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Community detection in social networks is a key point to discover the functions and structure of social
networks. A great deal of work has been done for overlapping community detection and disjoint commu-
nity detection, and numerous techniques such as spectral clustering, modularity maximization, random
walks, differential equation, and statistical mechanics are used to identify a community in networks, but
most of these work adopts pure mathematic and physical methods to discover communities from social
networks, on the contrary ignoring the social and biological properties of communities and social net-
works. In this paper, firstly we propose the community forest model based on these social and biological
properties to characterize the structure of real-world large-scale networks, secondly we mainly define a
new metric named backbone degree to measure the strength of the edge and the similarity of vertices and
give a new sense definition to community based on expansion, thirdly we develop a novel algorithm that
based on backbone degree and expansion to discover disjoint communities from real social networks.
This algorithm has better performance and effects compared with CNM and GN algorithms in computa-
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1. Introduction

With the advent of massive social networks, community detec-
tion in large-scale social networks becomes increasingly important
since it may help discover hidden knowledge in large social net-
works. The hidden knowledge include: structure, function, law,
etc. The structure of networks is fundamental interest in large scale
network systems, because of their functional implications—commu
nities in a social network, for instance, may indicate factions, inter-
est groups, or social divisions; communities in a metabolic net-
work might correspond to functional units, cycles, or circuits that
perform certain tasks (Newman, 2013). Community detection is
used typically as a tool for discovering and understanding the
large-scale structure of networks (Easley & Kleinberg, 2010). Over
the past decade community detection (also sometimes called
graph partitioning) has been applied to many real-world areas
such as biological networks, web graphs, VLSI design, social net-
works, and task scheduling.

* Corresponding author.
E-mail addresses: 386839300@qq.com (Y. Xu), xuhua@tsinghua.edu.cn (H. Xu),
zdwwtx@163.com (D. Zhang).

http://dx.doi.org/10.1016/j.eswa.2015.06.042
0957-4174/© 2015 Elsevier Ltd. All rights reserved.

Many algorithms about community detection have been pro-
posed to divide the network into communities, some of them typ-
ically choose objective functions that characterize the feature of
community, then to optimize them, but these objective functions
is typically NP-hard to optimize exactly (Arora, Rao, & Vazirani,
2009; Schaeffer, 2007). Some of them adopt heuristics(Girvan &
Newman, 2002; Karypis & Kumar, 1998) or approximation
(Leighton & Rao, 1999; Newman, 2013; Spielmat & Teng, 1996)
algorithms to optimize some objective functions approximately,
these objective functions interpret the community in the real
world. But most of these algorithms focus on methodology how
to divide the network into communities with Laplacian matrix
and eigenvalue resolver, they are elegant but fails to process
large-scale networks efficiently and exactly, and they adopt pure
mathematic and physical methods such as spectral clustering,
modularity maximization, Random walks, differential equation,
and statistical mechanics, on the contrary ignoring the social and
biological properties of community and network. The social and
biological characteristics of community and network refers to the
characteristics that got from the study of microscopic feature of
the specific network. For example, there are many social properties
about social network: weak and strong link, bridge, shortcut,
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neighborhood overlap (Easley & Kleinberg, 2010), authority
weight, hub weight (Kleinberg, 1999), K-component and so on. If
we consider a social network as a forest, communities in the forest
as trees, shrubs, grass, then there are many features are similar
between the social networks and the forest. For example, social
network is growing, and communities are growing, this feature is
like a forest. We can consider these features are the biological char-
acteristics of community and network.

If we mine sociological and biological characteristics about the
networks in-depth, we can get a more simple model to character-
ize the community and the network, then get a efficient algorithm
based on this model? Newman discussed the structure of
real-world large-scale networks with a look at component sizes,
considered the structure of most networks is of a large component
filling most of the network, sometimes all of it, and perhaps some
other small components that are not connected to the bulk of the
network (Newman, 2009). We can consider the real-world
large-scale networks is consist of some k-components. The higher
the K, K-components have more connectivity, more like a commu-
nity. A K-component is a k-core, that is like a weak community, but
k-component is not a whole community, because all vertices have
degree less than k have been removed, then k-component can
describe the structure of real-world large-scale networks partly,
but not all. So we need a new model to characterize the structure
of real-world large-scale networks. We consider many features
about social network, then propose the community forest model
and an efficient algorithm based on the community forest model.

The contributions of our work are three fold. Firstly we propose
the community forest model based on these social and biological
properties to characterize the structure of real-world large-scale
networks. Secondly we mainly define a new metric named back-
bone degree to measure the strength of the edge and the similarity
of vertices and give a new sense definition to community based on
expansion. Thirdly we develop a novel algorithm that based on
backbone degree and expansion to discover communities from real
social networks.

The rest of paper is organized as follows. Section 2 is an intro-
duction to related work. In Section 3, we formally introduce several
concepts related to social networks and the clustering problem. In
Section 4, we systematically develop the backbone algorithm. Sec-
tion 5 is experiment study and Section 6 concludes this study.

2. Related work

In this section we survey related work firstly, then give an
emphasis on background and motivation about this paper.

