
Scheduling Algorithm for Real-Time Applications in Grid Environment

Lichen Zhang
Department of Computer Science and Technology

Guangdong University of Technology
510090 Guangdong, China

Email: Ichzhan@edut,edu.cn

Abstraet As the associated human community,
instruments, and resources required for data processing
become increasingly distributed, real-time online
instrument systems connected by wide area networks will
be the n m for scientific, medical, and similar
data-generating systems. Such systems have rigorous
Quality of Service (QoS) objectives. They must behave in a
dependable manner, must respond to threats in a timely
fashion and must provide wntinuous availability, even
within hazardous and &own environments. Furthermore,
resources should be utilized in an efficient manner, and
scalability must be provided to address the ever-increasing
complexity of scenarios that confront such systems.
Advances in networking infraslmcture have led to the
development of a new type of “computational grid”
infrastructure that provides predictable, consistent and
uniform access to geographically distributed resources such
as computers, data repositories, scientific instruments, and
advanced display devices . Such Grid environments are
being used to construct sophisticated,
performance-sensitive applications in such areas as
superwmputer-enhanced instruments, desktop
supercomputing, tele-immersive environments, and
distributed super computing. Such applications designed to
execute on “computational grids” frequently require
dynamic scheduling of multiple resources in order to meet
performance requirements. Motivated by these concerns,
we have developed a general scheduling algorithm in Grid
environment. In this paper, we propose a three level
dynamic scheduling method. A set of thresholds and
information list are used to collect the information of the
grid. In first level, as task arrive in the one node of the
system. the scheduler uses the information about the task
and the state of node , and attempts to guarantee the new
task by the execution of this node. If this task can be
scheduled on this node and the time constraints can be met,
we execute this task on this node. If this task cannot
scheduled, the second level scheduling is started., we use
the infomation list of the cluster that is connected closely
by the node to fmd whether this cluster can accept this new
task and meet its time constraint. If the cluster can accept
this new task, we transfer this new task to one underloaded
node of this cluster and executes this new task on this
underloaded nodded. If new task cannot be accepted by the
cluster closely connected by the node, the third level
scheduling is started., we use the information list to find a
remote cluster in the grid to accept this task and execute it
on the remote cluster in the grid.

1. Introduction
As the associated human community, instruments, and

resomes required for data processing become increasingly
dismbuted, real-time online instrument systems connected
by wide area networks will be the norm for scientific,
medical, and similar data-generating systems. Such systems
have rigorous Quality of Service (QoS) objectives. They
must behave in a dependable manner, must respond to

threats in a timely fashion and must provide continuous
availability, even within hazardous and unknown environments.
Furthermore, resources should be utilized in an efficient
manner, and scalability must be provided to address the
ever-increasing complexity of scenarios that confront such
systems. The difficulties in engineering such systems arise
from several phenomena, one of the most perplexing being the
dynamic environments in which they must function. Systems
which operate in dynamic environments may have unknown
worst-case scenarios, may have large variances in the sizes of
the data and event sets that they process (and thus, have large
variances in execution latencies and resource requirements),
and cannot be characterized (accurately) by constants, by
intervals or even by time-invariant statistical distributions. This
environment aves rise to the need for a variety of capabilities:
dynamically schedulable resources, easily administered and
enforced use conditions and access control for all elements,
systems designed to adapt to varying conditions in the
distributed environment, automated control and guidance
systems that facilitate remote (in time, space and scale)
operations, and a myriad of reservation and scheduling
capabilities for all of the resources involved.

Advances in networking infpdstruchm have led to the
development of a new type of “computational grid”
[1][2][16][17] in frasmcture that provides predictable,
consistent and uniform access to geographically distributed
resources such as computers, data repositories, scientific
insmunents, and advanced display devices . Such Grid
environments are being used to construct sophisticated,
performance-sensitive applications in such areas as
supercomputer-enhanced instruments, desktop supercomputing,
tele-immersive environments, and distributed super computing.

