
European Journal of Operational Research 242 (2015) 942–950

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Decision Support

Integer programming techniques for solving non-linear workforce

planning models with learning

Mike Hewitt a,∗, Austin Chacosky b, Scott E. Grasman b, Barrett W. Thomas c

a Department of Information Systems and Operations Management, Loyola University Chicago, Chicago, IL 60611, USA
b Department of Industrial and Systems Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA
c Department of Management Sciences, University of Iowa, Iowa City, IA 52242, USA

a r t i c l e i n f o

Article history:

Received 30 October 2013

Accepted 28 October 2014

Available online 15 November 2014

Keywords:

Production planning and scheduling

Human learning

Nonlinear programming

a b s t r a c t

In humans, the relationship between experience and productivity, also known as learning (possibly also in-

cluding forgetting), is non-linear. As a result, prescriptive planning models that seek to manage workforce

development through task assignment are difficult to solve. To overcome this challenge we adapt a reformu-

lation technique from non-convex optimization to model non-linear functions with a discrete domain with

sets of binary and continuous variables and linear constraints. Further, whereas the original applications of

this technique yielded approximations, we show that in our context the resulting mixed integer program is

equivalent to the original non-linear problem. As a second contribution, we introduce a capacity scaling algo-

rithm that exploits the structure of the reformulation model and reduces computation time. We demonstrate

the effectiveness of the techniques on task assignment models wherein employee learning is a function of

task repetition.

© 2014 Elsevier B.V. All rights reserved.

a

q

t

e

a

p

w

h

a

g

fi

a

l

t

m

F

p

o

1. Introduction

Peter Senge famously wrote that the learning organization is “con-

tinually expanding its capacity to create its future” (Senge, 2006).

Citing employee learning as an effective way to create capacity from

existing resources, Levinthal and March (1993) argue that effective

management of employee learning can lead to a sustainable com-

petitive advantage. Some go further and claim that, in the modern

business environment, the only sustainable competitive advantage

will come from a company’s ability to learn more effectively than its

competitors (Kapp, 1999). Even if it is not the only source of com-

petitive advantage, Moustaghfir (2009) identifies learning as a core

component of organizational capabilities that are “immune to com-

petitive duplication.” In this paper, we address the issue of learning at

the operational level by developing solution techniques for workforce

planning models that incorporate individual on-the-job learning.

In particular, this paper focuses on a class of multi-period work-

force planning models that recognize human learning and forgetting

over a fixed planning horizon in environments that can be charac-

terized as task assignment. We consider a workforce that produces
∗ Corresponding author. Tel.: +1 585 789 8034.

E-mail addresses: mhewitt3@luc.edu (M. Hewitt), atc7417@mail.rit.edu

(A. Chacosky), segeie@rit.edu (S. E. Grasman), barrett-thomas@uiowa.edu

(B. W. Thomas).

URL: http://tippie.uiowa.edu/barrett-thomas (B. W. Thomas)

t

o

n

c

t

a

http://dx.doi.org/10.1016/j.ejor.2014.10.060

0377-2217/© 2014 Elsevier B.V. All rights reserved.
product, the production of which requires the completion of a se-

uence of tasks. Inventory is allowed to accumulate in between each

ask in the sequence. We assume that the workforce’s current skill lev-

ls and thus their productivity are heterogeneous. As workers perform

particular task, they gain experience that correspondingly leads to a

roductivity improvement as they learn on the job. In addition, when

orkers are not doing a particular task, they forget some of what they

ave learned and their productivity on that particular task erodes. We

ssume that each worker has his or her own rate of learning and for-

etting for each task. The objective is to maximize production over a

xed time horizon.

In humans, the relationship between experience and productivity,

lso known as learning (possibly also including forgetting), is non-

inear. Thus, prescriptive models incorporating learning are difficult

o solve. This paper helps overcome this challenge in two ways.

First, it adapts a reformulation technique for non-convex opti-

ization problems that enables linearization of the learning curves.

or general non-convex optimization, the reformulation yields an ap-

roximation of the original non-linear program (NLP). However, in

ur application, the non-linear functions have a specific structure

hat has not previously been explored. Specifically, they are functions

f the number of times an individual has performed a task over a fixed

umber of periods, and thus have discrete and finite domains. In this

ase, solutions to the mixed integer program (MIP) resulting from

he reformulation are optimal for the original non-linear program. As

result, we can solve MIPs instead of NLPs, and with the superior

http://dx.doi.org/10.1016/j.ejor.2014.10.060
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2014.10.060&domain=pdf
mailto:mhewitt3@luc.edu
mailto:atc7417@mail.rit.edu
mailto:segeie@rit.edu
mailto:barrett-thomas@uiowa.edu
http://tippie.uiowa.edu/barrett-thomas
http://dx.doi.org/10.1016/j.ejor.2014.10.060

M. Hewitt et al. / European Journal of Operational Research 242 (2015) 942–950 943

c

p

p

e

I

l

b

b

w

i

a

w

a

t

w

t

t

n

n

a

w

o

t

s

f

2

v

f

i

t

D

f

e

a

c

i

a

t

t

t

N

fi

(

J

m

t

a

i

u

t

i

t

t

l

a

p

i

t

a

t

p

w

r

a

t

o

p

p

t

F

l

(

t

a

r

a

t

p

g

a

o

i

l

t

n

s

s

m

o

f

f

t

t

d

q

N

i

t

w

P

v

l

p

p

l

a

b

s

s

m

a

S

o

l

a

i

s

c

o

i

a

T

apabilities of MIP solvers to those of NLP solvers, we are able to solve

roblems that are significantly larger than what has been previously

ossible.