2.1. Related work

A great deal of work has been devoted to detect communities in
large-scale networks, they can be categorized into two big classes
according to the criterion of whether to allow overlapping: over-
lapping community detection and disjoint community detection.
Overlapping community detection algorithms are reviewed and
categorized into five classes: Clique Percolation, Line Graph and
Link Partitioning, Local Expansion and Optimization, Fuzzy Detec-
tion, Agent-Based and Dynamical Algorithms (Xie, Kelley, &
Szymanski, 2013), they are investigated based on the consensus
that people in a social network are naturally characterized by mul-
tiple community memberships. For the detail of overlapping com-
munity detection algorithms, see Xie et al. (2013). Disjoint
community detection algorithms are reviewed and categorized
into five research lines (Leskovec, Lang, & Mahoney, 2010), they
used numerous techniques such as spectral clustering, modularity
maximization, random walks, differential equation, and statistical

mechanics to identify a community as a set of nodes that has more
and/or better links between its members than with the remainder
of the network (Leskovec et al., 2010). For the detail of disjoint
community detection algorithms, see Leskovec et al. (2010).

Some of the above algorithms give some inspiration to our
research work. Very relevant to our work is that of Newman
(2004) and Clauset, Newman, and Moore (2004), Kleinberg
(1999), Leskovec et al. (2010), Kannan, Vempala, and Vetta
(2004) and Palla, Derényi, Farkas, and Vicsek (2005).

Newman et al. analyze a hierarchical agglomeration algorithm
and describe a community concept depending on the modularity
of the communities. Kleinberg propose an algorithmic formulation
of the notion of authority, based on the relationship between a set
of relevant authoritative pages and the set of hub pages that join
them together in the link structure (Kleinberg, 1999). We inte-
grated these two concepts of authority and hub as one concept
named network weight in undirected network. Leskovec et al.
(2010) defined the network community profile (NCP) that charac-
terizes the quality of network communities as a function of their
size. Inspired by the network community profile (NCP), we use a
scatter diagram to describe the quality of the whole community
discovery algorithm, a scatter diagram of the X axis is community
size, the vertical axis is the conductance and expansion.

Kannan et al. denoted the expansion formally. The expansion of
a community is the minimum ratio over all cuts of the community
of the total (Kannan et al., 2004). In this paper, we find expansion
should gradually decreases from the center of the community to
the boundary of the community, we use this feature and backbone
degree to add new nodes to the community gradually from the
center of the community, until the expansion of the community
began to grow bigger, this process can divide communities from
social networks.

Kannan et al. proposed a metric named conductance that pro-
vides the measure of the quality of an individual cluster (Kannan
et al., 2004). Conductance is a expansion-like property, Leskovec
et al. consider conductance to be a good metric that characterizes
the quality of network communities (Leskovec et al., 2010). In this
paper we use the conductance and the expansion as the main eval-
uation metric to the community detection algorithm.

Easley and Kleinberg (2010) defined closure, structural holes,
weak and strong link, bridge, shortcut, neighborhood overlap, etc.
The neighborhood overlap characterizes the strength of an edge
(Easley & Kleinberg, 2010). On the basis of these concepts, we
put forward the metric backbone degree to characterizes the
strength of the links between nodes and communities.

Palla et al. (2005) proposed the clique percolation method, their
community definition relies is that a typical community consists
several complete(fully connected) subgraphs that tend to share
many of their nodes, more precisely, a k-clique-community as a
union of all k-cliques (complete subgraphs of size k) that can be
reached from each other through a series of adjacent k-cliques
(where adjacency means sharing k — 1 nodes). This method is
based on first locating all cliques (maximal complete subgraphs)
of the network and then identifying the communities by carrying
out a standard component analysis of the clique-clique overlap
matrix. In this paper we propose the notion of neighborhood over-
lap to measure the strength between tow vertices, this notion coin-
cides with the count of 3-clique between two vertices.

We studied most of above algorithms about overlapping com-
munity detection and disjoint community detection. Although
the area of overlapping community detection is the hot area cur-
rently, but we consider that there is still a big space to improve
and broad application prospects in the area of disjoint community
detection. Our current work mainly focuses in the area of disjoint
community detection in undirected networks, we will explore
the area of overlapping community detection lately.
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2.2. Research motivation

Definition of the notion of community decides how to found
community in the network, then how to define the notion of com-
munity? The intuition of community is a set of vertices that con-
nections between the vertices are denser than connections with
the rest of the network (Leskovec et al., 2010; Radicchi,
Castellano, Cecconi, Loreto, & Parisi, 2004). Radicchi proposed the
notion of community quantitatively: in a strong community each
vertex has more connections within the community than with
the rest of the graph; in a weak community the sum of all degrees
within the community is larger than the sum of all degrees toward
the rest of the network (Radicchi et al., 2004). Luccio and Sami pro-
posed the notion of community called minimal groups in 1969,
Lawler renamed them LS sets in 1973 (Radicchi et al., 2004). LS
set is like strong community. Another definition is called k-core,
a k-core of a graph G is a maximal connected sub graph of G in
which all vertices have degree at least k (Seidman, 1983). K-core
is like weak community. From discussed above, we found that
those notions of community are concise and clear, but not to be
visualized, and no detailed depiction to internal structure. Is there
a notion can visualize the notion of community? Which means that
the notion can give clear boundary and internal structure.

