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Abstraet As the associated human community, 
instruments, and resources required for data processing 
become increasingly distributed, real-time online 
instrument systems connected by wide area networks will 
be the n m  for scientific, medical, and similar 
data-generating systems. Such systems have rigorous 
Quality of Service (QoS) objectives. They must behave in a 
dependable manner, must respond to threats in a timely 
fashion and must provide wntinuous availability, even 
within hazardous and &own environments. Furthermore, 
resources should be utilized in an efficient manner, and 
scalability must be provided to address the ever-increasing 
complexity of scenarios that confront such systems. 
Advances in networking infraslmcture have led to the 
development of a new type of “computational grid” 
infrastructure that provides predictable, consistent and 
uniform access to geographically distributed resources such 
as computers, data repositories, scientific instruments, and 
advanced display devices . Such Grid environments are 
being used to construct sophisticated, 
performance-sensitive applications in such areas as 
superwmputer-enhanced instruments, desktop 
supercomputing, tele-immersive environments, and 
distributed super computing. Such applications designed to 
execute on “computational grids” frequently require 
dynamic scheduling of multiple resources in order to meet 
performance requirements. Motivated by these concerns, 
we have developed a general scheduling algorithm in Grid 
environment. In this paper, we propose a three level 
dynamic scheduling method. A set of thresholds and 
information list are used to collect the information of the 
grid. In first level, as task arrive in the one node of the 
system. the scheduler uses the information about the task 
and the state of node , and attempts to guarantee the new 
task by the execution of this node. If this task can be 
scheduled on this node and the time constraints can be met, 
we execute this task on this node. If this task cannot 
scheduled, the second level scheduling is started., we use 
the infomation list of the cluster that is connected closely 
by the node to fmd whether this cluster can accept this new 
task and meet its time constraint. If the cluster can accept 
this new task, we transfer this new task to one underloaded 
node of this cluster and executes this new task on this 
underloaded nodded. If new task cannot be accepted by the 
cluster closely connected by the node, the third level 
scheduling is started., we use the information list to find a 
remote cluster in the grid to accept this task and execute it 
on the remote cluster in the grid. 

1. Introduction 
As the associated human community, instruments, and 

resomes required for data processing become increasingly 
dismbuted, real-time online instrument systems connected 
by wide area networks will be the norm for scientific, 
medical, and similar data-generating systems. Such systems 
have rigorous Quality of Service (QoS) objectives. They 
must behave in a dependable manner, must respond to 

threats in a timely fashion and must provide continuous 
availability, even within hazardous and unknown environments. 
Furthermore, resources should be utilized in an efficient 
manner, and scalability must be provided to address the 
ever-increasing complexity of scenarios that confront such 
systems. The difficulties in engineering such systems arise 
from several phenomena, one of the most perplexing being the 
dynamic environments in which they must function. Systems 
which operate in dynamic environments may have unknown 
worst-case scenarios, may have large variances in the sizes of 
the data and event sets that they process (and thus, have large 
variances in execution latencies and resource requirements), 
and cannot be characterized (accurately) by constants, by 
intervals or even by time-invariant statistical distributions. This 
environment aves rise to the need for a variety of capabilities: 
dynamically schedulable resources, easily administered and 
enforced use conditions and access control for all elements, 
systems designed to adapt to varying conditions in the 
distributed environment, automated control and guidance 
systems that facilitate remote (in time, space and scale) 
operations, and a myriad of reservation and scheduling 
capabilities for all of the resources involved. 

Advances in networking infpdstruchm have led to the 
development of a new type of “computational grid” 
[1][2][16][17] in frasmcture that provides predictable, 
consistent and uniform access to geographically distributed 
resources such as computers, data repositories, scientific 
insmunents, and advanced display devices . Such Grid 
environments are being used to construct sophisticated, 
performance-sensitive applications in such areas as 
supercomputer-enhanced instruments, desktop supercomputing, 
tele-immersive environments, and distributed super computing. 

