialized cooperative networks, where installed for
reconfiguration to be held in the control section, acquire more
knowledge as new images are recognized.

VI. RESULTS

The weight and bias data stored in the memory modules
were obtained by the off-line learning, using a
backpropagation algorithm. Simulation software was
developed using Matlab and Simulink, Neural Network
Toolbox.

The results obtained in the specialized networks simulation
for images recognition are as follows:

In order to obtain the data of the memories of weights, 450

patterns of training with different characteristics have been
used, taking into account the fact that all correspond to an
image of the same class (rectangular, circular and triangular
shapes)

The training method works in batch mode, which means
that once all the entries were presented, the learning stage
updates the weights and bias according to the decreasing
moment of the gradient and an adaptive learning scale [23].

Some Maltab results are shown on figure 11, where the
graph shows the stages used for the algorithm to converge
with the targets of the parameters [30].

As an example of the application of the system for the

recognition of signals by means of singularities, figure 11a
shows the number of necessary iterations of training for one
of the networks specialized in recognizing acute-angled
corners.

Figure 11b, shows the results of the system (uncertainty
module) when they present/display 30 images that contain the
vectors that are characteristic in a correct sequence
corresponding to the recognition of triangular signals. A
region of 6x5 (columns*rows) pixels has been used to detect
the singularities. The classification mode has been
implemented as a series of regions processing. First, the ROI
extractor detects the RoI (Region of Interest), figure 12, sized
60x45 pixels, and stores it in the internal embedded RAM
memory. Then, successive vector of characteristic are
extracted from the RoI, and sent to the TNN to be processed.
So, dividing the RoI in 6x5 sized-regions, results in 10x9 data
input vector in one RoI. This is the actual amount of data
being processed in each image field, resulting in 90 vectors of

weights of
the neuron 1

weights of the
N neurons

Neuronal Specialized
Network

Control address map

weights and bias memories of
the neuronal specialized network

Address space
“Window”

Neuronal Specialized
Network

Neuronal Specialized
Network

Physical address

Physical address
Logical address

weights of
the neuron 1

weights of the
N neurons

Neuronal Specialized
Network

Control address map

weights and bias memories of
the neuronal specialized network

Address space
“Window”

Neuronal Specialized
Network

Neuronal Specialized
Network

Physical address

Physical address
Logical address

Fig. 10 System Memory Map (a) Training

(b) Simulation

(a) Training

(b) Simulation
Fig. 11 Training Results

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on June 19, 2009 at 03:09 from IEEE Xplore. Restrictions apply.

30 pixels each one. This has been accomplished by sweeping
the RoI, and by sending each vector of characteristics to the
TNN, and by storing the result associated to each region. In
this way, probability maps of possible detected singularities
are obtained so that the uncertainty stage can decide whether
a signal has been detected or not, as shown in figure 11b.

In addition, further simulations in MATLAB, have

established that a Q8.16 format is accurate enough to quantify
weights and biases. This reduction in the bit width leads to a
reduction in the resources consumed by the network. But
more importantly, a great increase in the maximum operating
frequency is also achieved. This is a key factor if we want to
enhance the system.

As a design premise we have always had in mind a design
for reuse methodology. Therefore, a big effort has been made
to specify as many generic hardware modules as possible. For
this reason, the architecture and VHDL description of the
TNN has been improved so that later versions, apart from the
basic functionality mentioned above, make possible their
building N-layer, m-output perceptrons in the easiest and
most-automated way possible. These features have been
incorporated so that we shall be able, in the future, to test the
system architecture on larger FPGAs.

Preliminary synthesis (no synthesis effort or optimizations
directed to the synthesizer) results for Altera CYCLONE
EP1C20F400C6 and CYCLONE-II EP2C35F672C6 devices
have been obtained with the Altera Quartus II (v. 6.0)
software package. The proposed architecture (Q8.16) fits in
one CYCLONE device, but remaining resources, mainly
memory, are a bit scarce. Therefore, the system has also been
implemented in the CYCLONE-II device. Functional and
post-fitting simulations with Mentor Graphics ModelSim
simulation environment show how the real-time restrictions
imposed on the system and the functional specifications are
met.