Recent advances in real-time systems technology have
given us many good schemes for scheduling hard real-time
applications[5][6][8][9][2l][22]. A weakness shared by most
existing schemes is that schedulability of each application can
be determined only by analyzing all applications in the system
together, i.e., by a global schedulability analysis. while the
necessity of global schedulabiiity analysis imposes no serious
problem when the system is closed, it does so when the system
is open. Here, by closed system, we mean one in which detailed
timing attributes of all real-time applications on each processor
are known. Often times, the applications are developed together,
and the schedulability of every combination of applications that
can run at the same time is determined apriori In contrast, in a
grid environment, applications may be developed and validated
independently. During run-time, the user may request the start
of a real-time application whose schedulability has not been
analyzed together with currently executing applications. The
system must determine whether to accept the request and admit
the new application, It usually admits a new real-time
application only when the application and all the existing
real-time applications are schedulable. A global schedulability
analysis as an acceptance test is sometimes not feasible because
many characteristics of real-time applications in the system are
unknown. Even when it is feasible, such an acceptance test can
be time consuming when the applications are multi-threaded

0 2002 IEEE SMC
TPlKS

mailto:Ichzhan@edut,edu.cn

and complex.
In this paper, we propose a three level dynamic

scheduling method. A set of thresholds and information
list are used to collect the information of the grid. In fust
level, as task arrive in the one node of the system. the
scheduler uses the information about the task and the state
of node , and attempts to guarantee the new task by the
execution of this node. If this task can be scheduled on this
node and the time constraints can be met, we e x m t e this
task on this node. If this task cannot scheduled, the second
level scheduling is started., we use the information list of
the cluster that is connected closely by the node to find
whether this cluster can accept this new task and meet its
time constraint. If the cluster can accept this new task, we
transfer this new task to one underloaded node of this
cluster and executes this new task on this underloaded
nodded. If new task cannot be accepted by the cluster
closely connected by the node, the third level scheduling is
started., we use the information list to fmd a remote cluster
in the grid to accept this task and execute it on the remote
cluster in the grid.

2 . Grid Architecture
Grid Architecture comprises four general types of

componts[l][l3]: Grid Fabric, Grid middleware, Grid
developmts and Tools and Grid application and portals.
There are three main issues that characterize computational
grids:
1.Heterogeneity: a grid involves a multiplicity of resources
that are heterogeneous in nature and might span numerous
administrative domains across wide geographical distances.
2.Scalahility: A grid might grow Fram few resources to
millions. This raises the problem of potential p e r f o m c e
degradation as a Grids size increases. Consequently,
applications that require a large number of geographically
located resources must be designed to be extremely latency
tolerant
3.Dyoamieity o r Adaptability: in a grid a resource failure
is the rule, not the exception. In fact, with so many
resources in a Grid, the probability of some resource failing
is naturally high. The resource managers or applications
must tailor their behaviour dynamically so as to extract the
maximum performance.

The steps necessary to realize a computational grid
include:
0 The integration of individual software and hardware

component into a combined networked resome.
0 The implementation of middleware to provide a

transparent view of the resources available.
0 The development of tools that allows management

and conhol of grid applications and infrasmcture.
0 The development and optimization of distributed

applications to take advantage of the resoutces.
The componts that me necessary to form a grid are

following:
0 Grid Fabric: it comprises resources-specific and

site-specific mechanisms which, when in place,
enable or facilitate the creation of higher-level
distributed “Grid Services.” Examples of Fabric
mechanisms might include nehvork quality of service
support in routers and end systems; resource
management interfaces supporting advance
reservation, allocation, monitoring, and conml of

computers, storage systems, etc.; insmentation
interfaces; high-speed network interfaces: and specific
implementations of network protocols. These Grid Fabric
mechanisms serve to Grid-enable basic resources,
augmenting or complementing the basic communication
functionality provide by the Internet Protocol suit to
allow, for example, the coordinated allocation of
computers, networks, and storage systems.
Grid Services or Middleware: it offers core services such
as remote prccess management, co-allocation of . . -
resowes, storage access, information security,
authentication, and Quality of Service (QoS) such BS

resource reservation and trading.
Grid Development Environments and Tools: These offer
high-level services that allows programmers to develop
applications and brokers that act as user agents that can
manage or schedule computations acros global
resources.
Grid Applications and Portals: They are developed using
grid-enabled languages such as HF’CH, and
message-passing systems such as MPI. Specific
Gird-aware application are implemented in terms of
various Application Toolkit components, Grid Services,
and Grid Fabric mechanisms.
The management of processor time, memory, network,