Along with the development of social network research in
recent years, people put forward a lot of new concepts about social
network structures such as weak and strong link, bridge, shortcut,
neighborhood overlap, etc. If we analysis the connection between
the vertices in a network, we find those links include: weak and
the strong link, bridge, shortcut and so on. If the contact as
branches of the trees, so a community can be seen as a tree, a social
network can be as a community forest, the network contains
strong communities is a community forest, other contains weak
communities is bushes. If according to this hypothesis, we can give
more biological properties to the community, and redefine the
notion of community. Integrated the concept of the social network,
this paper proposed a new metrics—backbone degree, and rede-
fined the concept of community, and proposed the community for-
est model to visualize the concept of community.

3. Model and problem formalization

In this section, we propose the community forest model and
define the problem of community detection and introduce several
related concepts and necessary notations.

3.1. Community forest model

Social network and forest have some similar features in mor-
phology and structure. Fig. 1 is a visualization of a social network
with more than 30,000 users, its like a dense forest. There are some
boundary communities around the giant component. Communities
in social networks always consist of core vertices, core backbones
and boundary vertices, their morphology and structure are similar
with trees, shrubs and grass in forest. Fig. 2 is a visualization of six
subgraphs, some are sparse that like shrubs and grass, some are
dense that like trees. If we can consider a social network as a forest,
communities in the forest are trees, shrubs, grass.

Communities in social network have some relations or have no
relations, this feature is like these trees, shrubs and grass in the for-
est. Big communities in social networks can derive new small com-
munities, this feature is like these trees, shrubs and grass in the
forest. There are many features are similar between the social net-
works and the forest. A community is defined as a subset of ver-
tices within the graph such that connections between the
vertices are denser than connections with the rest of the network
(Radicchi et al., 2004). Why we consider a community like a tree?
A tree consists of roots, trunks and leaves, a community consists of
vertices and relations. Some relations are strong and some rela-
tions are weak; some vertices are core vertices and some vertices
are on the border, like leaves. We consider the strong relations
are tree trunks, some core vertices are tree roots, some vertices
on the border are leaves.

In its most basic form, the problem of community detection
in networks is one of dividing the vertices of a given network
into nonoverlapping groups such that connections within groups
are relatively dense while those between groups are sparse
(Newman, 2013). In this paper, discovering communities from

Fig. 1. The visualization of an complete online social network that consisted of more than 30,000 users.
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Fig. 2. The visualization of six subgraphs that belong to the network in Fig. 1.

networks is like finding trees from the forest. But how to find a tree
from a forest? We only have the edges and vertices, we need a met-
ric to measure the edges, we call the metric as backbone degree.
Let a community as a tree, then the edges are the trunks of the tree.
A edge consists of two vertices and a relation, so the backbone
degree must measure these three factors. The edges like the sec-
tions of the bamboo. Every section consists of two joints and a
bar. The relations is the bars, The neighborhood overlap measure
can be used to represent the strength of the bar. The network
weight measure can be used to represent the strength of the joint.
If this metric is worked, detecting a community from a network is
like this process: Firstly finding the edge with biggest backbone
degree, secondly finding nearest vertex based backbone degree
until the boundary of this community, repeat the above step in
the rest of the vertices, until all the vertices are divided. Control
the backbone choice, can make the algorithm more extensibility
in operation. For example, if the algorithm allows no backbone is
selected in the divided vertices, the community detection is none
overlapping, otherwise is overlapping. In this paper, we mainly dis-
cuss the non-overlapping community detection.

3.2. Problem formalization

Given an undirected graph G(V,E) with | V | vertexes and | E |
edges. Let n=| V |, m =| E |. Let C be a set of vertices in a commu-

nity, where C, is the number of vertices in C,C,=|C|. Let
Ec={(u,v)€eE:ueC,veC}, C, is the number of edges in
C,Cn=|Ec|. Let Cpr={(u,v)€eE:ueC, v ¢ C}, |Cp| is the
number of edges on the boundary of C. Let d, be the degree
of vertex u. Let NB, be the neighborhood vertices set of vertex
u. Let NB: be the neighborhood vertices set of community
C,NBc={v:(u,v)eE, ueC, v ¢ C}

Definition 1 (Network Weight). Let the identifier of vertex v be i,
the network weight of any vertex in graph G can be represented as
x;. we can use NW, represent the network weight of v.

n X;
NW, = ZA,,-E;
j=1

The network weights according to the definition of the HIT algo-
rithm (Kleinberg, 1999), but the vertex weights of HITS algorithm
needs a lot of calculation to balance, in order to save computation

. . . . . . d
time, a relative weighting of vertices can be considered x; = 5. then
1

n
— VA
2m ; v

NW, =

Definition 2 (Community Expansion Degree). This metric measures
the number of edges that point outside the community (Kannan
et al., 2004).

| CBg |

EXc = C,

Definition 3 (The Difference of Expansion Degree). The change of
expansion degree after joining a new vertex i to community C.

DE(i) = EXc ) — EXc

Definition 4 (The probability that the vertex i belongs to the commu-
nity C).

P(ieC):%

Definition 5 (Neighborhood overlap). Given two vertices u and v,
let NB, be the set of vertices that are the neighborhood of vertex
u, let NB, be the set of vertices that are the neighborhood of vertex
v. Let NO,, be the neighborhood overlap of u and .