Fitting results are included for the whole Recognition
System (see figure 13). The implemented TNN has 30
neurons in the input layer, and 3 in the output layer. Fitting
details for the most important blocks of the architecture are
also shown.

Figure 14 shows fitting results for the Learning Algorithm
execute on-line over the XILINX VIRTEX-II PowerPc, when
the Reconfiguration Mode is needed. This Learning
Algorithm was coded in C language (400 code lines). Some
interesting data are:

• Learning Rate α = 0.1: Reconf. Time = 0.3sec., with
12 iterations.

• Learning Rate α = 0.01. Reconf. Time = 0.8 sec., with
58 iterations.

VII. CONCLUSIONS

We have proposed and designed a new hardware
architecture system for neural network based on specialized
Tiny Neural Networks (TNN) for image recognition. One of
the most important features of Tiny Neural Networks (TNN)
is their on-line learning ability. Those TNN are also
cooperative in order to solve complex recognition problems.
As an example of the system application, TNN can be trained
to identify special points on an image. These points are
characteristic elements of shape (singularities) such as right-
angled corners, round segments and acute-angled corners.
Autonomous robots or intelligent systems for cars use this
kind of system.

ACKNOWLEDGMENT

This development is carried out in the ASISTENTUR
project (Advanced Driver Assistance System for Urban
Environments, TRA2004-07441-C03-03/AUT,) with the
support of the Spanish Ministry of Science, under the
National R&D Plan.

RoI (60x45)
(columns*rows)

RoD (6x5)
(columns*rows)

Detection Recognition

Traffic Sign Frame

Sign: Triangular
Circular
Rectangular

RoI (60x45)
(columns*rows)

RoD (6x5)
(columns*rows)

Detection Recognition

Traffic Sign Frame

Sign: Triangular
Circular
Rectangular

Fig. 12 Traffic Sign Recognition

47.21 MHzFrequency

47 / 64 (73 %)M4Ks

72,416 / 294,912 (25 %)Total Memory Bits

6,463 / 20,060 (32 %)Logic Elements (LEs)

Implementation

47.21 MHzFrequency

1 / 6434 / 64 (54 %)M4Ks

2880 / 294,91224480 / 294,912 (9%)Total Memory Bits

294 / 20,0604930 / 20,060 (25%)Logic Elements (LEs)

RoI Extractor + RoI BufferGNN

KNU

47.21 MHzFrequency

47 / 64 (73 %)M4Ks

72,416 / 294,912 (25 %)Total Memory Bits

6,463 / 20,060 (32 %)Logic Elements (LEs)

Implementation

47.21 MHzFrequency

1 / 6434 / 64 (54 %)M4Ks

2880 / 294,91224480 / 294,912 (9%)Total Memory Bits

294 / 20,0604930 / 20,060 (25%)Logic Elements (LEs)

