
Physica A 443 (2016) 70–85

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Targeted revision: A learning-based approach for
incremental community detection in dynamic networks
Jiaxing Shang a,∗, Lianchen Liu a, Xin Li b, Feng Xie a, Cheng Wu a

a Department of Automation, Tsinghua University, Beijing 100084, PR China
b Department of Information Systems, College of Business, City University of Hong Kong, Hong Kong Special Administrative Region

h i g h l i g h t s

• We propose a learning-based targeted revision (LBTR) approach for efficient incremental community detection.
• We provide mathematical analysis on how the vertex classifier can affect the community detection time complexity.
• Experiment results show that our approach can significantly reduce the running time while maintaining high community detection

quality.
• To make our approach effective, one should increase the precision of the vertex classifier while keeping recall at a reasonable level.

a r t i c l e i n f o

Article history:
Received 1 April 2015
Received in revised form 12 May 2015
Available online 30 September 2015

Keywords:
Incremental community detection
Dynamic networks
Targeted revision
Computational complexity

a b s t r a c t

Community detection is a fundamental task in network analysis. Applications on massive
dynamic networks requiremore efficient solutions and lead to incremental community de-
tection, which revises the community assignments of new or changed vertices during net-
work updates. In this paper, we propose to use machine learning classifiers to predict the
vertices that need to be inspected for community assignment revision. This learning-based
targeted revision (LBTR) approach aims to improve community detection efficiency by fil-
tering out the unchanged vertices from unnecessary processing. In this paper, we design
features that can be used for efficient target classification and analyze the time complexity
of our framework. We conduct experiments on two real-world datasets, which show our
LBTR approach significantly reduces the computational timewhile keeping a high commu-
nity detection quality. Furthermore, as compared with the benchmarks, we find our ap-
proach’s performance is stable on both growing networks and networks with vertex/edge
removals. Experiments suggest that one should increase the target classification precision
while keeping recall at a reasonable level when implementing our proposed approach. The
study provides a unique perspective in incremental community detection.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Many real-world systems can be represented as networks, such as social networks [1], biological networks [2], citation
networks [3], etc. Complex networks often exhibit a sense of community structure, where vertices form groups and have
much denser connection within groups than between groups [4]. Community structure is a basic structural property of
networks and can be used in various applications. For example, communities in protein interaction networks can be used to

∗ Corresponding author. Tel.: +86 15110099654.
E-mail address: shangjiaxing@gmail.com (J. Shang).

http://dx.doi.org/10.1016/j.physa.2015.09.072
0378-4371/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.physa.2015.09.072
http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physa.2015.09.072&domain=pdf
mailto:shangjiaxing@gmail.com
http://dx.doi.org/10.1016/j.physa.2015.09.072

J. Shang et al. / Physica A 443 (2016) 70–85 71

Fig. 1. Community evolution in a dynamic network.

predict the protein functions [5]. Communities inWebpage networks can be used for topic identification [6]. Previous works
also studied the impact of community structure on epidemic spreading [7–9]. Community detection is a fundamental task
in complex network analysis nowadays [4].

There are many community detection algorithms. A comprehensive review can be found in Ref. [10]. However, these
algorithms generally consider networks to be static,whilemost real-world networks change over time. Recently, community
detection in dynamic networks has attracted attention [11],which can help us understand howcommunities evolve [12–15],
e.g., birth, death, growth, contracting (shrink), merging, splitting, etc., as shown in Fig. 1.

Community detection in dynamic networks can be addressed by applying static community detection algorithms
multiple times on snapshots of the networks. However, it is more cost effective to incrementally revise the community
structure of the old network when networks are updated [16–18], i.e., incremental community detection. Incremental
community detection is more valuable when the networks are in mega-scale or change frequently, which is often the case
in real networks.

Note that the essence of incremental community detection is the revision of community structure, if we can identify
the high-risk vertices that need to be inspected, we argue it is possible to improve the efficiency of incremental algorithms.
Holding this conjecture, in this paper, we propose a learning-based targeted revision (LBTR) approach. In this approach, we
first classify the vertices that need to be revised. Then, we revise the community assignments of such vertices according
to local modularity maximization [19]. In this paper, we provide mathematical analysis on how the classifier can affect
the community detection time complexity. We conduct experiment on two real-world datasets to evaluate our approach,
which shows that our proposed approach can significantly reduce the running timewhilemaintaining community detection
quality. Furthermore, as compared with the benchmarks, we find our approach’s performance is stable on both growing
networks and networks with vertex/edge removals. Experiments also suggest that, to make our approach effective, one
should increase the precision of the vertex classifier while keeping recall at a reasonable level.

The rest of this paper is organized as follows. Section 2 reviews the literature on community detection. Section 3 elab-
orates the preliminaries of the problem to be addressed. Section 4 introduces our LBTR approach. Section 5 gives the eval-
uation framework, including the datasets, evaluation metrics, baseline methods, and experimental procedure. Experiment
results are presented in Section 6. Section 7 concludes this paper.

2. Literature review

2.1. Community detection studies on static networks

There aremany algorithms on community detection in static networks. Readermay refer to Ref. [10] for a comprehensive
review. Here we only review a small number of papers that are more relevant to our paper.

Modularity-based algorithms are one major type of community detection algorithms, although they may have a resolu-
tion limit problem [20]. Modularity, first proposed by Newman et al. [21], is the fraction of connections within communities
subtracts the expected fraction of connections within communities when vertices are randomly connected. Generally, a
higher modularity value corresponds to a better community structure. Thus, the problem of community detection can be
transformed to optimizing modularity. In Ref. [22] Clauset et al. proposed a greedy search algorithm (the CNM algorithm)
to address this problem. It gradually merges communities that lead to the largest gain in modularity until convergence. In
Ref. [23] Wakita et al. improved the time efficiency of the CNM algorithm by merging the communities in a more balanced
way. To the best of our knowledge, the fastest modularity-based static algorithm is the Louvain algorithm [19]. The algo-
rithm uses greedy strategies in a local manner. Initially, each vertex is put in a singleton community. Then the algorithm
iteratively moves each vertex to its neighbor communities to maximize the gain in modularity. The procedure is then re-
peated at community level. Since moving a vertex to its neighbor community can be computed in O(1) time, the algorithm
is very efficient. The quality of the detected community structure also outperforms the CNM algorithm, as evaluated by the
modularity measure.

72 J. Shang et al. / Physica A 443 (2016) 70–85

In addition to modularity maximization, there are many other community detection paradigms, such as graph
partitioning [24], spectral clustering [25], label propagation [26], heuristic algorithm [27], etc.