Recent advances in real-time systems technology have 
given us many good schemes for scheduling hard real-time 
applications[5][6][8][9][2l][22]. A weakness shared by most 
existing schemes is that schedulability of each application can 
be determined only by analyzing all applications in the system 
together, i.e., by a global schedulability analysis. while the 
necessity of global schedulabiiity analysis imposes no serious 
problem when the system is closed, it does so when the system 
is open. Here, by closed system, we mean one in which detailed 
timing attributes of all real-time applications on each processor 
are known. Often times, the applications are developed together, 
and the schedulability of every combination of applications that 
can run at the same time is determined apriori In contrast, in a 
grid environment, applications may be developed and validated 
independently. During run-time, the user may request the start 
of a real-time application whose schedulability has not been 
analyzed together with currently executing applications. The 
system must determine whether to accept the request and admit 
the new application, It usually admits a new real-time 
application only when the application and all the existing 
real-time applications are schedulable. A global schedulability 
analysis as an acceptance test is sometimes not feasible because 
many characteristics of real-time applications in the system are 
unknown. Even when it is feasible, such an acceptance test can 
be time consuming when the applications are multi-threaded 
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and complex. 
In this paper, we propose a three level dynamic 

scheduling method. A set of thresholds and information 
list are used to collect the information of the grid. In fust 
level, as task arrive in the one node of the system. the 
scheduler uses the information about the task and the state 
of node , and attempts to guarantee the new task by the 
execution of this node. If this task can be scheduled on this 
node and the time constraints can be met, we e x m t e  this 
task on this node. If this task cannot scheduled, the second 
level scheduling is started., we use the information list of 
the cluster that is connected closely by the node to find 
whether this cluster can accept this new task and meet its 
time constraint. If the cluster can accept this new task, we 
transfer this new task to one underloaded node of this 
cluster and executes this new task on this underloaded 
nodded. If new task cannot be accepted by the cluster 
closely connected by the node, the third level scheduling is 
started., we use the information list to fmd a remote cluster 
in the grid to accept this task and execute it on the remote 
cluster in the grid. 

2 .  Grid Architecture 
Grid Architecture comprises four general types of 

componts[l][l3]: Grid Fabric, Grid middleware, Grid 
developmts and Tools and Grid application and portals. 
There are three main issues that characterize computational 
grids: 
1.Heterogeneity: a grid involves a multiplicity of resources 
that are heterogeneous in nature and might span numerous 
administrative domains across wide geographical distances. 
2.Scalahility: A grid might grow Fram few resources to 
millions. This raises the problem of potential p e r f o m c e  
degradation as a Grids size increases. Consequently, 
applications that require a large number of geographically 
located resources must be designed to be extremely latency 
tolerant 
3.Dyoamieity o r  Adaptability: in a grid a resource failure 
is the rule, not the exception. In fact, with so many 
resources in a Grid, the probability of some resource failing 
is naturally high. The resource managers or applications 
must tailor their behaviour dynamically so as to extract the 
maximum performance. 

The steps necessary to realize a computational grid 
include: 
0 The integration of individual software and hardware 

component into a combined networked resome. 
0 The implementation of middleware to provide a 

transparent view of the resources available. 
0 The development of tools that allows management 

and conhol of grid applications and infrasmcture. 
0 The development and optimization of distributed 

applications to take advantage of the resoutces. 
The componts that me necessary to form a grid are 

following: 
0 Grid Fabric: it comprises resources-specific and 

site-specific mechanisms which, when in place, 
enable or facilitate the creation of higher-level 
distributed “Grid Services.” Examples of Fabric 
mechanisms might include nehvork quality of service 
support in routers and end systems; resource 
management interfaces supporting advance 
reservation, allocation, monitoring, and conml of 

computers, storage systems, etc.; insmentation 
interfaces; high-speed network interfaces: and specific 
implementations of network protocols. These Grid Fabric 
mechanisms serve to Grid-enable basic resources, 
augmenting or complementing the basic communication 
functionality provide by the Internet Protocol suit to 
allow, for example, the coordinated allocation of 
computers, networks, and storage systems. 
Grid Services or Middleware: it offers core services such 
as remote prccess management, co-allocation of . . - 
resowes, storage access, information security, 
authentication, and Quality of Service (QoS) such BS 

resource reservation and trading. 
Grid Development Environments and Tools: These offer 
high-level services that allows programmers to develop 
applications and brokers that act as user agents that can 
manage or schedule computations acros global 
resources. 
Grid Applications and Portals: They are developed using 
grid-enabled languages such as HF’CH, and 
message-passing systems such as MPI. Specific 
Gird-aware application are implemented in terms of 
various Application Toolkit components, Grid Services, 
and Grid Fabric mechanisms. 
The management of processor time, memory, network, 