storage, and other component in a grid is clearly very important
The overall aim is to efficiently and effectively schedule the
applications that need to utilize the available resources in the
metacomputing environment [14]. From a user’s point of view,
resource management and scheduling should be transparent;
their interaction with it being confmed to a manipulating
mechanism for submitting their application. It is important in a
grid that a resource management and scheduling service can
interact with those that may be installed locally. The
architechlral model of resource management systems is
influenced by the way the scheduler is structured. The smture
of scheduler depends on the number of resources on which jobs
and computations are scheduled, and the domain in which
resources are located. Primarily, there are three different
models for structuring schedulers:
0 C e n t r a l i d scheduling model This can be used for

managing single or multiplc resources lmated either in a
single or multiple domains. It can only support uniform
policy and suits well for cluster management systems
such as Condor, LSF, and Condine. It is not suitable for
grid resome management systems as they are expected
to honor policies imposed by resource owners.

0 Decentralized scheduling model: In this model
schedulers interact among themselves in order to decide
which resource should be applied to the jobs being
executed. In this scheme, there is no central leader
responsible for scheduling, hence this model appears to
be highly scalable and fault-tolerant. As resource owners
can define the policy that schedulers can enforce, the
decentralized scheme suits grid systems. Because the
status of remote jobs and resources is not available at
single location, the generation of highly optimal schedule
is questionable. This model seems difficult to implement
in the grid environment, as domain resoulFe owners do
not agree on a global policy for resoutce management.
Hierarchical scheduling model: This model fits for grid
systems at it allows remote resource owners to enforce
their own poticy on external users. This model looks like

0

a hybrid model, but appears more like centralized
model and therefore suits grid.
A idea grid environment will therefore provide access

to the available resources in a seamless manner such that
physical discontinuities such as differences between
platforms, network protocols, and administrative
boundaries become completely transparent. In essence, the
grid middleware turns a radically heterogeneous
environment into a virmal homogeneous one.

With the recent adoption of the COMA Component
Model (CCM) [I21 application designers now have a
standard way to implement, manage, configure, and deploy
components that implement and integrate CORBA services.
CCM standard not only enables greater s o h e reuse for
servers, it also provides greater flexibility for dynamic
configuration of CORBA application. Thus, CCM appears
to be well -suited for real-time applications based on the
Computing Grid.

Meeting the QoS requirements of distributed
real-time applications requires an integrated architecture
that can deliver endend QoS support at multiple levels in
real-time and embedded systems. Distributed object
computing (DOC) middleware based on the real-time
CORBA (RT-CORBA) [IZ] offers solutions to some
resource management challenges and developers of
real-time systems, particularly those systems are designed
using dynamic scheduling techniques. The OMG has
formed a Special Interest Group (RT SIC) [23] with the
goal of extending the COMA standard with real-time
extensions. One of the requirements that has been
established by the RT SIG involves providing global
real-time scheduling to support the enforcement of
end-to-end timing constaints on client server interactions,
The specify requirements for scheduling in real-time
CORBA involve the need for a global priority that has
meaning across the entire distributed systems. A scheduling
service in a real-time CORBA systems must provide this
global priority, based an the timing constraints expressed
by the client’s method invocations, and on the server’s own
timing requirements. The service must also ensure that the
global priority can be mapped to the scheduling
environments of all local operating systems involved in the
execution. Finally if the real-time CORBA systems is a
dynamic systems, the scheduling service must ensure that
the global priority correctly reflects the requirements of the
associated execution for the duration of the execution. That
is, it may be necessary to modify the value of the global
priority based on changes that occur in the system.

The Dynamic Real-Time CORBA system provides
the gmundwork for a full dynamic real-time CORBA
design. However, there is still much work to be done. A
number of dynamic scheduling algorithms have been
proposed, RT-CORBA must be enforced with them.

3. Dynamic Scheduling algorithms
Dynamic scheduling [31[51[lS][I91[201[231 in

real-time systems involves dynamically making a sequence
of decisions concerning the assignment of system resources
to real-time tasks. System resources include processors,
memory, and shared data stluclures. Tasks may have
arbitrary time constraints, different important levels, and
fault tolerance requirements. Unfottunately, making these
scheduling decisions is difficult, partly because the

decisions must be made without the Full knowledge of the
%lure anivals of tasks and partly because scheduling has to
deal with many complex issues, e.g.,, multiprocessors and fault
tolerance.