The reformulation technique associates a binary variable with each

lement of the domain of the non-linear function we wish to linearize.

n our application this translates to representing each potential skill

evel for each worker in each period of the planning horizon with a

inary variable. As a result, as instance sizes grow, the resulting MIPs

ecome large, increasing solve times. Thus, as a second contribution,

e derive structural properties of the feasible region of the MIP that

n turn motivate a capacity scaling algorithm wherein these variables

re generated dynamically. With an extensive computational study,

e see that this algorithm reduces solution time. The capacity scaling

lgorithm can be applied to any MIP resulting from the reformulation

echnique.

The remainder of this paper is organized as follows. In Section 2,

e review the relevant literature. Section 3 presents our reformula-

ion technique, and Section 4 introduces the capacity scaling heuristic

hat exploits the structure of the reformulation. Section 5 presents the

on-linear and reformulated math programs for the workforce plan-

ing model on which we perform computational tests. The section

lso demonstrates how to implement the capacity scaling algorithm

ith the reformulated workforce planning model. Using instances

f different sizes and characteristics, Section 6 studies the computa-

ional times associated with the reformulated math program and the

caling algorithm. Section 7 offers conclusions and opportunities for

uture work.

. Literature review

Given its importance, a significant body of research has been de-

oted to developing quantitative models of individual learning and

orgetting. These models are often called learning curves. Of particular

nterest for this paper is research devoted to on-the-job or experien-

ial learning, which is sometimes also called autonomous learning.

ar-El (2000) provides a comprehensive review of both learning and

orgetting models as well as parameter estimation for learning mod-

ls developed before 2000. Jaber and Sikström (2004) and Anzanello

nd Fogliatto (2011) provide overviews that account for more re-

ent work on learning and forgetting models. Taking advantage of

mproved data collection capabilities resulting from bar code readers

nd other similar devices, Nembhard and Uzumeri (2000a) conclude

hat a three-parameter hyperbolic function provides best fits observa-

ions of individual learning. Nembhard and Uzumeri (2000b) extend

he three-parameter hyperbolic function to incorporate forgetting.

embhard (2001) examines several models of forgetting and identi-

es those with robust performance. Shafer, Nembhard, and Uzumeri

2001) introduce a model that accounts for the recency of a task.

aber and Sikström (2004) provide a numerical analysis that, for three

odels, identifies in which particular applications each model has

he best statistical fit of the learning and forgetting measured in the

pplication. While our work is amenable to other models of learn-

ng and forgetting, we focus this work on the exponential function

sed in Nembhard and Norman (2007, chap. 4). The function was in-

roduced by Thomas and Nembhard (2005) as an exponential learn-

ng and forgetting function designed to achieve the performance of

he three-parameter hyperbolic function while allowing for improved

ractability in optimization models.

A number of authors have incorporated models of learning or of

earning and forgetting into optimization models for workforce man-

gement. While the existing work covers a variety of different ap-

lications, a common theme is the challenge in solving large-sized

nstances. The success of exact solution approaches has been par-

icularly limited. Nembhard and Norman (2007) introduce a task-

ssignment model that includes learning and forgetting. Computa-
ional results are presented for a two workers, four tasks, and 10 time

eriods example. For ease of exposition, we choose a model similar to

hat is presented in Nembhard and Norman (2007) to illustrate our

eformulation technique. Heimerl and Kolisch (2010) also consider

n assignment model with the addition of constraints that represent

he firm’s desired skill composition at the end of a specified period

f time. Kim and Nembhard (2010) use a non-linear mixed integer

rogram to test the effects of experimental factors on cross-training

olicy selection. While the number of tasks is difficult to determine,

he largest problem size considered has three workers and 24 periods.

or the situation in which each station has infinite buffers and a prob-

em similar to that studied in this paper, Nembhard and Bentefouet

2012) identify the structure of the optimal policy for the case where

he number of tasks and workers is the same. The result allows the

uthors to solve the problem up to 96 workers, 96 tasks, and 246 pe-

iods. Using the flow-line production scenario used in this paper as an

pplication and for small problems of two to three workers and two

o three tasks, Bentefouet and Nembhard (2013) identify structural

roperties that characterize the optimal solution. The results do not

eneralize.