storage, and other component in a grid is clearly very important 
The overall aim is to efficiently and effectively schedule the 
applications that need to utilize the available resources in the 
metacomputing environment [14]. From a user’s point of view, 
resource management and scheduling should be transparent; 
their interaction with it being confmed to a manipulating 
mechanism for submitting their application. It is important in a 
grid that a resource management and scheduling service can 
interact with those that may be installed locally. The 
architechlral model of resource management systems is 
influenced by the way the scheduler is structured. The smture 
of scheduler depends on the number of resources on which jobs 
and computations are scheduled, and the domain in which 
resources are located. Primarily, there are three different 
models for structuring schedulers: 
0 C e n t r a l i d  scheduling model This can be used for 

managing single or multiplc resources lmated either in a 
single or multiple domains. It can only support uniform 
policy and suits well for cluster management systems 
such as Condor, LSF, and Condine. It is not suitable for 
grid resome management systems as they are expected 
to honor policies imposed by resource owners. 

0 Decentralized scheduling model: In this model 
schedulers interact among themselves in order to decide 
which resource should be applied to the jobs being 
executed. In this scheme, there is no central leader 
responsible for scheduling, hence this model appears to 
be highly scalable and fault-tolerant. As resource owners 
can define the policy that schedulers can enforce, the 
decentralized scheme suits grid systems. Because the 
status of remote jobs and resources is not available at 
single location, the generation of highly optimal schedule 
is questionable. This model seems difficult to implement 
in the grid environment, as domain resoulFe owners do 
not agree on a global policy for resoutce management. 
Hierarchical scheduling model: This model fits for grid 
systems at it allows remote resource owners to enforce 
their own poticy on external users. This model looks like 
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a hybrid model, but appears more like centralized 
model and therefore suits grid. 
A idea grid environment will therefore provide access 

to the available resources in a seamless manner such that 
physical discontinuities such as differences between 
platforms, network protocols, and administrative 
boundaries become completely transparent. In essence, the 
grid middleware turns a radically heterogeneous 
environment into a virmal homogeneous one. 

With the recent adoption of the COMA Component 
Model (CCM) [I21 application designers now have a 
standard way to implement, manage, configure, and deploy 
components that implement and integrate CORBA services. 
CCM standard not only enables greater s o h e  reuse for 
servers, it also provides greater flexibility for dynamic 
configuration of CORBA application. Thus, CCM appears 
to be well -suited for real-time applications based on the 
Computing Grid. 

Meeting the QoS requirements of distributed 
real-time applications requires an integrated architecture 
that can deliver endend QoS support at multiple levels in 
real-time and embedded systems. Distributed object 
computing (DOC) middleware based on the real-time 
CORBA (RT-CORBA) [IZ] offers solutions to some 
resource management challenges and developers of 
real-time systems, particularly those systems are designed 
using dynamic scheduling techniques. The OMG has 
formed a Special Interest Group (RT SIC) [23] with the 
goal of extending the COMA standard with real-time 
extensions. One of the requirements that has been 
established by the RT SIG involves providing global 
real-time scheduling to support the enforcement of 
end-to-end timing constaints on client server interactions, 
The specify requirements for scheduling in real-time 
CORBA involve the need for a global priority that has 
meaning across the entire distributed systems. A scheduling 
service in a real-time CORBA systems must provide this 
global priority, based an the timing constraints expressed 
by the client’s method invocations, and on the server’s own 
timing requirements. The service must also ensure that the 
global priority can be mapped to the scheduling 
environments of all local operating systems involved in the 
execution. Finally if the real-time CORBA systems is a 
dynamic systems, the scheduling service must ensure that 
the global priority correctly reflects the requirements of the 
associated execution for the duration of the execution. That 
is, it may be necessary to modify the value of the global 
priority based on changes that occur in the system. 

The Dynamic Real-Time CORBA system provides 
the gmundwork for a full dynamic real-time CORBA 
design. However, there is still much work to be done. A 
number of dynamic scheduling algorithms have been 
proposed, RT-CORBA must be enforced with them. 

3. Dynamic Scheduling algorithms 
Dynamic scheduling [31[51[lS][I91[201[231 in 

real-time systems involves dynamically making a sequence 
of decisions concerning the assignment of system resources 
to real-time tasks. System resources include processors, 
memory, and shared data stluclures. Tasks may have 
arbitrary time constraints, different important levels, and 
fault tolerance requirements. Unfottunately, making these 
scheduling decisions is difficult, partly because the 

decisions must be made without the Full knowledge of the 
%lure anivals of tasks and partly because scheduling has to 
deal with many complex issues, e.g.,, multiprocessors and fault 
tolerance. 