RoI Extractor + RoI BufferGNN

KNU

Fig. 13 TNN Implementation

- DDR_512MB_64Mx64_rank2_row13_col10_cl2_5 = 256 MB

- DDR_SDRAM_64Mx64 Dual Rank = 256 MB

512 MBTotal Off Chip Memory

208 KBOn Chip Memory

16 KBInstruction Cache

16 KBData Cache

FPGA JTAGDebug interface

100.000000 MHzBus clock frequency

300.000000 MHzProcessor clock frequency

PPC 405Processor

-7Speed Grade

ff896Package

xc2vp30Device

virtex2pFamily

Xilinx XUP Virtex-II Pro Development System Rev CTarget Board

Created by Base System Builder Wizard for Xilinx EDK 8.2 Build EDK_Im.14

- DDR_512MB_64Mx64_rank2_row13_col10_cl2_5 = 256 MB

- DDR_SDRAM_64Mx64 Dual Rank = 256 MB

512 MBTotal Off Chip Memory

208 KBOn Chip Memory

16 KBInstruction Cache

16 KBData Cache

FPGA JTAGDebug interface

100.000000 MHzBus clock frequency

300.000000 MHzProcessor clock frequency

PPC 405Processor

-7Speed Grade

ff896Package

xc2vp30Device

virtex2pFamily

Xilinx XUP Virtex-II Pro Development System Rev CTarget Board

Created by Base System Builder Wizard for Xilinx EDK 8.2 Build EDK_Im.14

Fig. 14 Learning Algorithm Implementation

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on June 19, 2009 at 03:09 from IEEE Xplore. Restrictions apply.

REFERENCES
[1] A. de la Escalera, L. E. Moreno, M. A. Salichs, J. M. Armingol, Road

traffic sign detection and classification, IEEE Transactions on Industrial
Electronics, 1997, Vol. 44, pp 848-859.

[2] A. de la Escalera, L. Moreno, E. A. Puente, M. A. Salichs, Neural traffic
sign recognition for autonomous vehicles, IEEE Int. Conf. Industrial
Electronics, Control and Instrumentation, 1994, Vol. 2, pp 841-846.

[3] T. Theocharides, G. Link, N. Vijaykrishnan, M. J. Invin, V. Srikantarn, A
generic reconfigurable neural network architecture as a network on
chip, Proceedings, IEEE International SOC conference, 2004, pp 191-
194

[4] S. Estable, J. Schick, F. Stein, R. Janssen, R. Ott, W. Ritter, Y. J. Zheng,
A real time traffic sign recognition system, Proceedings of the
Intelligent Vehicles Symposium, 1994, pp 213-218.

[5] J. Torresen, J. W. Bakke, L. Sekanina. Efficient recognition of speed limit
signs, Proceedings. IEEE International Conference on Intelligent
Transportation Systems, 2004, pp 652-656.

[6] V. Moreno, A. Ledezma, A. Sanchis, A static images based-system for
traffic signs detection, Proceedings of the IASTED international
conference on artificial intelligence and applications, 2006, pp 445-450.

[7] G. Adorni, V. D’Andrea, G. Destri, M. Mordonini, Shape searching in
real word images: a cnn based approach, Proceedings Fourth IEEE
International Workshop on Cellular neural networks and their
applications, 1996, pp 213-218.

[8] J. Alarcón, R. Salvador, F. Moreno, I. López, A new real-time hardware
architecture for road line tracking using a particle filter, Proceedings of
32nd annual Conference of the IEEE Industrial Electronics Society,
IECON’06, Paris 2006, pp 736-741.

[9] I. López, R. Salvador, J. Alarcón, F. Moreno, Architectural design for a
low cost fpga-based traffic signal detection system in vehicles, volume
65900, pages 65900M. SPIE, 2007, Gran Canaria. Spain

[10] M. Xiaobin, J. Lianwen, S. Dongsheng, Y. Junxun, A mixed parallel
neural networks computing unit implemented in fpga, IEEE Int. Conf.
Neural Networks & Signal Processing, Nanjing, China December 2003.

[11] M. Avogadro, M. Bera, G. Danese, F. Leporati, A. Spelgatti, The Totem
neurochip: an fpga implementation, Proceedings of fourth IEEE
International Signal Processing and Information Technology, 2004, pp
461-464.

[12] S. Bridges, M. Figueroa, D. Hsu, C. Diorio, A reconfigurable vlsi
learning array, Proceedings of the 31st European Solid-State Circuit
Conference, 2005, pp 117-120.

[13] M. A. Figueiredo, C. Gloster, Implementation of a probabilistic neural
network for multi-spectral image classification on an fpga based custom
computing machine, Proceedings. Vth Brazilian Symposium on Neural
Networks, 1998, pp 174-178.