A small number of community detection studies address the problem by taking advantage of machine learning models.
In Ref. [28] Backstrom et al. applied decision-trees to identify the most important structural determinants of community
evolution. In Ref. [29] Newman and Leicht built a mixture model with the EM algorithm to model the group structure of
networks. In Ref. [30] Hofman et al. build a stochastic block model using a variational Bayes algorithm to infer community
assignments. In Ref. [31] Yang et al. proposed a dynamic stochastic block model for modeling communities and their
evolution. In such studies, machine learning methods are generally used to model distribution of vertices and describe the
community structure.

2.2. Incremental community detection

In massive and dynamic networks, incremental community detection becomes necessary for efficient processing
[16–18]. The incremental community detection algorithms revise the old community assignments to generate new
community structure when the network is updated.

Modularity maximization is one major approach to incremental community detection, which contains two basic
methods: iterative execution and rule-based revision.

Iterative executionmethods are built upon base algorithms such as the CNMalgorithmor Louvain algorithm. Their design
rationale is to convert the community structure in the last period to inputs upon which to re-run the base algorithms.

In Ref. [32] Dinh et al. developed an iterative execution method based on the CNM algorithm. When the network is
updated, new vertices, neighbor vertices of new or removed vertices/edges (which are called changed vertices since they
involve in network updates) are placed into singleton communities. Then the authors aggregate the network to community
level and reapply the CNM algorithm to obtain the new community structure. Since the community-level network is much
smaller than the original network, the algorithm ismore efficient than the CNMalgorithm. In Ref. [17] Bansal et al. conducted
CNM-based iterative execution at vertex level. The algorithm (records and) replicates the vertex merging process of the
last period’s CNM before reaching new vertices or neighbor vertices of new or removed edges. Then the regular CNM is
conducted to finish the community detection process. As compared with Ref. [32], Bansal et al.’s algorithm essentially puts
new/changed vertices into singleton communities and also breaks their original community into smaller pieces for further
processing by CNM.

The Louvain algorithm also naturally supports iterative execution. As done in Ref. [16], Aynaud et al. took community
structure from the last period as the initial state and put each new vertex into a singleton community. Then the Louvain
algorithm was applied to revise the community assignments of the vertices to maximize modularity locally. Chong et al.
took a similar approach in Ref. [33], where new vertices and neighbor vertices of new or removed vertices/edges were
put into singleton communities before reapplying the Louvain algorithm. Since this algorithm increased the vertices to be
inspected for revision, its time complexity is increased and community detection quality is improved.

Rule-based revision uses predefined rules to specify how to revise vertices’ community assignments. In Ref. [18]
Nguyen et al. proposed a QCA algorithm which falls into this category. The algorithm provides revision strategies for
each type of network updates: newVertex, removeVertex, newEdge, and removeEdge, where the community assignments
of neighbor vertices are adjusted to maximize the gain in modularity. A similar approach was proposed by Shang et al.
in Ref. [34].

There are also some incremental algorithms that are not based on modularity maximization. In Ref. [35] Falkowski et al.
proposed a density-based incremental algorithm motivated by DBSCAN [36]. The authors defined core vertices, border
vertices, and noise vertices based on a specified distance function. When the network updates, the algorithm recomputed
the distances and locally adjusted the vertices whose distances to the core vertices were changed. In Ref. [37] Xie et al.
proposed an incremental algorithm, LabelRankT, based on a Label Propagation algorithm, LabelRank [38].When the network
updated, LabelRankT re-initialized the labels of changed vertices and reapplied LabelRank to update the label probability
distributions. Thus, it is also an iterative execution algorithm. In Ref. [39]Ning et al. proposed an spectral clustering algorithm
for incremental community detection. They used incidence vector/matrix to represent the network updates (changes of
vertices and edges). Then the incidence vector /matrix was used to incrementally update the eigenvalues of the vertices,
which was used to derive community structure in spectral clustering. In Ref. [40] Sun et al. took a minimum description
length (MDL) approach to detect communities, which aims at encoding a graph with a minimum number of bits. They
divided the dynamic network into multiple sequential segments, and incrementally initialize the algorithm parameters by
taking the community structure of last segment as input.

These aforementioned methods are all for non-overlapping communities, which is the focus of our research. There are
also incremental algorithms for detecting overlapping community structure, such as iLCD [41], AFOCS [42], FacetNet [43],
and the algorithm of Ref. [44].

Table 1 summarizes these incremental algorithms. As we can see, the incremental community detection algorithms are
often based on the re-execution of static community detection algorithms. Thus the incremental algorithms’ time efficiency
depends on the base algorithm’s efficiency. The first two algorithms are relatively slower due to CNM’s higher cost than the
Louvain algorithm.

J. Shang et al. / Physica A 443 (2016) 70–85 73

Table 1
Summary of incremental community detection algorithms.

Studies Algorithm type Design Base algorithm Trigger changes

Dinh et al., 2009 [32] Modularity maximization Iterative execution CNM New and changed vertices → singleton
communities

Bansal et al.,
2011 [17]

Modularity maximization Iterative execution CNM New and changed vertices → singleton
communities; Some old
communities → broken into small ones

Aynaud et al.,
2010 [16]

Modularity maximization Iterative execution Louvain New vertices → singleton communities

Chong et al.,
2013 [33]

Modularity maximization Iterative execution Louvain New and changed vertices → singleton
communities

Nguyen et al.,
2011 [18]

Modularity maximization Rule-based Louvain New or removed vertices/ edges

Shang et al., 2012 [34] Modularity maximization Rule-based Louvain New edges
Falkowski et al.,
2008 [35]

Density-based Rule-based DBSCAN Vertices with changed distances to the
core vertices

Xie et al., 2013 [37] Label propagation Iterative execution LabelRank New and changed vertices → label
probability distribution re-initialized

Ning et al., 2007 [39] Clustering – Spectral clustering New or removed vertices; Edges whose
weight were changed

Sun et al. 2007 [40] Graph encoding Iterative execution MDL A batch of new or removed
vertices/edges

Fig. 2. An example of incremental community detection: (a) Network Gt−1 with community structure Ct−1 at time t − 1; (b) Network Gt where the
difference from Gt−1 is shown by dotted lines; (c) Community structure Ct obtained based on Ct−1 and Gt .

Furthermore, the incremental algorithms are generally based on the inspection of new or changed vertices, or other
involved vertices/communities. If we can reduce the number of vertices to be inspected, it is possible we can improve the
time efficiency of incremental community detection.

3. Preliminaries

Without loss of generality, we define an undirected unweighted graph G = (V , E), where V is the set of vertices and E is
the set of edges. G has adjacency matrix A, where:

Ai,j =


1 if i and j are connected
0 otherwise. (1)

The community structure of G is a collection of vertex sets C = {C1, C2, . . . , Ck}, where community Ci has multiple
vertices. (In this work, we only consider non-overlapping communities, so there is no overlap across Ci.)