Ramamritham’s aIgorithm[23]
Ramamrihm et al. proposed combining local and global

scheduling approaches in distributed systems for both periodic
tasks and aperiodic tasks. In their approach, periodic tasks are
assumed to be knom a priori and can always be scheduled
locally. On the other hand, an aperiodic task may arrive at a
node at any time and will be scheduled locally on the node if its
deadline can be met there; otherwise, the task will be
transferred toa romote node, which was called global
scheduling. If non of the remote nodes can guarantee the
deadline of this aperiodic task, it will be rejected and may
seriously affect the system performance. Hence, the main effort
in [23] was to design a heuristic, global scheduling policy so as
to reduce the number of rejected aperiodic tasks. Three
algorithms, were used to select a remote node for each
aperiodic task which cannot be guarantee an aperiodic task
locally, it will attempt to locate a remote node which can
guarantee the task.

Xu’s algorithm 1221
].Xu proposed a approach that integrates rut-time

scheduling with pre-runrime scheduling, for the scheduling of
both periodic and asynchronous processes with hard or sol7
deadlines, and different a priori knowledge of the process
characteristics. A guiding principle for this approach is that the
scheduling algorithm should exploit to a maximum extent of
knowledge about system processes characteristics that are
available to the scheduler both before runtime and during
rut-time.

Deug’s slgorithmpl]
Z.deng and I.W.S.Liu Proposed a two-level hierarchical

scheme for scheduling an open system of multi-threaded,
real-time applications on a single procesror. It allows different
applications to be scheduled according to different scheduling
algorithms.

Chaug’s Algorithmll91
H.Y. Chang proposed a dynamic scheduling algorithm for

a sofl real-time system. The algorithm has a two phase polling
strategy and is based on the “Shortest Processing Time First’
local scheduling policy. Unlike hard real-time systems in which
a late job m y entail catastrophic outmmes, a soft real-time
system functions correctly as long as the deadline miss ration
and the expected lateness are below predefined levels.

Shin’s aIgorithrn[ZOj

In the paper [20], K.G. Shin and Y. C. Chang
proposed a load sharing method with state-change
broadcast (LSMSCB) for disbibuted real-time systems,
in which each node maintains state information of only a
small set of nodes in its physical proximity, called a
buddy set. The load state of a node is defined by three
thresholds: T H , THr andTH,. A node is said to be
underloaded if its queue length (QL) is less than or equal
to TH., medium-loaded if TH,< QLGTHr, fuIIy load

if THc< Q L S T H , , overloaded: if QL >TH,.
When a node becomes M l y loaded (underloaded)
duo to the arrival a n d k transfer (completion) of
tasks, it will broadcast its change of state to all the
other nodes in its buddy set. Every node that receives
this information will update its state information by
eliminating the fully loaded node from, or adding the
underloaded node to, its ordered list (called a
preferred list) of available receivers. An overloaded
node can select, without probing other nodes, the first
underloaded node in its preferred list and transfer a
task to that node. Moreover, the buddy set of the
nodes in one buddy set are different but are not
disjoint, thus allowing the surplus tasks in a buddy
set to be transferred to many different buddy sets, i.e.,
system-wide load sharing. As a result, this method is
shown to enable tasks to be completed before their
deadlines with much higher probability than other
known methods.

Corsarn’s algorithm[24]
In open disbibuted real-time and embedded

@RE) systems, different ORB endsystems may use
different scheduling policies. To ensure appropriate
end-to-end application behavior in an open
architecture, however, DRE systems must enfore an
ordering on activities originating in an endsystems
and activites that migrate there, based on the relative
importance of these activities. This paper describes
the meta-programming techniques applied in Juno,
which is an extension to Real-Time CORBA that
enhances the openness of DRE systems with respect
to thire scheduling policies by enabling dynamic
ordering of priority equivalence classes.

Foster’s algorithm[t5]
LFoster proposed an approach to QoS that

combines features of both reservations and adaptation
to enhancing the end-to-end performance of network
applications. At the core of this approach is a QoS
architecture in which resources are enhanced with:
Online control interfaces that allow applications, or
agents acting on their behalf, to modify resource
characteristics dynamically;
Sensors that allow applications to detect when
adaptation is required; and
Decision procedures that support the expression of a rich
set of resource management policies.