[14] H. Hikawa, Implementation of simplified multilayer neural networks
with on-chip learning, Proceedings IEEE International Conferences on
Neural Networks, 1995, Vol. 4, pp 1633-1637.

[15] S. B. Yun, Y. J. Kim, S. S. Dong, C. H. Lee, Hardware implementation
of neural network with expandible and reconfigurable architecture,
Proceedings, IEEE Int. Conf. on neural information, 2002, Vol. 2, pp
970-975.

[16] B. Pino, F. J. Pelayo, J. Ortega, A. Prieto, Design and evaluation of a
reconfigurable digital architecture for self-organizing maps,
Proceedings, Int. Conf. Microelectronics for neural, fuzzy and bio-
inpired system, 1999, pp 395-402.

[17] D. Hammerstrom, A vlsi architecture for high-performance, low cost,
on-chip learning, IJCNN International Conference on Neural Network,
1990, Vol. 2, pp 537-544.

[18] S. Vitabile, A. Gentile, G. B. Dammone, F. Sorbello, Multi-layer
perceptron mapping on a simd architecture, Proceedings of the 12th
IEEE workshop on Neural Networks for signal processing, 2003, pp
667-675.

[19] Y. E. Krasteva, E. de la Torre, T. Riesgo, Partial reconfiguration for core
relocation and flexible communications, Proceedings of Reconfigurable
Communication-centric SoC, pages 91-97, Montpellier 2006.

[20] J. L. Beuchat, J. O. Haenni, E. Sanchez, Hardware reconfigurable neural
networks, IPPS, SPDP worshops, 1998, pp 91-98, url =
citeseer.ist.psu.edu/beuchat98hardware.html

[21] J. A. Starzyk, Z. Zhen, L. Tsun-Ho, Self-organizing learning array,
IEEE Transactions on Neural Networks, 2005, Vol. 16, pp 355-363.

[22] J. G. Eldredge, B.L. Hutchings, Density enhancement of a neural
network using fpgas and run-time reconfiguration, Proceedings, IEEE
workshop on fpgas for custom machine, 1994, Vol 10-13, pp 180-188.

[23] Martin. T. Hagan, Howard. B. Demuth, Mark. Beale, Neural Network
Design, book: Thomson Learning, United States of America, 1996.

[24] B. Kröse, P. Van der Smagt, An introduction to Neural Networks, eighth
edition, The Universidad of Amsterdam, 1996.

[25] M. A. Hannan Bin Azhar, K. R. Dimond, Design of an fpga based
adaptive neural controller for intelligent robot navigation, Proceedings,
IEEE Euromicro symposium on digital system design, 2002, Vol. 2, pp
283-290.

[26] Y. Taright, M. Hubin, FPGA implementation of a multilayer perceptron
neural network using vhdl, Proceedings Fourth International
Conference on Signal Processing, 1998, Vol. 2, pp 1311-1314.

[27] J. J. Blake, L. P. Maguire, T. M. McGinnity, L. J. McDaid, Using Xilinx
FPGAs to implement neural networks and fuzzy systems, IEE
Colloquium on Neural and Fuzzy Systems: Design hardware and
applications, Digest No. 1997/133, pp 1/1 – 1/4.

[28] A. Perez-Uribe, E. Sanchez, Implementation of neural constructivism
with programmable hardware, Proceedings of the International
Symposium on Neuro – Fuzzy systems, 1996, pp 47-54.

[29] L. Priese, R. Lakmann, V. Rehrmann. Ideogram identification in a
realtime traffic sign recognition system, Proceedings. IEEE Intelligent
Vehicles 1995, Vol. 25-26, pp 310-314.

[30] MATLAB. The Language of Technical Computing. Version 7.4.0.287
(R2007a).

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on June 19, 2009 at 03:09 from IEEE Xplore. Restrictions apply.