Definition 1. A dynamic network is defined as a series of graphs G = {G0,G1,G2, . . . ,GT
} where Gt

= (V t , Et) is the
snapshot of the graph at time point t . The community structure of Gt is represented as Ct .

Definition 2. Given a dynamic network G, the problem of incremental community detection is to detect the community
structure Ct of Gt based on Gt and Ct−1, where the initial community structure C0 is provided (usually using static
community detection algorithms).

Fig. 2 shows an example of the incremental community detection algorithm procedure. Fig. 2(a) shows the network at
t−1 that consists of two communities C1 and C2. During period t−1 to t , two new vertices u and v are introduced and some
edges are added, as shown in Fig. 2(b). The incremental algorithm adjusts the community structure of Ct−1 and creates the
new community C3, forming Ct , as shown in Fig. 2(c).

From time t−1 to t , the changes on the network include new vertices (V t
\V t−1), removed vertices (V t−1

\V t), new edges
(Et

\ Et−1), and removed edges (Et−1
\ Et), where ‘‘\’’ is the symbol for set-theoretic difference. These changes cause the

74 J. Shang et al. / Physica A 443 (2016) 70–85

Fig. 3. The rationale for the learning-based targeted revision.

change of community structure. Together with these changes, the topological characteristics of vertices that are connected
to the new or removed vertices or edges are also changed.

Definition 3. A changed vertex in a dynamic network is defined as a vertex adjacent to new or removed vertices/edges
across time periods.

As shown in previous research, the changed vertices are critical to incremental community detection [16–18,32–35,37,
39,40].

4. Learning-based targeted revision approach

4.1. Framework

Fig. 3 illustrates the rationale of our learning-based targeted revision (LBTR) approach,which is based on three rationales:
1. Local modularity maximization as in the framework of the Louvain algorithm.
2. Learning-based targeted revision to reduce the computations for local modularity maximization.
3. Small community merging to improve community detection quality.

Similar as previous studies, when the network evolved from Gt−1 to Gt , we put the new vertices into singleton
communities and move the community assignments of changed vertices to maximize the modularity gain.

However, different fromexistingmethods,wedonot inspect every newand changed vertex formodularitymaximization.
As highlighted in the target classification step of Fig. 3, we classify whether the new and changed vertices may need
a community assignment revision when the network is updated from Gt−1 to Gt . If we have an accurate (and efficient)
classifier, we should be able to save time on unnecessary inspections of the vertices that will not need community revision.
Note that if a vertex’s community assignment is revised, it may also change the classification features of its neighbors. We
will need to run the classifier on these neighbors and inspect their community assignments.

The final step is merging the small communities to maximize modularity. Specifically, we merge communities whose
size is smaller than a threshold to their neighbor communities if that can increasemodularity. The purpose of this extra step
is to address the problem of dramatically increased number of communities as found in Ref. [18]. Experiments show that
the use of this naive approach does not significantly change our overall time efficiency and community detection quality.
(We can also employ the learning-based targeted revision approach to improve the time efficiency of this step. However,
since the computational requirement of this step is low, we choose not to employ heuristics so that we can focus on the
performance benefit in the first step in this paper.)

Algorithm 1 reports the pseudo-code of our proposed approach, which is called LBTR Algorithm in this paper.

J. Shang et al. / Physica A 443 (2016) 70–85 75

Algorithm 1 The LBTR algorithm
Input:

Dynamic network G = {G0,G1,G2, . . . ,GT
}

Output:
Dynamic community structure DC = {C0, C1, C2, . . . , CT

}

1: Initialize: Let C0
= Louvain(G0).

2: Generate training set S from G0 and use S to train classifier CL.
3: for t = 1 to T do
4: Let X = Φ

5: for each new vertex u do
6: Put u in a new singleton community.
7: end for
8: for each new and changed vertex u do
9: Use CL to classify u. If u is positive, add u to X

10: end for
11: while X ≠ Φ do
12: Fetch next element u from X, move u to its neighbor community to maximize ∆Q .
13: If u is moved, for each neighbor v of u, use CL to classify v. If v is positive, add v to X.
14: end while
15: for each community C do
16: if |C | ≤ THRESHOLD then
17: Merge C with its neighbor communities to maximize ∆Q .
18: end if
19: end for
20: Output the current community structure as Ct .
21: end for

Table 2
Candidate features for the learning module.

Feature Description Maintain cost

ku Degree of vertex u O(1)
kinu Number of connections from u to its community C(u) O(1)
|C(u)| Size of u’s community C(u) O(1)
|NC(u)| Number of neighbor communities of vertex u O(ku)
kmaxOut
u The maximum number of connections from u to its neighbor communities O(ku)

4.2. Detecting vertices with possible community revision

The detection of vertices whose community assignment should be revised can be considered as a binary classification
problem in the machine learning paradigm. Although the idea is quite straightforward, the design of this classifier is non-
trivial. We require the classifier to (1) have a good classification performance, i.e., high precision and recall, and (2) have
a low computational cost. The first requirement is to ensure that the vertices with community assignment change are
appropriately processed. The second requirement is to ensure the time efficiency of the overall algorithm.

4.2.1. Features
Feature design is themost critical part that affects the classifier’s time efficiency in this paper.We do not assume knowing

any specific information on the vertices and edges.We only employ the network’s topological features to build the classifier.
Since the network is dynamic, the topological features change over time and need to be recalculated continuously. This is
where the computational cost comes from.

Table 2 lists some candidate features to build the classifier and the time complexity of maintaining them under simple
network change events, such as adding/removing vertices/edges, moving a neighbor to another community, etc. In our
approach,we select ku and kinu to build the classifier. Both of them takeO(1) time to update andprovide a goodperformance in
classification. We have also tried some other features and found that they either provide limited performance improvement
or require more time to update.

4.2.2. Classification algorithm
Selection of the classification model should also consider efficiency and effectiveness. In this research we did not make

an effort to search classification algorithms. We choose two widely used classification models: Logistic Regression [45] and
Support Vector Machines (SVM) [46]. Although the training of the two algorithms takes some time, in the prediction stage

76 J. Shang et al. / Physica A 443 (2016) 70–85

that is being used in incremental community detection both models are quite efficient, since they are both based on linear
combination of features.