4. Dynamic Real-Time Scheduling in Grid
Environment

Our model of a Grid is as follows. The grid consists of M
clusters connected hy Internet. Each cluster consists Nj
nodes which a communication network. The network is
assumed to he logically conneted in that every node can
communicate with every other node. One node in Cluster

Mk can communicate another node in cluster M, hy SeNerk in
cluster MI, and server j in cluster M,. A sueam of jobs is
submitted locally to node k. We assume that the nodes are
heterogeneous in the sense that each node may have a different
arrival rate of externally submitted jobs, but homogeneous in
the sense that a job submitted at any node in the cluster k in the
Grid can be processed at any other node in the cluster k. We
also assume that a job on one node of cluster k can be sent to
another node of cluster j to process. We consider a real-time
system in which a job is lost if it cannot s m i e d within a given
time constraint, i.e., within a fixed time after its arrival. If a
constraint of the job on one node in cluster k cannot be met
locally, however, it may transfer it to another node in cluster k
if a underloaded node can be found in cluster k. If a underload
node cannot be find in cluster k, it may transfer it to another
node in clusterj if cluster j is underloded.

In dynamic scheduling algorithms, there are five
separable and yet integrated components:
(I) Local scheduling determines the sequencing of local job
(2) Information policy dictates the methods of exchanging

load staius among nodes and clusters in the Grid.
(3) Initial policy dccide when to initiate a migration request.
(4) Candidate selection policy determines how to choose a job

for migration.
(5) Location policy defmes the terms under which two

processors may transfer a job.

In this paper, we proposed a dynamic scheduling algorithms
based on Kang G. Shin’s method [20]. Each cluster maintains
state information of only a small set of clusters in its physical
proximity, called a buddy set. The load state of a cluster is
defined by three thresholds: CTH,, CTHfand CTH,.
There are four states for each cluster:

0 medium-loaded: iiCTHu< N,<CTHf
0 fu l ly lod ifCTHr<N,<CTHv
0 overloaded. if N, XTH,

For each node in any cluster, The load state of a node is
also defined by three thresholds: NTH, NTH, and NTH,.

underloded: A node is said to be underloaded if its
number ofjobs (tasks) (NJ is less than or equal to NTH.,
medium-loadd. i f ” ” < N.<NTHr
fu l ly lod ifNTHr<Nn<NTHv
overloaded. if N. >NTH,
Each cluster has one server that can collect the state

infarmation of othn clusters and the state information of each
node of this cluster. When a node becomes fully loaded
(underloaded), it will send its change of state to the server, and
server of the cluster will update its state information table. If
the cluster changes his state, e.g, from underload to fully loaded.
it will broadcast its change of state to all the other clusters in its
buddy set. Every cluster that receives this information will
update its state information by eliminating the fully loaded
cluster from, or adding the underloaded cluster to, its ordered
list (called a preferred list) of available receivers. Thus dynamic
scheduling method is organized at three level. In first level
(node scheduling), as task arrive in the one node of the system.
The scheduler uses the information about the task and the state
of node , and attempts to guarantee the new task by the
execution of this node. If this task can be scheduled on this
node and the time constmints can be met, we execute this task
on this node. If this task cannot scheduled, the second level

underloded: A cluster is said to be underloaded if its
number ofjobs (tasks) (N,) is less than or equal to CTH.,,

scheduling (cluster scheduling) is started., we use the state
information table of the cluster that is connected closely by
the node to find whether this cluster can accept this new
task and meet its time conswaint. If the cluster can accept
this new task, we transfer this new task to one underloaded
node of this cluster and executes this new task on this
underloaded node. If new task cannot be accepted by this
cluster, the third level scheduling (grid scheduling) is
startd, we use the information list to find a remote cluster
in the grid to accept this.task and execute it on thwemote

.cluster in the grid:; -’

Algorithm

Initiation:
0 Creat the thresholds CTH., CTHt and CTH, on the

server of each cluster
Creat the state infomation table , buddy set and
preferred list on the server of each cluster
Creat the thresholds NTH., NTHt and NTH, on each
node

0

Node Sheduling
While a task arrive on one node in a cluster
do

if this node is idle
then

this task will be executed immediately
send a message to the server to update
the state information table,

else
IfQbNTH,

then

else
guto cluster scheduling

make this task in queue
send a message to the server to
update state information table.