Ramamritham’s aIgorithm[23] 
Ramamrihm et al. proposed combining local and global 

scheduling approaches in distributed systems for both periodic 
tasks and aperiodic tasks. In their approach, periodic tasks are 
assumed to be knom a priori and can always be scheduled 
locally. On the other hand, an aperiodic task may arrive at a 
node at any time and will be scheduled locally on the node if its 
deadline can be met there; otherwise, the task will be 
transferred toa romote node, which was called global 
scheduling. If non of the remote nodes can guarantee the 
deadline of this aperiodic task, it will be rejected and may 
seriously affect the system performance. Hence, the main effort 
in [23] was to design a heuristic, global scheduling policy so as 
to reduce the number of rejected aperiodic tasks. Three 
algorithms, were used to select a remote node for each 
aperiodic task which cannot be guarantee an aperiodic task 
locally, it will attempt to locate a remote node which can 
guarantee the task. 

Xu’s algorithm 1221 
].Xu proposed a approach that integrates rut-time 

scheduling with pre-runrime scheduling, for the scheduling of 
both periodic and asynchronous processes with hard or sol7 
deadlines, and different a priori knowledge of the process 
characteristics. A guiding principle for this approach is that the 
scheduling algorithm should exploit to a maximum extent of 
knowledge about system processes characteristics that are 
available to the scheduler both before runtime and during 
rut-time. 

Deug’s slgorithmpl] 
Z.deng and I.W.S.Liu Proposed a two-level hierarchical 

scheme for scheduling an open system of multi-threaded, 
real-time applications on a single procesror. It allows different 
applications to be scheduled according to different scheduling 
algorithms. 

Chaug’s Algorithmll91 
H.Y. Chang proposed a dynamic scheduling algorithm for 

a sofl real-time system. The algorithm has a two phase polling 
strategy and is based on the “Shortest Processing Time First’ 
local scheduling policy. Unlike hard real-time systems in which 
a late job m y  entail catastrophic outmmes, a soft real-time 
system functions correctly as long as the deadline miss ration 
and the expected lateness are below predefined levels. 

Shin’s aIgorithrn[ZOj 

In the paper [20], K.G. Shin and Y. C. Chang 
proposed a load sharing method with state-change 
broadcast (LSMSCB) for disbibuted real-time systems, 
in which each node maintains state information of only a 
small set of nodes in its physical proximity, called a 
buddy set. The load state of a node is defined by three 
thresholds: T H ,  THr andTH,. A node is said to be 
underloaded if its queue length (QL) is less than or equal 
to TH., medium-loaded if TH,< QLGTHr, fuIIy load 



if THc< Q L S T H ,  , overloaded: if QL >TH,. 
When a node becomes M l y  loaded (underloaded) 
duo to the arrival a n d k  transfer (completion) of 
tasks, it will broadcast its change of state to all the 
other nodes in its buddy set. Every node that receives 
this information will update its state information by 
eliminating the fully loaded node from, or adding the 
underloaded node to, its ordered list (called a 
preferred list) of available receivers. An overloaded 
node can select, without probing other nodes, the first 
underloaded node in its preferred list and transfer a 
task to that node. Moreover, the buddy set of the 
nodes in one buddy set are different but are not 
disjoint, thus allowing the surplus tasks in a buddy 
set to be transferred to many different buddy sets, i.e., 
system-wide load sharing. As a result, this method is 
shown to enable tasks to be completed before their 
deadlines with much higher probability than other 
known methods. 

Corsarn’s algorithm[24] 
In open disbibuted real-time and embedded 

@RE) systems, different ORB endsystems may use 
different scheduling policies. To ensure appropriate 
end-to-end application behavior in an open 
architecture, however, DRE systems must enfore an 
ordering on activities originating in an endsystems 
and activites that migrate there, based on the relative 
importance of these activities. This paper describes 
the meta-programming techniques applied in Juno, 
which is an extension to Real-Time CORBA that 
enhances the openness of DRE systems with respect 
to thire scheduling policies by enabling dynamic 
ordering of priority equivalence classes. 

Foster’s algorithm[t5] 
LFoster proposed an approach to QoS that 

combines features of both reservations and adaptation 
to enhancing the end-to-end performance of network 
applications. At the core of this approach is a QoS 
architecture in which resources are enhanced with: 
Online control interfaces that allow applications, or 
agents acting on their behalf, to modify resource 
characteristics dynamically; 
Sensors that allow applications to detect when 
adaptation is required; and 
Decision procedures that support the expression of a rich 
set of resource management policies. 

