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Abstract

For Wireless Sensor Networks (WSN), target tracking

is a canonical problem that collaborates signal and infor-

mation processing to dynamically manage sensor resources

and efficiently process distributed sensor measurements.

This paper proposes an adaptive sensor scheduling strategy

that jointly sets up distribute dynamic clustering, selects the

tasking sensor, and determines the sampling interval. The

approach utilizes Least-Square (LSQ) in initializing, Ex-

tended Kalman Filter (EKF ) in tracking accuracy estima-

tion, and adaptive sampling in velocity prediction. Simula-

tion results demonstrate significant improvement in tracking

accuracy compared to the non-adaptive approaches.

Keywords: WSN , target tracking, adaptive sensor
scheduling, EKF .

1 Introduction

Wireless Sensor Network (WSN) is an emerging tech-
nology for monitoring the physical world with a densely
deployed network of sensor nodes [1]. The main advan-
tages of WSN include its low cost, rapid deployment, self
organization, and fault tolerance. It is widely applicable to
environment monitoring, industrial sensing and diagnostics,
military surveillance, and navigation and control of mobile
robots, to list a few.

Due to limited communication, computation, and sens-
ing capabilities, WSN relies on collaborative signal and
information processing (CSIP ) to dynamically man-
age/schedule sensor resources and efficiently process dis-
tributed sensor measurements [2]. In moving target tracking
literature, the tasking sensors were scheduled based on the
uniform sampling interval, ignoring the changing of the tar-
get dynamics and the estimation accuracy. In [5], Xiao, Wu,
and Xie proposed an adaptive sensor scheduling scheme for
target tracking in WSN by jointly selecting the next task-
ing sensor and determining the sampling interval based on

predicted tracking accuracy and tracking cost.
This paper proposes an adaptive sensor scheduling strat-

egy by jointly setting up distribute dynamic clustering, se-
lecting the tasking sensor, and determining the sampling in-
terval according to the predicted tracking moving velocity.
The approach employs Least-Square (LSQ) used in initial-
izing, an Extended Kalman Filter based on estimation tech-
nique to predict the tracking accuracy, and adaptive sam-
pling in velocity prediction. The main contribution of this
work is the developed of a distribute dynamic clustering al-
gorithm and an adaptive sampling interval algorithm.

The paper is organized as follows: The distribute dy-
namic clustering algorithm is briefed in Section 2. The pro-
posed tracking algorithm and system model are presented in
Section 3, and an adaptive sensor scheduling is proposed in
Section 4. Simulation results are given in Section 5. Finally,
we conclude in Section 6.

2 Distribute dynamic clustering algorithm

To solve the problem that energy in sensor limited and
to prolong the lifetime of sensor network, we use distribute
tracking algorithm to make sensor dynamic cluster [3]. It
assumes that all sensors have same communication radius
and synchronization. The distribute dynamic clustering al-
gorithm can be described as follows:

a. Initialization. When the target reaches the monitored
field, the sensors detected the target make up cluster, select
the sensor with nearest distance from target to a cluster head
(CH). CH becomes the central of signal and information
processing, and receives the tasking sensor measure data.

b. CH sends a message to trigger the second nearest
sensor i, and commands it to measure the target distance to
get an initial X and Y position. The tasking sensor returns a
measure message (t, p, d), where t is the current time, p is
the known position of tasking sensor, and d is the distance
between the target and tasking sensor.

c. CH receives the new measure distances, performs
data fusion, EFK, and predicts the position of the target.
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d. Turn to step a. CH verifies if it is necessary to set up
a new cluster. If yes, it sets up a new cluster and selects new
CH , then the old CH sends the historical data and state
estimation to new CH . If not, CH sends a sample message
to trigger (i + 1)th nearest sensor, until all sensor in cluster
have sample (then return to the second one).

f . When the target is moving, it returns upwards step,
until the target departs from the monitored field.

3 Tracking Algorithm

This section discusses the different components of our
tracking algorithm and how they fit together [4]. We start
by formally defining the tracking problem. If a tasking sen-
sor obtains a distance estimate, it sends to CH . CH gets
a triple: (t, p, d). Over time, the CH obtains a sequence
of such triples: (t1, p1, d1), · · · · · · , (tn, pn, dn), where the
subscripts increase by one for each distance samples.

The three procedures of the Kalman filter tracking al-
gorithm are shown as follow: a least-squares minimization
(LSQ), an extended kalman filter (EKF ), and an outlier
rejection.