4.2.3. Training data for classifier building
To build the classifier, we generate the training sets based on the initial network G0. Assuming having more detailed

timestampswithinG0, we convertG0 to a dynamic networks {G0
1,G

0
2}, whereG0

1 contains the first 80%of the network andG0
2 is

the update ofG0
1. With this setup, we can train the classifier based on the community reassignment of vertices across the two

time periods.We run the Louvain algorithm onG0
1 to obtain the initial community structureC0

1 . Then the network is updated
to G0. Then, each new vertex in this update is put into a new singleton community. The Louvain algorithm is conducted to
iteratively move the new and changed vertices to their neighbor communities to maximize the gain in modularity, in which
the new and changed vertices that involvedwith community revision are recorded and used as positive instances of training
data to build the classifier.

4.3. Algorithm analysis

4.3.1. Effect of the classifier
The classifier determines the vertices whose community assignment will be inspected and later revised. It significantly

affects the time cost and community detection result.
When the classifier has high recall, i.e., most of the vertices that need to be inspected are inspected, the quality of the

final result will be good. When the recall is low, a lot of vertices that need to be inspected for community revision are not
inspected and the quality of the final result will be reduced.

When the classifier has a high precision, i.e., most of the inspected vertices later do involve community revision, the time
complexity will be reduced. In contrast, when precision is low, the algorithm will process many vertices that do not lead to
further community revision and the time complexity remains high.

Overall, we need a reasonable high recall to guarantee the quality of the community detection results. Given that, we
should try to increase the precision to reduce the time complexity of the algorithm.

4.3.2. Time complexity
Now we give a mathematical analysis of the time complexity of this algorithm. The time complexity of the community

merge step at the end of our algorithm is much lower than that of the vertex moving step; thus we only analyze the time
complexity for the first step.

Proposition 1. Assuming the modularity calculation of moving a vertex to one of its neighbor communities is a unit, the
approximate time complexity of the LBTR algorithm is O(|1V |

⟨k⟩rR
(1−⟨k⟩rR)P), i.e., O(|1V |), where |1V | is number of new and changed

vertices from t−1 to t; R and P are the recall and precision of the classifier; ⟨k⟩ is the average vertex degree; and r is the probability
that an examined vertex actually needs community assignment revision.
Proof. For the first step of our algorithm, we have |1V | new or changed vertices go through the classifier. Among them
there are |1V |r vertices that actually need community assignment revision. The classifier will hit a total number of |1V |rR
vertices. The number of vertices that are classified as ‘‘need community revision’’ is B1 = |1V |rR/P , which is the number of
vertices our algorithm will inspect.

Note that if a vertex is successfullymoved, the algorithmwill further considermoving its neighbors. In the i−1th iteration,
the number of inspected vertices is Bi−1. There are Bi−1P vertices successfully revised. These vertices have about Bi−1P⟨k⟩
neighbors (some vertices may share neighbors which further reduces this number), which need to be inspected/classified in
the ith iteration. Among them, the classifier further identifies (Bi−1P⟨k⟩)rR/P for modularity maximization to be conducted
in the ith iteration.

Here we assume a unified r , R, and P for the multiple iterations of the algorithm. In practice, the algorithmwill converge,
and the number of vertices with revised communities will reduce, i.e., Bi < Bi−1 and ⟨k⟩rR < 1. So the total number of
inspections over all the iterations is


i Bi ≈ B1/(1 − ⟨k⟩rR).

The time complexity of inspecting one vertex for local modularity maximization is O(⟨k⟩) since the algorithm has to
check with communities of all the vertex’s neighbors to calculate modularity and find the best community to move. So the
approximate time complexity of the LBTR algorithm is O(|1V |

⟨k⟩rR
(1−⟨k⟩rR)P), which is essentially O(|1V |). In this formula R and

P depend on the classifier. ⟨k⟩ and r are determined by the characteristics of the data. In generic networks, we expect ⟨k⟩
and r change in a slow manner. �

5. Evaluation

5.1. Dataset

ArXiv: The arXiv citation dataset published in the KDD Cup 2003 includes approximately 29,000 papers. We consider
each paper as a vertex and each citation as an edge, in which we treat the edges as unidirectional. After cleaning the data
and removing the errors, the dataset has 27,769 papers from 1992 to 2003 and 351,798 edges among the papers.

J. Shang et al. / Physica A 443 (2016) 70–85 77

Fig. 4. The evolution of the cumulative network.

Facebook: The Facebook dataset [47] contains activities of Facebook users in the NewOrleans area fromOctober 2004 to
January 2009, including their friendship relations and wall-post interactions. Each activity is associated with a timestamp
indicating when a user appeared in another user’s friend list or posted on another user’s wall. After cleaning the data and
removing the errors, the dataset has 61,382 people and 655,015 friendship edges.

5.2. Dynamic network construction

We take two approaches to build the dynamic networks from the two datasets for our experiments. First, we build a
cumulative network containing all vertices and edges that have been introduced to the dataset from the beginning of the
dataset to the examined time point. Second, we take a sliding window approach and build networks that consider only
the vertices and edges that have been introduced in a time window before the examine time point. To practitioners, the
cumulative network represents the network of registered users and the sliding window network represents the network
of ‘‘active users’’. From an incremental community detection perspective, cumulative networks only have new vertices and
edges between time points. Sliding window networks may contain the removal of vertices and edges.

5.2.1. Cumulative network
For the arXiv dataset, each paper and its citations have a timestamp (publication time). We build a series of cumulative

networks till each month of 1999–2003, resulting in 52 networks. We use the papers published before 1999 as the first
(initial) network to build the classifiers.

For the Facebook dataset, each person’s activity (tagging new friends, leaving comments on walls) has a timestamp. We
use the activities before 2007 to generate the initial network and build a series of cumulative networks till each month of
2007–2009, resulting in 24 incremental time points.

Fig. 4 reports the numbers of vertices, edges, new vertices, and new edges in the cumulative networks built up on the two
datasets. As we can see, both networks show an exponential increase (showing as a straight line on the log-scaled chart).
The number of new vertices and new edges also show an exponential increase over time. The growth of Facebook network
is much faster than the arXiv network.

5.2.2. Sliding window network
Webuild the slidingwindownetworks for same timepoints as for cumulative networks in the twodatasets. The networks

only contain the published papers/user activities in the time window before those time points. In Fig. 5, we present the
network size evolution for three sliding windows: one year, half a year, and one month. As we can see, the two datasets’
sliding window networks generally follow an exponential growth as in cumulative networks.

Besides, a larger window size leads to large network size in Fig. 5. In fact, when the window size is one month (which is
equal to the difference across our time points), all edges of the network will be replaced (as shown in Fig. 5(c)). In that case,
it will not be reasonable to take an incremental community detection approach. Thus, we only experiment on window sizes
as one year and half a year.