INBy ((NBu|
INB, | JNBu|-2"

0, there is not an edge between u and v

there is an edge between u and v
NO,, =

Definition 6 (Backbone). A backbone consists of an edge and two
vertices that connecting to the edge. If a backbone is connected
to the outside of the current community, we call the vertex of
the backbone in the current community named interior vertex,
another named external vertex.

Definition 7 (Backbone degree). The backbone degree of an edge
with vertex u and vertex v is:

Dyo = (NW,, + NW,) x NOy, + 6

Dy, can measure the strength of the edge and the similarity of
nodes. When vertex u and » have no neighborhood, then NO,, = 0
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,D,, = 4. 5 is a constant parameter for smoothing, we let § = 0.01
based on experience.

Definition 8 (Max backbone degree of community C). Let CDyq be
the maximal backbone degree in community C, the backbone with
CDpex is the core backbone of community C.

CDpax = max{D,,,u € C,v € C}

Definition 9 (Community in new sense). This paper gives a new
definition of community in a new sense. Community is a set with
some vertices that expand outward from the core backbone
according the Dy, gradually, and the expansion diminishes gradu-
ally, until EX is minimum.

C={u:ueCuv¢C(uv) €E7EX{cUy} > EXc}

Definition 10 (Community forest). The communities set in G can
be defined as community forest.

CF={C:CeV,v ¢ C,EX{CUV} > EXc}

Definition 11 (Triadic Closure). If two people in a social network
have a friend in common, then there is an increased likelihood that
they will become friends themselves at some point in the future
(Rapoport, 1953).

Definition 12 (Co-friend count). In a community network, if there
is a mutual friend between two people, then they become good
friends will likely increase, so take a co-friend count between
two vertices to measure the similarity of the two vertices.

Definition 13 (Member closure). In a social network, if a person’s
friends took part in a community, then the possibility to participate
in the same community will improve (Rapoport, 1953).

Definition 14 (Member closure count of vertex i to community C). If
the vertex i have x friends in the community C, the member closure
count of vertex i to community C equals x. x =| NB N C |, the
member closures count of vertex i can measure similarity to com-
munity C.

Definition 15 (The boundary set of community C). Let Cpy be the
boundary set of community C, | Cpy | is the number of vertices on
the boundary of C.

BV: = {?/I (u7 Z/) eEue C, v ¢ C7EX{CUy} > EXC}

Definition 16 (Sum of backbone degree to the edges of vertex v point
to community C). This metric can measure the distance between
vertex v and community C.

NCv: Z Duv

ueC,v¢C

Definition 17 (Nearest vertex to community C). Let MAXyc is the
maximal value in {NC,: v € {NBc — BV¢},EX(cLoy < EXc},  if
NC, = MAXnc, vertex v is the nearest vertex to community C.

v={v:(u,v)eEueCuv ¢ C,ve{NB-—BV¢}

EX{CUy} < EXC,NCy = MAXN(‘}

Definition 18 (The prediction of relation between vertex i and j for
non-overlapping community detection). NO,, is the backbone
degree of pair (i,j), 0, is a vector that characterized the member-
ship of vertice u (Airoldi, Blei, Fienberg, & Xing, 2009), 6, is a vector
that characterized the membership of vertex v, K is the count of all
communities in G.

k
> 0uk0,kNOw,y

veNB; ueNB; k=1
NO,, must be relaxed: when there is not a edge between u and

.NO, = 0, here let NO,,, — il Lo

py; = 1104,0,) =

4. Backbone degree algorithm

According to the community forest model, the process of com-
munity detection can be defined like that: finding the core back-
bone of each community and looking for the boundary of each
community. If we find the core backbone of each community, then
the number of communities in network is determined. After deter-
mining the number of communities and the core backbone of each
community, our algorithm can be extended to process large-scale
networks with parallel computing. Because the space is limited,
we will discuss the problem in the next article.

Why beginning from the core backbone, rather than starting
from the core vertex? If we consider the community as a tree in
the forest, based on the assumption that the community must
expand from the core backbone. The backbone with CDy,, is the
core backbone of community C. when community C contains only
the core backbone edge,

7‘CBE|7du+du_2
G 2

EXc ueC, veC

then d, +d, = 2(EXc + 1) and

Duy = (NW, + NW,) x NOy, + &
d,+d,

2m
_EX6+1

x NOy, + o

x NOyy + 0

where m and ¢ are constant, EX¢ and NO,, are variable, m =| E |, we
let 5 = 0.01 for smoothing based on experience, D,, integrates EX¢
and NO,,, in order to more accurately choose the core of the com-
munity, and this avoids those nodes such as structural holes. The
greater NO,,, the denser the community internal connection, this
point coincides with the one proposed in Radicchi et al. (2004) in
the framework of the identification of communities. If we discover
community since core vertex, the only available metric to deter-
mine the core vertex is the weight of vertex, the weight of core ver-
tex in undirected network is closely related to the degree of core
vertex, but in social network, a vertex with big degree also may
be a structure hole. If we let a backbone with the largest backbone
degree as the core of the community, that will avoid the structure
hole, because the backbone degree insists of the weight of the 2 ver-
tices and the neighborhood overlap, so if a backbone has the great
backbone degree, the backbone is likely the core of a community
or near the core of a community.