4. Dynamic Real-Time Scheduling in Grid 
Environment 

Our model of a Grid is as follows. The grid consists of M 
clusters connected hy Internet. Each cluster consists Nj 
nodes which a communication network. The network is 
assumed to he logically conneted in that every node can 
communicate with every other node. One node in Cluster 

Mk can communicate another node in cluster M, hy SeNerk in 
cluster MI, and server j in cluster M,. A sueam of jobs is 
submitted locally to node k. We assume that the nodes are 
heterogeneous in the sense that each node may have a different 
arrival rate of externally submitted jobs, but homogeneous in 
the sense that a job submitted at any node in the cluster k in the 
Grid can be processed at any other node in the cluster k. We 
also assume that a job on one node of cluster k can be sent to 
another node of cluster j to process. We consider a real-time 
system in which a job is lost if it cannot s m i e d  within a given 
time constraint, i.e., within a fixed time after its arrival. If a 
constraint of the job on one node in cluster k cannot be met 
locally, however, it may transfer it to another node in cluster k 
if a underloaded node can be found in cluster k. If a underload 
node cannot be find in cluster k, it may transfer it to another 
node in clusterj if cluster j is underloded. 

In dynamic scheduling algorithms, there are five 
separable and yet integrated components: 
( I )  Local scheduling determines the sequencing of local job 
(2) Information policy dictates the methods of exchanging 

load staius among nodes and clusters in the Grid. 
(3) Initial policy dccide when to initiate a migration request. 
(4) Candidate selection policy determines how to choose a job 

for migration. 
( 5 )  Location policy defmes the terms under which two 

processors may transfer a job. 

In this paper, we proposed a dynamic scheduling algorithms 
based on Kang G. Shin’s method [20]. Each cluster maintains 
state information of only a small set of clusters in its physical 
proximity, called a buddy set. The load state of a cluster is 
defined by three thresholds: CTH,, CTHfand CTH,. 
There are four states for each cluster: 

0 medium-loaded: iiCTHu< N,<CTHf 
0 fu l ly lod  ifCTHr<N,<CTHv 
0 overloaded. if N, XTH, 

For each node in any cluster, The load state of a node is 
also defined by three thresholds: NTH, NTH, and NTH,. 

underloded: A node is said to be underloaded if its 
number ofjobs (tasks) (NJ is less than or equal to NTH., 
medium-loadd. i f ” ” <  N.<NTHr 
fu l ly lod  ifNTHr<Nn<NTHv 
overloaded. if N. >NTH, 
Each cluster has one server that can collect the state 

infarmation of othn clusters and the state information of each 
node of this cluster. When a node becomes fully loaded 
(underloaded), it will send its change of state to the server, and 
server of the cluster will update its state information table. If 
the cluster changes his state, e.g, from underload to fully loaded. 
it will broadcast its change of state to all the other clusters in its 
buddy set. Every cluster that receives this information will 
update its state information by eliminating the fully loaded 
cluster from, or adding the underloaded cluster to, its ordered 
list (called a preferred list) of available receivers. Thus dynamic 
scheduling method is organized at three level. In first level 
(node scheduling), as task arrive in the one node of the system. 
The scheduler uses the information about the task and the state 
of node , and attempts to guarantee the new task by the 
execution of this node. If this task can be scheduled on this 
node and the time constmints can be met, we execute this task 
on this node. If this task cannot scheduled, the second level 

underloded: A cluster is said to be underloaded if its 
number ofjobs (tasks) (N,) is less than or equal to CTH.,, 



scheduling (cluster scheduling) is started., we use the state 
information table of the cluster that is connected closely by 
the node to find whether this cluster can accept this new 
task and meet its time conswaint. If the cluster can accept 
this new task, we transfer this new task to one underloaded 
node of this cluster and executes this new task on this 
underloaded node. If new task cannot be accepted by this 
cluster, the third level scheduling (grid scheduling) is 
startd, we use the information list to find a remote cluster 
in the grid to accept this.task and execute it on thwemote 

.cluster in the grid:; -’ 

Algorithm 

Initiation: 
0 Creat the thresholds CTH., CTHt and CTH, on the 

server of each cluster 
Creat the state infomation table , buddy set and 
preferred list on the server of each cluster 
Creat the thresholds NTH., NTHt and NTH, on each 
node 

0 

Node Sheduling 
While a task arrive on one node in a cluster 
do 

if this node is idle 
then 

this task will be executed immediately 
send a message to the server to update 
the state information table, 

else 
IfQbNTH, 

then 

else 
guto cluster scheduling 

make this task in queue 
send a message to the server to 
update state information table. 