5.3. Baseline algorithms

We compare the performance of our algorithm with three state-of-the-art baseline algorithms:

• Louvain algorithm: Louvain algorithm [19] is for static community detection. In each time point t , we apply the Louvain
algorithm on Gt to get Ct . Since the two datasets do not provide ground truth community structure, we also use the
Louvain algorithm outputs as ground truth.

78 J. Shang et al. / Physica A 443 (2016) 70–85

(a) Sliding window network (window size: one year).

(b) Sliding window network (window size: half a year).

(c) Sliding window network (window size: one month).

Fig. 5. The evolution of the sliding window networks.

• BatchInc algorithm: BatchInc [33] is an incremental Louvain algorithm that updates the community structure by
putting new and changed vertices into singleton communities and then reapplying the Louvain algorithm to revise the
community structure.

• QCA: QCA [18] is a rule-based incremental algorithm that updates vertices’ community assignments according to different
types of change events on the network. It is one of themost efficient incremental community detection algorithmswhen
dealing with cumulative networks.

In this paper, we do not use the CNM-based algorithms as baseline since they are generally less efficient as compared to
the Louvain-based algorithms.

5.4. Evaluation metrics

Similar to Ref. [18], we employ four metrics to evaluate the performance of our algorithm:
(1) Running time: Running time evaluates the time efficiency, which is the main purpose of incremental algorithms and the

most important evaluation metric of this study.
(2) Modularity: Modularity [21] evaluates how well the community structure captures edges within communities. Higher

modularity indicates more edges are captured within communities as compared with random networks.

J. Shang et al. / Physica A 443 (2016) 70–85 79

Table 3
Precision and recall of the target vertex classifiers.

Network Dataset Logistic Regression SVM
Precision Recall Precision Recall

Cumulative network ArXiv 0.387 0.998 0.463 0.991
Facebook 0.386 0.997 0.410 0.996

One year sliding window ArXiv 0.502 0.997 0.540 0.995
Facebook 0.376 0.998 0.424 0.995

Half a year sliding window ArXiv 0.633 0.998 0.586 0.995
Facebook 0.415 0.998 0.443 0.996

(3) NMI: NMI [48] measures the similarity between the detected community structure and a gold standard, which is widely
used to evaluate community detection algorithms. Here, we applied the static Louvain algorithm on each snapshot of
the network to get the community structure as the gold standard NMI.

(4) Number of communities: The number of detected communities is not often used in community detection. However,
a previous study [18] found a problem of dramatically increased number of communities in incremental community
detection. Thus we also include it in this paper.

In addition to the absolute measures, we also use relative measures, i.e., the ratio of the measures to the Louvain
algorithm’s measures, in the evaluation. The static version of the Louvain algorithm generally provides the best results and
takes the longest time in our experiments.

5.5. Experimental procedure

In the experiments, for each dynamic network we apply the Louvain algorithm on the initial network G0 to extract the
initial community structureC0. Then,we apply our proposed approach and the baselinemethods on the incremental updates
of networks in each month and evaluate their effectiveness using the four metrics.

Our proposed approaches have two instantiations, LBTR-LR and LBTR-SVM, which apply Logistic Regression and SVM on
(ku, kinu) to build the vertex classifiers, respectively. Here we apply logarithmic transformation on the features since they
are counted data. We program the logistic regression model ourselves and use LIBSVM [49] to build the SVM classifier. The
parameters of the Logistic Regression and SVM classifiers are obtained using 10-fold cross-validation. The threshold for
merging small communities is 16 for the arXiv dataset and 6 for the Facebook dataset which are decided through small scale
experiments.

Since the Louvain algorithm is non-deterministic, we repeat it on the initial network 30 times, which results in 30
realizations of initial community structure. Our follow-up experiments are thus also conducted 30 times, which allows us
to calculate the error bands. In the experiments, we vary the vertex classifier parameters and the setup of the incremental
detection task to inspect factors affecting our approach’s performance.

The experiments are carried out on a computer with 2.5 GHz quad-core Intel Core i7 CPU and 16 GB memory. Our
programs are in single process and single thread.

6. Results

6.1. Community detection performance

Table 3 shows the precision and recall of the two classifiers in 10-fold cross-validation during parameter tuning.We built
classifier based on both training data of cumulative network and sliding window network, which showed similar results.
Generally, we tune all the classifiers to have a high recall, which ensures a low chance of missing the vertices that need
to be inspected for community revision. The SVM algorithm has slightly higher precision and lower recall than the logistic
algorithm in classifying vertices. The prediction results on sliding window network are generally more effective than that
of the cumulative networks.

6.1.1. Results on cumulative networks
Fig. 6 shows the experimental results on cumulative networks. First, we observe that the LBTR algorithms outperform the

three baseline algorithms in terms of running time. The Louvain algorithm takes the longest time, since it needs to reprocess
the entire network at every time point. The BatchInc algorithm slightly improves on the Louvain algorithm but is still very
slow.

The QCA algorithm is the fastest incremental algorithm in literature. However, it is slower than our proposed LBTR algo-
rithms. Pair-wise t tests show that the LBTR-LR and LBTR-SVM algorithms spend significantly less time than it at the 99.9%
confidence level (p < 0.001). The time difference is larger on larger networks, which shows the lower time complexity of
LBTR algorithms according to network size. As comparedwith QCA, our approach on average reduces computational time by

80 J. Shang et al. / Physica A 443 (2016) 70–85

(a) Results on arXiv dataset.

(b) Results on Facebook dataset.

Fig. 6. Experiment results on cumulative networks, as evaluated by running time, modularity, NMI, and number of communities. The error bars show std.
dev.

about 50% on the arXiv dataset and about 30% on the Facebook dataset. The learning-based targeted revision approach is ef-
fective since it only needs to revise a small number of vertices’ community assignment when the network updates overtime.

Second, in terms of modularity, the Louvain and BatchInc algorithms have relatively highermodularity in the second half
of the time periods. The QCA algorithm and the two LBTR algorithms have similar performances on modularity. Pair-wise t
tests show that they do not have significant difference.

In terms of NMI, all algorithms have a similar NMI (note that the Louvain algorithm is not on the figure since it is used as
the gold standard to calculate NMI).

Last, all algorithms except QCA generate a similar number of communities. In fact, the number of communities problem
is a recognized problem of QCA and is more severe on larger networks. For example, on the Facebook dataset it generates
more than 1600 communities in the last time point while the other algorithms only generate about 250 to 300 communities.
The last part of our algorithm successfully addressed this problem. Since that part has a low computational complexity, it
can also be combined with the QCA algorithm to address the number of communities issue.

6.1.2. Results on sliding window networks
Fig. 7 shows the results on slidingwindow networks. Particularly, the time complexity of LBTR algorithms becomesmore

impressive on this set of networks.
First, we observe that the Louvain and BatchInc algorithms remain slow as compared with the LBTR algorithm. Although

they are faster than the experiments on cumulative networks due to the reduced network size, their running times are about
5 to 50 times more than the LBTR algorithms.