Our algorithm firstly calculates the backbone degree of each
backbone in the social network, and saves these backbone degree
to a backbone list, then sorts the backbone list in descending order.
Let initial community be empty, selecting the backbone with the
largest backbone degree in the list as the initial backbone to the
current community, then adding the backbone with the largest
backbone degree in the set that connected to the current
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community in turn. If the expansion is smaller after adding a new
backbone to the current community, then continually adding the
backbone with the largest backbone degree in the set that con-
nected to the current community, else add the external vertex of
the backbone to the boundary set of the current community, con-
tinue to find the vertex with the maximum backbone degree that
connected with the current community until there is no longer eli-
gible vertex in the neighbor set of the current community, a new
community is divided completely right now. In accordance with
the above method to continue the iteration, divided the rest ver-
tices into new communities, until there are no backbones that their
backbone degree is greater than the threshold value fin backbone
list, or the count of the rest vertices less than parameter w. Here w

is according to |V |, for example, w:%_ because in large-scale
social network, when the rest vertices in the social network are
less, there are not more truly valuable communities in the rest ver-
tices, if to use the above steps again, will find out the very small
and useless community, at this time the rest of the vertices can
be collected with some simpler algorithms, such as using member
closure to determine that a vertex is belong to which community.
Backbone degree threshold f can be fixed by experience or require-
ments of user, such as users want to find these communities with
the core backbone that backbone degree is more than 0.3, then let
f=03.

4.1. Framework of backbone degree algorithm

Given an undirected graph G(V,E) with | V | vertices and | E |
edges, given the node list NL to save the vertices in V, let the cur-
rent community is C;, the neighbor set of C; is NBc,, the boundary
set of C; is BV, given the backbone list BL to save the backbones
in E. Backbone degree algorithm implementation is shown in
Algorithm 1.

Algorithm 1. Backbone degree algorithm implementation

Data: An undirected G(V,E). Result: The community set CF in
G.
begin
1 NL < V,BL <« edges with backbone degree > f in E,CF < null,
i < 0. Sort BL according to descending order, indexg < O.
2 Get a backbone b from BL according to indexp; , indexg; + +,
get vertices u and » from b, note the backbone degree of b
as BDy,
note the size of NL as nl.
3 while BD, > f and nl > w do
4 if u € NL and v € NL then
5 Ci < {u,v}
6 Ec_PRE<« the Expansion degree of C; .
7 calculate the NBc, of C;, BV, < null.
8 if {NBc — BV} = Null, then
9 add C; to CF;i+ +; goto step2.
10 else
11 find the nearest vertex nv from {NB¢, — BV}
based on
backbone degree, add vertice nv to C;, calculate the
Expansion
degree of C; and note it as Ec_cur.
12 if (Ec_cur — Ec_PRE < 0), then
13 remove vertice nvfrom NL and add vertice nvto C;,
goto step11.
14 else delete vertice nv from C;, add vertice nvto BV,
15 if {NBc — BV} = Null, then
16 add C; to CF,i+ +, goto step2.

17 else

18 goto stepl11.

19 end if

20 end if

21 end if

22 else

23 goto step2;

24 end if

25 end while

26 Collect all vertices that divided into no community or

several communities.
27 return CF.
end

4.2. Algorithm time complexity

Our algorithm uses merge sort to sort the backbone list, it runs
in time O(mlogm), and the process of discovering community runs
in time O(n + m), so our algorithm runs in time O(mlogm + n + m)
for a network with n vertices and m edges. Because not all of the
backbones are the core backbones, if we filter the backbone list
according to a threshold f, the count of the backbone list will fall
sharply, O(mlogm) will fall sharply too, so our algorithm runs in
time O(n+ m) approximately. We analyzed backbone degree of
five data set. Table 2 is the edges with biggest backbone degree.
Table 3 is the count of edges with f > 0.2 and f > 0.3. We found
that the biggest backbone degree is 1.282727, the minimum back-
bone degree is 0.01, when f values change, the count of the back-
bone list will change sharply, that is shown in Table 3.

4.3. Algorithm comparison

CNM algorithm runs in time O(mdlogn) for a network with n
vertices and m edges where d is the depth of the dendrogram. Gir-
van Newman algorithm runs in time O(n3). Backbone degree algo-
rithm runs in time O(n + m) approximately, but Girvan Newman
algorithm and CNM algorithm attempt at optimizing the modular-
ity that is different to backbone degree algorithm. So it is hard to
say which algorithm is better in time complexity.

The goal of backbone degree algorithm is detecting communi-
ties from networks based on backbone degree and community for-
est model, and it is scalable and can be applied to large-scale social
networks. Backbone degree algorithm can discover networks in
different depth based on backbone degree threshold f and param-
eter w, this made it very flexible, and it can predict the relation
between every vertices i and j in networks for disjoint and overlap-
ping community detection.

5. Experiments

In this section, we study the effectiveness and accuracy of back-
bone degree algorithm and compare it with CNM (Clauset et al.,
2004) algorithms mainly, also we compare our algorithm with
Martin Rosvall’s algorithm (Rosvall & Bergstrom, 2008) and GN
algorithm simply. CNM algorithm implementation is from Stanford
Network Analysis Platform (SNAP). SNAP is a general purpose net-
work analysis and graph mining library. It is written in C++ and
easily scales to massive networks with hundreds of millions of
nodes, and billions of edges (Leskovec, 2014).