While a task fmished his execution
do

if queue ofthis node is not idle
then

task in the head of queue will be
executed immediately

send a message to the server to update
state information table

send a message to the server to update
the state information table.

else

Cluster Scheduling

then
If a message to update information arrives

update state information table.
If the state of cluster changes,

then
goto grid scheduling.

If overloaded task is transferred to the server
then

if find a underloaded node in local cluster
then

migrate overloaded task to this Node to
execution, update state information table

got0 grid scheduling
else

Grid Scheduling

then
If the state of cluster changes,

broadcast its change of state to all other clusters
in i s buddy set. . ~.

If this cluster is overloaded,
then

transfer to overloaded tasks to the first
underloaded cluster in its preferred list and
transfer a task to that cluster.

If one overloaded task from other clusters arrives,
Then

goto cluster scheduling

Since communication cost must be kept below a given
required level while minimize the resultant overhead, the main
issues of the scheduling algorithms are how to define state of
each node and state of each cluster, how to collect state
infomation, and how to redishibute loads among nodes and
clusters, such that overloaded nodes will locate underloaded
nodes to share their loads in local cluster or remote cluster
with a very high probability Buddy sets, preferred lists, state
information table, and threshold patterns are the most impottant
features to resolve these issues.

The buddy set of a cluster is a set of clusten in its physical
proximity. Since state information for different clusters is
exchanged only within a buddy set and since a constant buddy
set size of 10 to I15 nodes is shown to work well regardless of
the system size, the communication overhead is reduced to a
constant from O(N2), as compared to the case when state
information is exchanged in entire systems of N clusters. In
order to avoid more than one overloaded cluster “dumping”
their loads on one underloaded cluster or surplus tasks being
confmed in a.certain region, the clusters in a buddy set are
ordered into a preferred list such that each cluster will be
selected as the 14h preferred cluster by one and only one other
cluster. I t has been shown that the preferred lists can
effectively solve both the coordination and congestion
problems, thus meeting task deadlines with a high probability.

The exact analysis of scheduling algorithm is difficult. The
composite task amval process at a node or a server of cluster is
composed of the local (external) task arrivals and task transfers,
the latter of which is itself a composite process of task transfers
from different nodes or clusters. One difficulty in estimating
the composite task arrival rate is that the transfmed-in task
arrival process (and thus the composite arrival process) may not
be Poisson even if the local task arrival process is Poisson. This
is because the probability of sending a task to (or receiving a
task h m) a node or a cluster depends on the state of both
nodes or clusters, making the splitting process non-Poisson,
and task transmission times may not be exponentially
distributed, making the process of transferred-in tasks
non-Poisson. Furthermore, even if we assume the composite
amval process to exhibit behavion similar to a Poisson process,
the transferred-m task arrival rate from a node is not known due
to the dynamic change of system state. In this paper,
approximate method was used in the algorithm

analysis. .Bayesian estimation is used for the on-line
computation of the composite task arrival rate on a node.
We consider Poisson external task arrivals and we further
approximate the composite task arrival process to be
Poisson . This approximation rests on a general result of
renewal theory which states that the superposition that the
arrival rate of tasks with increasingly many component
processes yields a Poisson process.

5. Conclusion
The Computational Grid provides a promising

platform for the efficient execution of complex real-time
applications. Scheduling such application is challenging
because target resources heterogeneous ,because their load
and availability varies dynamically, and because the tasks
have the strict timing constraints. In this paper, we
proposed an dynamic real-time scheduling algorithm for
real-time Spplication running on the Grid. The scheduling
model was organized in three levels: node scheduling,
cluster scheduling and grid scheduling. This model fits for
grid systems and it integrates local scheduling and global
scheduling. This model looks like a hybrid model, hut suits
grid.

Acknowledgments
This work is partly supported by the National Natural

Science Fund, Natural science Fund of Guangdong
province, '"Thousand, Hundred, and ten" outstanding
person fund of Education Department of Guangdong
Province, Natural science fund of Education Department
of Guangdong Province.