Second, we observe that the QCA algorithm is even slower than the Louvain and BatchInc algorithms. After carefully
inspection,we noticed that theQCA algorithmwas reported to be efficient on growing networks [18]. If the network contains
removal of vertices or edges, the QCA algorithm needs to find quasi-cliques within communities, which is NP-hard [50]. In
our experiments, we implemented an efficient greedy algorithm [51] for this step. However, it is still very slow to be dealt
with, making QCA even slower than the Louvain algorithm. Before any new algorithms that fixed this problem, the QCA
algorithm’s running time is about 100 to 1000 times more than our proposed LBTR algorithms. (On the Facebook dataset,
there are rapid increases of running time of the QCA algorithm at some time points. This is mainly due to the rapid increase
of removed edges instead of the algorithm itself.)

In terms of the other measures, the Louvain and BatchInc algorithms are generally better, i.e., have higher modularity,
higher NMI, and lower number of communities. However, the difference between them and the two LBTR algorithms is
small. There is no statistically significant difference between QCA and the two LBTR algorithms in terms of modularity and
NMI. On the number of community measure, QCA remains to have much more communities than other methods. These
observations are consistent with the findings on cumulative methods.

Overall, through the experiments on cumulative and sliding window networks, we find that the LBTR algorithms
significantly reduced the time complexity while maintaining the community detection quality (in terms of modularity,
NMI, and number of communities). Particularly, as compared with the baseline incremental algorithms, such as the QCA

J. Shang et al. / Physica A 443 (2016) 70–85 81

(a) Results on arXiv dataset (window size: one year).

(b) Results on arXiv dataset (window size: half a year).

(c) Results on Facebook dataset (window size: one year).

(d) Results on Facebook dataset (window size: half a year).

Fig. 7. Experiment results on sliding window networks, as evaluated by running time, modularity, NMI, and number of communities. The error bars show
std. dev.

algorithms, our proposed approach provides stable performances on both growing networks and networkswith vertex/edge
removals, which is needed in real-world applications.

6.2. Effect of classifier performance

As shown in Proposition 1, the time complexity of the algorithm depends on the precision and recall of the classification
model. To inspect the effect of classifiers on our algorithms’ community detection performance, we experiment on 10
Logistic Regression and SVM classifiers with different precision and recall values.

The precision and recall values are modified by changing the ratio of positive and negative samples in the training data.
Specifically, we randomly remove the positive or negative samples so that the ratio of positive and negative samples varies
from about 1000:1 to 1:100. This variation provides us model parameters that deliver different precision and recall.

82 J. Shang et al. / Physica A 443 (2016) 70–85

a

b

c

d

Fig. 8. The effect of precision and recall on cumulative networks. (a) Results on arXiv dataset with LR classifier; (b) Results on arXiv dataset with SVM
classifier; (c) Results on Facebook dataset with LR classifier; (d) Results on Facebook dataset with SVM classifier. (Figures of (a) only show 9 bars, since
there are two bars too close to be differentiated on the figure.)

For each algorithm setting, we conduct 30 experiments and report the average value of the evaluation metrics over
time (for each month) in these experiments. Since there are two control variables, i.e., precision and recall, the results are
represented as a 3D column chart, where the x axis is precision, the y axis is recall, and the z axis is the evaluation metrics.

We conducted experiments on all generated networks. The results are verymuch consistent across networks. Fig. 8 shows
precision/recall’s effects on the cumulative networks. Fig. 9 shows the results on the sliding window network with window
size equal to one year. The results on the network with window size equal to half a year are omitted here.

From Figs. 8 and 9, we see that a lower recall and higher precision leads to a significant decrease of running time. This
fits our theoretical analysis of the algorithm. For example, on the cumulative network of the arXiv dataset with the Logistic
Regression classifier, the average running time can be reduced from 0.0205 to 0.0125 s, about a 40% reduction, if the recall
reduces from 1 to 0.75 and precision increases from 0.16 to 1, as shown in Fig. 8(a).

At the same time, a higher recall leads to higher modularity, NMI, and the number of communities. The effect is more
obvious on the Facebook dataset than on the arXiv dataset.We can observe that the change styles of modularity and NMI are
different from that of running time. The performance reduces significantly when the recall decreases even if the precision
increase is small. When recall remains at a relatively high level, the community detection quality is generally high. For
example, by applying the Logistic Regression classifier on the cumulative network of the Facebook dataset, modularity only
reduces from 0.625 to 0.615 when recall is reduced from 1 to 0.95, as shown in Fig. 8(c). Note that in the same process,
precision increases from 0.4 to 0.85. When the recall further reduces to 0.5 and precision increases to 1, modularity reduces
to 0.54. This phenomenon indicates that community detection quality is mainly driven by recall rather than precision.

In practice, precision and recall are correlated. Higher recall often appears with a lower precision. The findings here
provide us directions to tune learning-based targeted revision models: we should increase precision (to reduce running
time) until recall begins to reduce significantly.

J. Shang et al. / Physica A 443 (2016) 70–85 83

Fig. 9. The effect of precision and recall on one year sliding window networks. (a) Results on arXiv dataset with LR classifier; (b) Results on arXiv dataset
with SVM classifier; (c) Results on Facebook dataset with LR classifier; (d) Results on Facebook dataset with SVM classifier.

6.3. Effect of network change

According to Proposition 1, the time complexity of the LBTR incremental algorithm is proportional to |1V |, i.e., more
changes in networks lead to higher running time. To further illustrate this effect, we conduct experiments by varying the
length of the period to run the community detection algorithm from one month to six months.

In our experiments the cumulative networks and sliding window network show similar results, so we only report the
results on the cumulative networks, as shown in Fig. 10. To make it easier to read, we report the average ratio of different
algorithms’ measures to the Louvain algorithm in 30 runs of experiments.

As shown in Fig. 10, the running times of the algorithms are generally proportional to the length of update period, since
longer update period leads to a larger number of updated vertices and edges. However, the increase in running time of
our LBTR approach is much slower than other methods, which further shows the advantage of our approach as compared
with others. In terms of community detection quality, the modularity and NMI slightly decrease with the increase of update
period. There are no significant performance differences across algorithms (the error bars on standard deviation overlap
with each other). The update period increase also increases the number of communities in QCA, which does not affect other
algorithms much, including our algorithm.