5.1. Data set

We use a artificial network and some standard data set: Zach-
arys Karate Club, American College Football, Email-Enron data
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Table 4
The backbone degree of edges in the artificial network.

Table 1
Data set description.
Data set Vertices Edges Known
communities
An artificial network 19 21 3
Zachary's Karate Club 34 78 2
American College Football 115 613 12
Enron email communication 36,692 183,831 Unknown
network
DBLP computer science 317,080 1,049,866 13,477
bibliography
Table 2
The edges with biggest backbone degree.
Data set Biggest backbone Backbone
edge degree
An artificial network Anyone 0.01
American College Football 763,689 1.282727
Zachary's Karate Club 3331 1.01346
Enron email communication 76,136 0.392861
network
DBLP computer science 55885,286328 0.660222
bibliography
Table 3
The count of edges with f > 0.2 andf > 0.3 .
Data set f=02 f=03
An artificial network None None
American College Football 449 411
Zachary’s Karate Club 31 9
Enron email communication network 106,592 12
DBLP computer science bibliography 625,721 12,536

Fig. 3. An artificial network that consisted of star, mesh and line topology structure.

set, DBLP collaboration network. American College Football and
Karate Club are standard data sets to prove the validity of commu-
nity detection algorithm, DBLP collaboration network is a
ground-truth network, the detailed description of these data sets
is shown in Tables 1-3.

The artificial network is a sparse network that consisted of star,
mesh, line topology, and the backbone degree of very edge in the

Edge name Backbone degree Belonged to structure
1,2 0.01 Mesh
1,4 0.01 Mesh
2,3 0.01 Mesh
2,5 0.01 Mesh
3,6 0.01 Mesh
4,5 0.01 Mesh
4,7 0.01 Mesh
5,6 0.01 Mesh
58 0.01 Mesh
6,9 0.01 Mesh
6,11 0.01 None
7,8 0.01 Mesh
8,9 0.01 Mesh
10,11 0.01 Star
10,12 0.01 Star
10,13 0.01 Star
10,14 0.01 Star
10,15 0.01 Star
10,16 0.01 Star
17,18 0.01 Line
18,19 0.01 Line

Table 5

The result of dividing the artificial network with our algorithm.
Vertex Belonged to Neighbor vertices Community
number structure ID
1 Mesh 2,4 2
2 Mesh 1,3,5 2
3 Mesh 2,6 2
4 Mesh 1,5,7 2
5 Mesh 2,4,6,8 2
6 Mesh 3,5,9,11 2
7 Mesh 4,8 2
8 Mesh 5,7,9 2
9 Mesh 6,8 2
10 Star 11,12,13,14,15,16 1
11 Star 6,10 1
12 Star 10 1
13 Star 10 1
14 Star 10 1
15 Star 10 1
16 Star 10 1
17 Line 18 0
18 Line 17,19 0
19 Line 18 0

artificial network is 0.01, the network is very spare and specific,
that is shown in Fig. 3 and Table 4, it is created by us for demon-
strating our algorithm.

Zachary’s Karate Club is a social network of friendships
between 34 members of a karate club at a US university in the
1970s. Wayne Zachary observed social interactions between the
members of a karate club at an American university. He built net-
work of connections with 34 vertices and 78 edges in the early
1970s. By a chance, a dispute arose between the club’s adminis-
trator and the karate teacher, the club split into two small com-
munities with the administrator and the teacher being as the
central persons.

American College Football is a network of American football
games between Division IA colleges during regular season Fall
2000.

Enron email communication network covers all the email com-
munication within a data set of around half million emails
(Leskovec, Lang, Dasgupta, & Mahoney, 2009). This data was
originally made public, and posted to the web, by the Federal
Energy Regulatory Commission during its investigation. Nodes of
the network are email addresses and if an address i sent at least
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Fig. 4. The result of applying backbone degree algorithm to Zachary Karate Club
network, the yellow is community 0, the red is community 1. (For interpretation of
the references to colour in this figure caption, the reader is referred to the web
version of this article.)

Fig. 5. The result of applying CNM to Zachary Karate Club network. The yellow is
community 0, the blue is community 1, the green is community 2. (For interpre-
tation of the references to colour in this figure caption, the reader is referred to the
web version of this article.)

one email to address j, the graph contains an undirected edge
from i to j.

The DBLP computer science bibliography provides a compre-
hensive list of research papers in computer science. In this paper
we construct a co-authorship network where two authors are con-
nected if they publish at least one paper together (Yang & Leskovec,
2012).

5.2. An artificial network test

We apply our algorithm to an specific artificial network that
consisted of star, mesh, and line topology that shown in Fig. 3. This
network is a very spare network, and the backbone degree of edges
in it is 0.01 when § = 0.01. Table 4 are the backbone degree of
Edges in the Artificial network. Table 5 is the result of dividing
the artificial network with backbone degree algorithm. The result
of CNM algorithm is same to Table 5. This test shows that our algo-
rithm still has the very good adaptability for some sparse networks
with very small backbone degree.