3.1 Least Squares Minimization

If the mobile device is static, a standard way to solve
the problem of estimating θ̂n is to minimize the sum of
the squares of the error terms corresponding to each dis-
tance sample. This method, called least-squares minimiza-
tion (LSQ), estimates θ̂n by minimizing

n∑
i=1

(‖θ̂n − pi‖ − di)2

Here, ‖θ̂n − pi‖ is the Euclidean distance between the esti-
mated coordinate of the mobile device and the tasking sen-
sor at position pi.

To produce a good θ̂n, we make the simultaneous as-
sumption and assume that the distances were collected
when the target was at the same point. LSQ is useful in
initializing and resetting the Kalman filter, a capability we
use when the system first turns on or when our filter gets
into a bad state.

3.2 Extended Kalman Filter

Here, we consider the problem of tracking a single target
and use Extended Kalman Filter (EKF ). The following
takes the PV (Position-Velocity) model with 4 sensors as an
example to illustrate our tracking algorithms and the target
motion is nonlinear [7].
Let state

X = [x, y, ẋ, ẏ]T , Z = [d1, d2, d3, d4]T ,

where
di =

√
(x − xi)2 + (y − yi)2,

(xi, yi) is the location of tasking sensor i. The state equa-
tion is given as follows:

Xk+1 = F (Δt)Xk + Wk (1)

where

F(Δtk) =

⎛
⎜⎜⎝

1 Δtk 0 0
0 1 0 0
0 0 1 Δtk
0 0 0 1

⎞
⎟⎟⎠

and Wk is system process white noise.
The output equation can be written as

Zk = Zk + ẐK = HXk + ẐK (2)

where ẐK is measurable white noises. The output equations
can be linearized at position k as follows:

Zk =

⎛
⎜⎜⎜⎝

∂d1
∂x 0 ∂d1

∂y 0
∂d2
∂x 0 ∂d2

∂y 0
∂d3
∂x 0 ∂d3

∂y 0
∂d4
∂x 0 ∂d4

∂y 0

⎞
⎟⎟⎟⎠ (3)

where
∂di

∂x
=

x − xi√
(x − xi)2 + (y − yi)2

(4)

∂di

∂y
=

y − yi√
(x − xi)2 + (y − yi)2

(5)

for i = 1, 2, 3, 4.
The following steps describe equations that need to be eval-
uated on-line for EKF .

Algorithm EKF Tracking:
1: Project the state ahead: X̂−

k
= F (Δtk)X̂k−1, and calculate Z−

k
based

on X̂−
k

2: Project the error covariance ahead:

P−
k

= F (Δtk)Pk−1F (Δtk)T + WQk−1W T

3: Compute the Kalman gain:

Kk = P−
k

HT
k (HkP−

k
HT

k + VkRkV T
k )−1

4: Update estimation with measurements:

X̂k = X̂−
k−1

+ Kk(Zk − Z−
k

)

5: Update the error covariance:

Pk = (I − KkHk)P−
k

6: Repeat and go to Step 1.

In the algorithm, W and V are the Jacobian matrices of
partial derivatives of state and output functions with respect
to the process noise and measurement noise, respectively.
P , R and Q are the covariance matrices of the error in the
state estimate, measurement noise, and process noise, re-
spectively.
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3.3 Outlier Rejection

The third module in our tracking algorithm implements
outlier rejection. Since the EKF provides an estimate of
the current position based on its state estimate, CH can
compute an estimate of the value of any distance measure-
ment from tasking sensor to moving target. The difference
between this estimate and the actual measurement defines
a residual r (r2 = (d(i) − d)2) of each measurement. If
r2 > γ (an empirically-selected parameter), then we say
that the measurement is an outlier.

The residual is computed based on the EKF ’s state. If
this fraction significantly exceeds the fraction of outliers we
expect to receive, we then declare that the EKF is in a bad
state. At that stage, we look to our least squares model for
possible recourse. That is, we compute the residual of the
LSQ output with respect to the most recent measurement.
If this residual rlsq is less than the EKF ’s residual rlsq ,
then we reset the filter with the least squares estimate as
our position. If the least squares residual is higher, then we
do nothing, and we expect this testing to continue in future
time-steps.