References
[IIFosrer, Buliding the Grid An integrated services and
toolkit architechue for next generation networked
applications,
H ~ : / / w u Y v . c o m D u t i n ~ ~ ~ = l ~ . ~ ~ ~ ~ c e - D a D e ~ ~ ~ i l d i " ~ the
*.
[Z]M.Baker and GFox, Metacomputing: Harnessing
informal supercomputers, High performance cluster
computing: Architecture and System, R.Buyya (ed.),
Volume 1, Rentice Hall PTR, NI, USA, 1999.
[3]L.R.Welch et al., Specification and modeling of d F .
distributed real-time systems, Proceedings of the 19 IEEE
Real-Time Systems Symposium, 72-8 I , IEEE Computer
Society Press, 1998.
[41 D.C.Schmidt et al., The design and performance of
real-time object request brokers, Computer Communication,
Vo1.21, pp294-324,Apr.1998.
[SIRM. &vi, "Real-time systems: Abshactions, languages,
and Design Methodologies", IEEE Computer Society Press,
1992.
[6]J.k Stankovic and KRamarih. Hard real-time
systems, IEEE computer Society, OrderNumber819, 1988.
(7lS.P. Reiss, 'PECAN. program development systems that
support multiple views', IEEE Trans. on Software Eng.,
SE-I1,(3), 1985.
[8lA.M.V. Tilbotg and C.M. Koob, Foundations of
real-time computing: F o m l specifications and methods,
Kluwer Academic publishers, 1991.
[9]J.Xu and D.L.Parnas, On statisfying timing constraints
in hard real-time systems, Proceeding of the ACM

SIGSOFT'PI Conference on Software for Critical Systems,
1991.
[IO] L.Zhang, et al., Methodology of real-time system design
using multiprocessors, Microprocessors and Mimsystems, Vol
17,No4,May 1993.
[I I] LZhang and B.Chaib, A design methodology for real-time
to be implemented on multiprocessors, the Journal of system
and software, April, 1996,33: 31-56..
[I21 L.Dipippo et al., Expressing and enforcing timing
constraints in a dynamic Real-Time CORBA system Real-time
Systems, Vo1.16, issue 2/3, May 1999.
[13]M. Baker et al., The grid: international efforts in global
computing, Intemal conference on advances in infrasbucture
for electronic business, science, and education on the Internet,
Italy, 2000.
[14]R Buyya et al., An architechue for a resource management
and scheduling system in a Global computational grid, HF'C
ASIA'2000, China, IEEE CS Press, USA, 2000.
[15]S.Chapin et al.. A grid resource management architecture,
Grid F o m scheduling working group, nov. 1999.
[I61 1.Dongarra. An overview of computational grids and
survey of a few research projects, Symposium on global
information processing technology, Japan, 1999.
[I71 I. Foster and C. Kesselman, The grid Blueprint for a new
computing infrasrmcrure, Morgan kauhnann publishers, USA,
1959.
[IS]H.Casanova et al., Adaptive scheduling for task Farming
with Grid middlewan, International Journal of Supercomputer
applications and high performance computing, 1999.
[19]H.Y.Chang, Distributed scheduling under deadline
constaints, a cornparision of sender-initiated and
receiver-initiated approaches, Proceedings of IEEE Real-Time
Systems Symposium, 175-180, IEEE Computer Society Press,
1986.
[ZO]KG.Shin and Y.C. Chang. Load sharing in distributed
real-time systems with state change broadcast IEEE Trans.
Comput C-38,8(august 1989), 1124-1142.
[21]Z.Deng and J.W.S.Liu, Scheduling real-time application in
an open environmen& Procdings of the IS' IEEE Real-Time
Systems Symposium 308-319, IEEE Computer Society Press,
1997.
[22lJ.XY and D.L.Pamas, htept ing run-time scheduling and
pre-run-time scheduling of real-time processes, Real-time
programming 1998.73-80, Elsevier Scice Ltd.
[23]Ramhtham et al., Distributed scheduling of tasks with
deadlines and resowes requirements, IEEE Trans. Comput
C-38,8 (August 19893,110-1123.
[24]A.Corsan, et al., Formalizing meta-programming
techniques to reconcile heterogeneous scheduling policies in
open distributed real-time systems, Proceedings of the 3d
international symposium on distributed objects and application,
September 8-10,2001, Rome, Italy.
[25]IEoster et al., A distriiuted resouxe management
architechwe that suppm advance reservations and
co-allocation, Proceedings of International workshop on quality
ofservice, pp.27-36, June 1999.