5.3. Zachary Karate Club test

We apply our algorithm to karate club networks, Fig. 4 is the
result of applying our algorithm to Zachary Karate Club network.
Our algorithm divides this network in two communities clearly.
Expansion and conductance of applying our algorithm to Zachary
Karate Club network are shown in Table 7. Fig. 5 is the result of

Table 6

The result of dividing Zachary Karate Club with CNM algorithm.
Community ID Community size Conductance Expansion
1 9 0.380952 1.777778
2 8 0.333333 1.5
0 17 0.128205 0.588235

Table 7

The result of dividing Zachary Karate Club with backbone degree algorithm.
Community ID Community size Conductance Expansion
0 17 0.128205 0.588235
1 17 0.128205 0.588235

Table 8

Backbone degree algorithm implementation process to Zachary Karate Club.
Vertex ID  Current expansion ~ Community ID  Joining order = MAXyc
34 13.5 0 1 1.013
33 135 0 1 1.013
9 9.333 0 2 0.414
31 6.5 0 3 0.544
30 5.2 0 4 0.408
24 4.166 0 5 0.624
32 3.857 0 6 0.233
27 3.125 0 7 0.207
29 2.666 0 8 0.177
28 24 0 9 0.177
19 2 0 10 0.165
23 1.666 0 11 0.165
21 1.384 0 12 0.165
15 1.143 0 13 0.165
16 0.933 0 14 0.165
25 0.8125 0 15 0.108
26 0.588 0 16 0.236
10 0.555 0 17 0.01
2 11.5 1 0.653
1 11.5 1 1 0.653
4 8.333 1 2 0.844
3 7.25 1 3 1.153
8 5 1 4 1.189
14 3.666 1 5 1.134
9 3.286 1 6 0.249
31 2.875 1 7 0.232
13 2.333 1 8 0.185
22 1.9 1 9 0.171
18 1.545 1 10 0.171
20 1.333 1 11 0.168
5 1.307 1 12 0.159
11 1.143 1 13 0.287
7 1.067 1 14 0.27
6 0.875 1 15 0.515
17 0.706 1 16 0.255
12 0.579 1 17 0.01

applying CNM to Zachary Karate Club network, CNM divides this
network in three communities, there is no clear boundary and
internal structure between communities 1 and 2. Expansion and
conductance of applying CNM algorithm to Zachary Karate Club
network are shown in Table 6. Results of Table 7 are significantly
better than those in Table 6. GN (Girvan & Newman, 2002) algo-
rithm divides this network in 5 communities. Martin Rosvall’s
algorithm (Rosvall & Bergstrom, 2008) divides this network in 6
communities. The results of GN algorithm and Martin Rosvall’s
algorithm make some sense to their models, but they are not same
with the standard result completely.

We display the our algorithm implementation process to Zach-
ary Karate Club in Table 8, this process does not include step 26.
The process of dividing karate club is shown in Table 8, we found
that community 0 and 1 are overlapping on vertex 9, 31, 10 before
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step 26. If we run step 26, the result is shown in Fig. 4, and it is
same with the standard result completely. We also found that
the expansion of community decreases gradually with the vertex
joining, the curve is shown in Fig. 6, and the vertices’s order of join-
ing community is based on backbone degree. This phenomenon is
fully verified the definition of community in this paper. Tracking
the vertices’s order and their backbone degree to see Fig. 4. The
MAXyc of Table 8 is defined in Definition 17.

5.4. American College Football

American College Football is a network of American football
games between Division IA colleges during regular season Fall
2000.

Backbone degree algorithm can divide the network into 12
communities exactly, CNM algorithm divides the network into 5
communities. The result of applying backbone degree algorithm
to American College Football network is shown in Fig. 7. In this
result, six communities compare with the standard data set com-
pletely consistent, one community is less one vertex than standard
data set, two communities are more 2 vertices than standard data
set, one community is different with standard data set in 3 vertices,
two communities are different with standard data set in 5 vertices.
The result of applying CNM algorithm to American College Football
network is shown in Fig. 8. The comparison of expansion and con-
ductance is shown in Tables 9 and 10. From discussed above, the
result of backbone degree algorithm is better than the result of
CNM algorithm, because although the conductance and expansion
score of CNM algorithm are good, but the result of CNM algorithm
can not reflect the real structure of the American College Football
network. This proved backbone degree algorithm can discover
the structure of social networks exactly.

5.5. Email-Enron data set

Enron email communication network covers all the email com-
munication within a data set of around half million emails
(Leskovec et al., 2009). This data was originally made public, and
posted to the web, by the Federal Energy Regulatory Commission
during its investigation. Nodes of the network are email addresses
and if an address i sent at least one email to address j, the graph
contains an undirected edge from i to j.

The conductance scatter diagram of applying CNM algorithm
and our algorithm to Email-Enron network is shown in Fig. 9. In
this result, we find our algorithm is slightly better than CNM

Fig. 7. The result of applying backbone degree algorithm to American College Football network.
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Fig. 8. The result of applying CNM algorithm to American College Football network.