7. Discussion and conclusion

In this paper, we propose a learning-based targeted revision approach for incremental community detection in dynamic
networks. We employ machine learning models to identify the vertices whose community assignment needs to be revised.
This approach significantly reduces the computational power needed to process changed vertices.We providemathematical
analysis on the relationship between the approach’s time complexity and the accuracy of the vertex classifier. We employ

84 J. Shang et al. / Physica A 443 (2016) 70–85

(a) Results on arXiv dataset.

(b) Results on Facebook dataset.

Fig. 10. The effect of incremental size on cumulative networks. The error bars show std. dev.

two real-world datasets to validate our approach and find that our proposed LBTR approach can significantly reduce the
computational time while maintaining community detection quality. Particularly,

(1) Our approach’s performance is stable on both growing networks and networks with vertex/edge removals. On the
cumulative networks, our approach can reduce running time for about 30%–50% as compared with the most efficient
benchmark, the QCA algorithm. On the sliding window networks, where QCA algorithm fails, our approach can reduce
running time for about 80%–90% as compared with the most efficient benchmark BatchInc.

(2) The running time of our approach increases much slower than other approaches when the inspection period increases
and the involved updated vertices and edges increase.

Experiments also show that to maintain a high community detection quality and reduce time complexity, we should
increase the precision of the target vertex classifier while keeping its recall at a relatively high level.

To the best of our knowledge, our approach makes the first effort to apply machine learning in community assignment
revision for incremental community detection, which provides a new perspective in investigating incremental community
detection.

Our work can be extended in several directions in the future. Firstly, it is necessary to explore other classificationmodels
and features to improve the performance of the vertex classifier and the incremental community detection algorithm.
Secondly, in this paper, we only consider the detection of non-overlapping communities. In the future, we will study how
to apply the LBTR approach on incremental detection of overlapping community structures.

Acknowledgments

Weappreciate the anonymous reviewer’s valuable comments. Thisworkwas partly supported by the foundation from the
‘‘China Equipment and Resource Sharing’’ project (Nos. 025-226009002, 226009003, Tsinghua University). This work was
also partially supported by the National Natural Science Foundation of China grant 71572169, GuangDong Natural Science
Foundation grant 2015A030313876, and CityU SRG 7004287. All opinions are those of the authors and do not necessarily
reflect the views of the funding agencies.

References

[1] S. Wasserman, Social Network Analysis: Methods and Applications, Vol. 8, Cambridge University Press, 1994.
[2] M.E. Newman, The structure and function of complex networks, SIAM Rev. 45 (2) (2003) 167–256.
[3] M.E. Newman, Coauthorship networks and patterns of scientific collaboration, Proc. Natl. Acad. Sci. 101 (Suppl. 1) (2004) 5200–5205.
[4] M. Girvan, M.E. Newman, Community structure in social and biological networks, Proc. Natl. Acad. Sci. 99 (12) (2002) 7821–7826.
[5] G. Palla, I. Derényi, I. Farkas, T. Vicsek, Uncovering the overlapping community structure of complex networks in nature and society, Nature 435 (7043)

(2005) 814–818.
[6] Y. Dourisboure, F. Geraci, M. Pellegrini, Extraction and classification of dense communities in the web, in: Proceedings of the 16th International

Conference on World Wide Web, ACM, 2007, pp. 461–470.
[7] X. Wu, Z. Liu, How community structure influences epidemic spread in social networks, Physica A 387 (2) (2008) 623–630.

http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref1
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref2
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref3
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref4
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref5
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref6
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref7

J. Shang et al. / Physica A 443 (2016) 70–85 85

[8] J. Chen, H. Zhang, Z.-H. Guan, T. Li, Epidemic spreading on networks with overlapping community structure, Physica A 391 (4) (2012) 1848–1854.
[9] J. Shang, L. Liu, X. Li, F. Xie, C. Wu, Epidemic spreading on complex networks with overlapping and non-overlapping community structure, Physica A

419 (2015) 171–182.
[10] S. Fortunato, Community detection in graphs, Phys. Rep. 486 (3) (2010) 75–174.
[11] T. Aynaud, E. Fleury, J.-L. Guillaume, Q. Wang, Communities in evolving networks: Definitions, detection, and analysis techniques, in: Dynamics On

and of Complex Networks, Vol. 2, Springer, 2013, pp. 159–200.
[12] G. Palla, A.-L. Barabási, T. Vicsek, Quantifying social group evolution, Nature 446 (7136) (2007) 664–667.
[13] S. Asur, S. Parthasarathy, D. Ucar, An event-based framework for characterizing the evolutionary behavior of interaction graphs, ACM Trans. Knowl.

Discov. Data (TKDD) 3 (4) (2009) 16.
[14] Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, B.L. Tseng, Analyzing communities and their evolutions in dynamic social networks, ACM Trans. Knowl. Discov.

Data (TKDD) 3 (2) (2009) 8.
[15] D. Greene, D. Doyle, P. Cunningham, Tracking the evolution of communities in dynamic social networks, in: Advances in Social Networks Analysis and

Mining (ASONAM), 2010 International Conference on, IEEE, 2010, pp. 176–183.
[16] T. Aynaud, J.-L. Guillaume, Static community detection algorithms for evolving networks, in: Modeling and Optimization in Mobile, Ad Hoc and

Wireless Networks (WiOpt), 2010 Proceedings of the 8th International Symposium on, IEEE, 2010, pp. 513–519.
[17] S. Bansal, S. Bhowmick, P. Paymal, Fast community detection for dynamic complex networks, in: Complex Networks, Springer, 2011, pp. 196–207.
[18] N.P. Nguyen, T.N. Dinh, Y. Xuan, M.T. Thai, Adaptive algorithms for detecting community structure in dynamic social networks, in: INFOCOM, 2011

Proceedings IEEE, IEEE, 2011, pp. 2282–2290.
[19] V.D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of communities in large networks, J. Stat. Mech. Theory Exp. 2008 (10) (2008)

P10008.
[20] S. Fortunato, M. Barthélemy, Resolution limit in community detection, Proc. Natl. Acad. Sci. 104 (1) (2007) 36–41.
[21] M.E. Newman, M. Girvan, Finding and evaluating community structure in networks, Phys. Rev. E 69 (2) (2004) 026113.
[22] A. Clauset, M.E. Newman, C. Moore, Finding community structure in very large networks, Phys. Rev. E 70 (6) (2004) 066111.
[23] K. Wakita, T. Tsurumi, Finding community structure in mega-scale social networks: [extended abstract], in: Proceedings of the 16th International

Conference on World Wide Web, ACM, 2007, pp. 1275–1276.
[24] B.W. Kernighan, S. Lin, An efficient heuristic procedure for partitioning graphs, Bell Syst. Tech. J. 49 (2) (1970) 291–307.
[25] H.-W. Shen, X.-Q. Cheng, Spectral methods for the detection of network community structure: a comparative analysis, J. Stat. Mech. Theory Exp. 2010