4 Adaptive sensor scheduling

In existing work for target tracking in WSN , usually the
tasking sensors are scheduled based on the uniform sam-
pling interval, ignoring the changing of the target dynam-
ics and obtained estimation accuracy. Here, we propose
an adaptive sensor scheduling strategy by jointly setting up
distribute dynamic clustering , selecting the tasking sensor,
and determining the sampling interval according to the pre-
dicted target moving velocity.

Suppose the current time step is k, CH has state esti-
mation Xk−1 and estimation covariance matrix Pk−1 of the
time step k − 1. It first updates the state estimation by in-
corporating its new measurement ZK (from tasking sensor
i) using the EKF algorithm described in Section 3. Then
it uses the sensor scheduling algorithm to select the next
tasking sensor i and the next sampling interval Δtk such
that the sensor i can undertake the sensing task at the time
tk+1 = tk + Δtk. We suppose Δtk should be in the range
[Tmin, Tmax], where Tmin and Tmax are the minimal and
maximal sampling intervals.

If sensor i is selected with the sampling interval Δtk,
defining the sampling interval based on the predicted target
moving velocity. The predicted velocity V of time step k is
based on state estimation XK = [x, y, ẋ, ẏ], defined as:

V 2 = V 2
x + V 2

y =
[

0 0 1 1
]
Xk

⎡
⎢⎢⎣

0
0
1
1

⎤
⎥⎥⎦

T

(6)

Give a predefined threshold V0 and sampling interval Δtk
defined as:

Δtk =

⎧⎨
⎩

Tmax, if V/V0 ≤ 1,
Tmax × [V0/V ], if 1 < V/V0 < 5,

Tmin, if V/V0 ≥ 5.
(7)

The proposed adaptive sensor scheduling algorithm is
described as follows:

a. If the predicted velocity is less than the threshold ve-
locity, it means that the target moving at a low velocity, and
should be keeping maximal sampling interval Tmax.

b. If the predicted velocity exceeds the threshold veloc-
ity, then it means that the target moving at a quick velocity.
If we adjust the sampling interval according to the predicted
tracking moving velocity, it can achieve satisfactory track-
ing accuracy.

c. If the predicted velocity exceeds five times threshold
velocity, then the target moved quickly, it should be ob-
tained a bad tracking accuracy, so we use the minimal sam-
pling interval Tmin. At the same time, Outlier Rejection
which described in Section 3.3 would be used.

5 Simulation results

In this paper, we use the Position-Velocity model ex-
plained in Section 3. Simulations are done to validate and
characterize the performance of the proposed adaptive sen-
sor scheduling algorithm by Matlab7.0 . The monitored
field is 250m × 250m and covered by 3 × 3 mesh sensors.
For the sensor, we suppose communication radius of sensor
r = 150m, Tmin = 0.1s and Tmax = 0.5s.

For the target, we also assume motion trajectory as fol-
low:

X(t) = 6t + 20; Y (t) = 75 sin(0.3t) + 120.

It travels from (20, 120) to (200, 150). The predefined
threshold is V0 = 25m/s. We compare the performance
of this proposed adaptive sensor scheduling with the non-
adaptive sensor scheduling scheme in [4].

Fig.2 shows that LSQ is in initializing, and trajectories
departure actual path. After 4s, estimated target trajectories
by using EKF convergent to the actual path. Compared
with the non-adaptive, estimated target trajectory which is
used the adaptive sensor scheduling scheme is closer to the
actual path. Fig.3 shows tracking accuracy achieved by dif-
ferent sensor scheduling schemes, tracking accuracy is al-
most lowed by 10m. Compared with the non-adaptive, the
adaptive sensor scheduling scheme schedules sensors with
the highest frequency and can achieve the better tracking
accuracy quickly, so it can achieve significant improvement
tracking accuracy.
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Figure 1. Estimated target trajectory using
different sensor scheduling schemes
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Figure 2. Tracking accuracy achieved by dif-
ferent sensor scheduling schemes

6 Conclusions

This paper presented an adaptive sensor scheduling strat-
egy by jointly setting up distribute dynamic clustering, se-
lecting the tasking sensor, and determining the sampling in-
terval according to the predicted tracking moving velocity.
The approach employed Least-Square (LSQ) used in ini-
tializing , Extended Kalman Filter (EKF ) based on es-
timation technique to predict the tracking accuracy, and
adaptive sampling in velocity prediction. Simulation results
demonstrated that, compared to the non-adaptive approach,
the proposed approach can achieve significant improvement
tracking accuracy.
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