Table 9
The result of dividing American College Football with backbone degree algorithm.
Community ID Community size Conductance Expansion
0 9 0.258 2.778
1 10 0.352 3.800
2 9 0.294 3.333
3 10 0.273 3.000
4 15 0.240 2.400
5 8 0.364 4.000
6 9 0.354 3.778
7 12 0.262 2.833
8 12 0.250 2.667
9 11 0.290 3.273
10 6 0.483 4.667
11 4 0.657 5.750
Table 10
The result of dividing American College Football with CNM algorithm.
Community number Community size Conductance Expansion
0 19 0.239024 2.578947
1 32 0.193084 2.09375
2 15 0.329268 3.60000
3 22 0.262712 2.818182
4 27 0.218978 2.222222

algorithm in conductance. The conductance of our algorithm is
mostly low than CNM algorithm, and it is more compact and
stable.

1.2

Conductance
I I
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°
»
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= CNM Conductance > Our Conductance

100000

Fig. 9. The conductance scatter diagram of applying CNM algorithm and our
algorithm to Email-Enron network.

The expansion scatter diagram of applying CNM algorithm and
our algorithm to Email-Enron network is shown in Fig. 10. In this
result, we find our algorithm is slightly less than CNM algorithm
in conductance. The expansion of our algorithm is mostly high than
CNM algorithm. But it is more compact and stable than CNM
algorithm.

We find that backbone degree algorithm and CNM algorithm
have the same distribution generally in conductance and expan-
sion. On the other hand these result proved that the structure of
Email-Enron network that found by backbone degree algorithm
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Fig. 11. The conductance scatter diagram of applying backbone degree algorithm to
DBLP network.
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Fig. 12. The expansion scatter diagram of applying backbone degree algorithm to
DBLP network.

is very close to CNM algorithm found. In the large-scale social net-
works it is hard to say which algorithm is better, because in addi-
tion to the relationship between social network data, there are
many other implicit factors.

5.6. DBLP collaboration network

The conductance scatter diagram of applying backbone degree
algorithm to DBLP network is shown in Fig. 11. The horizontal axis
is the community size, the vertical axis is the conductance of com-
munity. As community size increases, the conductance decreases
gradually and tends to be stable at about 0.3. And most of commu-
nities size between 10 and 100 in DBLP networks, this result con-
forms to a common sense that most of the social circle under 100
people.

The expansion scatter diagram of applying backbone degree
algorithm to DBLP network is shown in Fig. 12. The horizontal axis
is the community size, the vertical axis is the expansion of commu-
nity. As community size increases, the expansion decreases gradu-
ally and tends to be stable at about 2. We find those communities
under 10 vertices that with greater expansion, this is same as CNM
algorithm in Email-Enron networks. It is a little defect of backbone
degree algorithm, we will make up for the defects in the later work.

Because CNM algorithm requires more memory than backbone
degree algorithm, we cannot get the result of CNM in DBLP collab-
oration network based on our current computing environment.

5.7. Discussion

Through above experiments, we found that CNM algorithm can
get good score of conductance and expansion, but not accurate to
find the structure of social networks on small data sets. So conduc-
tance and expansion are reference to measure the result of com-
munity detection, but not the only criterion. On DBLP
collaboration network and Email-Enron network, Backbone degree
algorithm and CNM algorithm has similar performance, but in the
same experiment condition, backbone degree algorithm can deal
with more data than CNM algorithm. So backbone degree algo-
rithm is superior than CNM algorithm to discover the structure
of social networks, and demand for memory is less than the CNM
algorithm. But for those communities under 10 vertices backbone
degree algorithm gets more greater expansion than CNM algo-
rithm. It is a defect of backbone degree algorithm, we will make
up for the defects in the later work.

6. Conclusions

In this paper, we focus on the problem of disjoint community
detection in social graphs which is the key tool for understanding
the function of the networks and its structure. Many researches in
this area are developed and we have discussed their limits in this
paper. Our main contributions are three folder. Firstly we propose
the community forest model based on these social and biological
properties to characterize the structure of real-world large-scale
networks. Secondly we mainly define a new metric named back-
bone degree to measure the strength of the edge and the similarity
of vertices and give a new sense definition to community based on
expansion. Thirdly we develop a novel algorithm that based on
backbone degree and expansion to discover communities from real
social networks.

The experiments proved that backbone degree algorithm is
superior than CNM algorithm to discover the structure of social
networks, and demand for memory is less than the CNM algorithm.
Backbone degree algorithm find core backbone edge based back-
bone degree, then find community based on the trend of expansion
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decreasing gradually outward from the core backbone. It is starting
to computer from local networks, then expand to global networks.
First, minimizing the expansion degree of each community, ensur-
ing that expansion degree of each community in the entire net-
work are the smallest, so as to achieve the global optimal. These
features can ensure backbone degree algorithm to be extended to
parallel computing, so as to deal with large scale social networks.

Backbone degree algorithm is different with all community
detection algorithms in Section 2.1, because it is based on a biolog-
ical and sociological model named Community Forest, and back-
bone degree algorithm is a simple and direct approach to detect
community in networks, it integrated expansion and backbone
degree. expansion is used to distinguish the boundaries of commu-
nities. Backbone degree integrated network weight and neighbor-
hood overlap, it is very balanced to most of topological
structures in networks.

Backbone degree algorithm has good effectiveness and accuracy
to social networks, but it only detects disjoint communities in a
single-machine environment in undirected networks currently,
and there are some little defects such as that expansion is greater
than CNM algorithm to those communities under 10 vertices. Our
next work is to optimize backbone degree algorithm, and adjust it
to suit for detecting overlapping communities from large-scale
directed networks in parallel environment.
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