While a task fmished his execution 
do 

if queue ofthis node is not idle 
then 

task in the head of queue will be 
executed immediately 

send a message to the server to update 
state information table 

send a message to the server to update 
the state information table. 

else 

Cluster Scheduling 

then 
If a message to update information arrives 

update state information table. 
If the state of cluster changes, 

then 
goto grid scheduling. 

If overloaded task is transferred to the server 
then 

if find a underloaded node in local cluster 
then 

migrate overloaded task to this Node to 
execution, update state information table 

got0 grid scheduling 
else 

Grid Scheduling 

then 
If the state of cluster changes, 

broadcast its change of state to all other clusters 
in i s  buddy set. . ~. 

If this cluster is overloaded, 
then 

transfer to overloaded tasks to the first 
underloaded cluster in its preferred list and 
transfer a task to that cluster. 

If one overloaded task from other clusters arrives, 
Then 

goto cluster scheduling 

Since communication cost must be kept below a given 
required level while minimize the resultant overhead, the main 
issues of the scheduling algorithms are how to define state of 
each node and state of each cluster, how to collect state 
infomation, and how to redishibute loads among nodes and 
clusters, such that overloaded nodes will locate underloaded 
nodes to share their loads in local cluster or remote cluster 
with a very high probability Buddy sets, preferred lists, state 
information table, and threshold patterns are the most impottant 
features to resolve these issues. 

The buddy set of a cluster is a set of clusten in its physical 
proximity. Since state information for different clusters is 
exchanged only within a buddy set and since a constant buddy 
set size of 10 to I15 nodes is shown to work well regardless of 
the system size, the communication overhead is reduced to a 
constant from O(N2), as compared to the case when state 
information is exchanged in entire systems of N clusters. In 
order to avoid more than one overloaded cluster “dumping” 
their loads on one underloaded cluster or surplus tasks being 
confmed in a.certain region, the clusters in a buddy set are 
ordered into a preferred list such that each cluster will be 
selected as the 14h preferred cluster by one and only one other 
cluster. I t has been shown that the preferred lists can 
effectively solve both the coordination and congestion 
problems, thus meeting task deadlines with a high probability. 

The exact analysis of scheduling algorithm is difficult. The 
composite task amval process at a node or a server of cluster is 
composed of the local (external) task arrivals and task transfers, 
the latter of which is itself a composite process of task transfers 
from different nodes or clusters. One difficulty in estimating 
the composite task arrival rate is that the transfmed-in task 
arrival process (and thus the composite arrival process) may not 
be Poisson even if the local task arrival process is Poisson. This 
is because the probability of sending a task to (or receiving a 
task h m )  a node or a cluster depends on the state of both 
nodes or clusters, making the splitting process non-Poisson, 
and task transmission times may not be exponentially 
distributed, making the process of transferred-in tasks 
non-Poisson. Furthermore, even if we assume the composite 
amval process to exhibit behavion similar to a Poisson process, 
the transferred-m task arrival rate from a node is not known due 
to the dynamic change of system state. In this paper, 
approximate method was used in the algorithm 



analysis. .Bayesian estimation is used for the on-line 
computation of the composite task arrival rate on a node. 
We consider Poisson external task arrivals and we further 
approximate the composite task arrival process to be 
Poisson . This approximation rests on a general result of 
renewal theory which states that the superposition that the 
arrival rate of tasks with increasingly many component 
processes yields a Poisson process. 

5. Conclusion 
The Computational Grid provides a promising 

platform for the efficient execution of complex real-time 
applications. Scheduling such application is challenging 
because target resources heterogeneous ,because their load 
and availability varies dynamically, and because the tasks 
have the strict timing constraints. In this paper, we 
proposed an dynamic real-time scheduling algorithm for 
real-time Spplication running on the Grid. The scheduling 
model was organized in three levels: node scheduling, 
cluster scheduling and grid scheduling. This model fits for 
grid systems and it integrates local scheduling and global 
scheduling. This model looks like a hybrid model, hut suits 
grid. 
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