(10) (2010) P10020.
[26] U.N. Raghavan, R. Albert, S. Kumara, Near linear time algorithm to detect community structures in large-scale networks, Phys. Rev. E 76 (3) (2007)

036106.
[27] D. Chen, Y. Fu, M. Shang, A fast and efficient heuristic algorithm for detecting community structures in complex networks, Physica A 388 (13) (2009)

2741–2749.
[28] L. Backstrom, D. Huttenlocher, J. Kleinberg, X. Lan, Group formation in large social networks: membership, growth, and evolution, in: Proceedings of

the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2006, pp. 44–54.
[29] M.E. Newman, E.A. Leicht, Mixture models and exploratory analysis in networks, Proc. Natl. Acad. Sci. 104 (23) (2007) 9564–9569.
[30] J.M. Hofman, C.H. Wiggins, Bayesian approach to network modularity, Phys. Rev. Lett. 100 (25) (2008) 258701.
[31] T. Yang, Y. Chi, S. Zhu, Y. Gong, R. Jin, Detecting communities and their evolutions in dynamic social networks—a Bayesian approach, Mach. Learn. 82

(2) (2011) 157–189.
[32] T.N. Dinh, Y. Xuan, M.T. Thai, Towards social-aware routing in dynamic communication networks, in: Performance Computing and Communications

Conference (IPCCC), 2009 IEEE 28th International, IEEE, 2009, pp. 161–168.
[33] W.H. Chong, L.N. Teow, An incremental batch technique for community detection, in: Information Fusion (FUSION), 2013 16th International

Conference on, IEEE, 2013, pp. 750–757.
[34] J. Shang, L. Liu, F. Xie, Z. Chen, J. Miao, X. Fang, C. Wu, A real-time detecting algorithm for tracking community structure of dynamic networks, in: 6th

SNA-KDDWorkshop, ACM, 2012.
[35] T. Falkowski, A. Barth, M. Spiliopoulou, Studying community dynamics with an incremental graph mining algorithm, in: AMCIS 2008 Proceedings,

Vol. 29 (2008).
[36] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, in: Kdd, Vol. 96, 1996,

pp. 226–231.
[37] J. Xie, M. Chen, B.K. Szymanski, Labelrankt: Incremental community detection in dynamic networks via label propagation, in: Proceedings of the

Workshop on Dynamic Networks Management and Mining, ACM, 2013, pp. 25–32.
[38] J. Xie, B.K. Szymanski, Labelrank: A stabilized label propagation algorithm for community detection in networks, in: Network Science Workshop

(NSW), 2013 IEEE 2nd, IEEE, 2013, pp. 138–143.
[39] H. Ning, W. Xu, Y. Chi, Y. Gong, T.S. Huang, Incremental spectral clustering with application to monitoring of evolving blog communities, in: SDM,

SIAM, 2007, pp. 261–272.
[40] J. Sun, C. Faloutsos, S. Papadimitriou, P.S. Yu, Graphscope: parameter-free mining of large time-evolving graphs, in: Proceedings of the 13th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2007, pp. 687–696.
[41] R. Cazabet, F. Amblard, C. Hanachi, Detection of overlapping communities in dynamical social networks, in: Social Computing (SocialCom), 2010 IEEE

Second International Conference on, IEEE, 2010, pp. 309–314.
[42] N.P. Nguyen, T.N. Dinh, S. Tokala, M.T. Thai, Overlapping communities in dynamic networks: their detection and mobile applications, in: Proceedings

of the 17th Annual International Conference on Mobile Computing and Networking, ACM, 2011, pp. 85–96.
[43] Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, B.L. Tseng, Facetnet: a framework for analyzing communities and their evolutions in dynamic networks,

in: Proceedings of the 17th International Conference on World Wide Web, ACM, 2008, pp. 685–694.
[44] M. Takaffoli, R. Rabbany, O.R. Zaïane, Incremental local community identification in dynamic social networks, in: Proceedings of the 2013 IEEE/ACM

International Conference on Advances in Social Networks Analysis and Mining, ACM, 2013, pp. 90–94.
[45] D.A. Freedman, Statistical Models: Theory and Practice, Cambridge University Press, 2009.
[46] C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn. 20 (3) (1995) 273–297.
[47] B. Viswanath, A. Mislove, M. Cha, K.P. Gummadi, On the evolution of user interaction in facebook, in: Proceedings of the 2nd ACMworkshop on Online

social networks, ACM, 2009, pp. 37–42.
[48] L. Danon, A. Diaz-Guilera, J. Duch, A. Arenas, Comparing community structure identification, J. Stat. Mech. Theory Exp. 2005 (09) (2005) P09008.
[49] C.-C. Chang, C.-J. Lin, Libsvm: a library for support vector machines, ACM Trans. Intell. Syst. Technol. (TIST) 2 (3) (2011) 27.
[50] J. Hastad, Clique is hard to approximate within n 1-&epsiv, in: Foundations of Computer Science, 1996. Proceedings., 37th Annual Symposium on,

IEEE, 1996, pp. 627–636.
[51] J. Abello, M.G. Resende, S. Sudarsky, Massive quasi-clique detection, in: LATIN 2002: Theoretical Informatics, Springer, 2002, pp. 598–612.

http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref8
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref9
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref10
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref11
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref12
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref13
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref14
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref15
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref16
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref17
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref18
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref19
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref20
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref21
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref22
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref23
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref24
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref25
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref26
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref27
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref28
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref29
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref30
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref31
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref32
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref33
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref34
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref36
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref37
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref38
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref39
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref40
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref41
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref42
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref43
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref44
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref45
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref46
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref47
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref48
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref49
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref50
http://refhub.elsevier.com/S0378-4371(15)00808-0/sbref51

	Targeted revision: A learning-based approach for incremental community detection in dynamic networks
	Introduction
	Literature review
	Community detection studies on static networks
	Incremental community detection

	Preliminaries
	Learning-based targeted revision approach
	Framework
	Detecting vertices with possible community revision
	Features
	Classification algorithm
	Training data for classifier building

	Algorithm analysis
	Effect of the classifier
	Time complexity

	Evaluation
	Dataset
	Dynamic network construction
	Cumulative network
	Sliding window network

	Baseline algorithms
	Evaluation metrics
	Experimental procedure

	Results
	Community detection performance
	Results on cumulative networks
	Results on sliding window networks

	Effect of classifier performance
	Effect of network change

	Discussion and conclusion
	Acknowledgments
	References