In addition to the specific structural results, however, Bentefouet

nd Nembhard (2013) present a model that provides an upper bound

n the production that can be achieved from the application discussed

n this paper. The nature of the formulation of the upper bound prob-

ems allows the authors to linearize the learning functions in a way

hat is a special case of the reformulation presented in Section 3. As

oted in Bentefouet and Nembhard (2013), solutions to their pre-

ented model do not generally offer implementable task assignment

chedules. The techniques discussed in this paper do offer imple-

entable task assignments. The authors of this paper are not aware

f any papers that offer a mixed integer reformulation of a non-linear

unction with a discrete domain.

To overcome the non-linearities of the learning and forgetting

unctions, a number of authors consider approximation schemes. In

he literature that follows, none of the authors addresses how well

heir schemes approximate the learning and forgetting functions nor

o they discuss whether or not the approximation impacts solution

uality relative to using the actual learning and forgetting functions.

embhard and Bentefouet (2012) introduce a rectangular approx-

mation for learning/forgetting functions. For a problem similar to

he application used in this paper, the approximation can solve 10

orker, 10 task, and 40 period problems. Corominas, Olivella, and

astor (2010) introduce a piece-wise linear transformation of a con-

ex learning function for a task assignment problem that incorporates

earning resulting from experience with related tasks. The largest

roblem solved in that paper has five tasks, four workers, and 20 time

eriods. Olivella, Corominas, and Pastor (2013) combines piecewise

inearization with constraint relaxation. Sayin and Karabati (2007)

lso use a piecewise linear approximation of the learning function,

ut in a problem in which they first try to maximize utility and then

kill improvement. In addition to the linearization, the problem is

olved for only a single period with each period’s solution imple-

ented as part of a simulation. Problems with at most 18 workers

nd four different skills are solved. Gutjahr, Katzensteiner, Reiter,

tummer, and Denk (2008) consider maximizing a weighted average

f economic gains and skill development for a project selection prob-

em. As part of the selection process, assignments to selected projects

re optimized. Gutjahr et al. (2008) introduce a first-order approx-

mation of the non-linear learning curve and are resultantly able to

olve the approximate model to optimality for an example with 14

andidate projects requiring a mix of 40 skills (analogous to tasks in

ur discussion) with 28 workers over 24 periods.

A number of heuristic approaches to task assignment with learn-

ng can be found in the literature. Yan and Wang (2011) consider

model with the same learning function considered in this paper.

hey introduce a genetic algorithm and solve a problem with six

944 M. Hewitt et al. / European Journal of Operational Research 242 (2015) 942–950

s

s

4

p

i

i

(

a

S

a

a

c

w

T

i

y

o

T

c

P

d

0

a

1

a

n

p

a

p

O

a

m

F

i

c

a

n

d

workers and five tasks over 40 periods. Other heuristic approaches can

be found in Wirojanagud, Gel, Fowler, and Cardy (2007) and Fowler,

Wirojanagud, and Gel (2008).

3. A mixed integer reformulation of a function with a discrete

and finite domain

In this section, we present a technique that uses a set of binary

variables and constraints to reformulate a non-linear function. This

technique was first presented in Beale and Tomlin (1970) and more

recently put into context in Burer and Letchford (2012). The tech-

nique was initially developed for general, non-convex optimization

problems, and its application results in a mixed integer program that

approximates the original non-linear program. Our use of the refor-

mulation technique yields an exact reformulation (solving the result-

ing mixed integer program yields an optimal solution to the origi-

nal non-linear program). Finally, while our motivation is non-linear

learning curves, we provide a presentation that demonstrates the re-

formulation for any non-linear function with a discrete domain.

Let X be a vector of binary decision variables and g(X)a linear func-

tion whose range is characterized by a discrete and finite set K. As an

example, in the workforce planning application we will consider later,

g(X) is the sum of variables that determine workers’ accumulated ex-

perience. We consider a function f (g(X)), which, as in the application

we discuss later, is such that f (g(X)) > 0,∀ feasible vectors X. We do

not assume a particular form for f (·), but are particularly interested in

cases where it is non-linear. In our application, f (·) is a learning curve

that takes workers’ accumulated experience as input. Our goal is to

model f (·)with linear constraints and binary variables so that we can

solve a mixed integer program instead of a non-linear program.

Given our definition of f (·) and its discrete and finite domain, the

range of the function f (·) can be enumerated (although we do not

assume that the values in the range are integer). Thus, we introduce

a single continuous variable r, with which we will model the value of

f (k), and a binary variable zk for each potential value k ∈ K. We then

define constraints to ensure that when zk = 1, r takes on the value

f (k). Formally, we use the following constraints:

r =
∑
k∈K

f (k)zk, (1)

g
(
X
) =

∑
k∈K

kzk, (2)

∑
k∈K

zk = 1, (3)

zk ∈ {0, 1} k ∈ K, r ∈ �. (4)

Together, constraints (1), (2), and (3) ensure that r = f (g(X)). Note that

constraint (3) is necessary for the formulation to be correct. For exam-

ple, consider the case in which K = {1, 2, 3}. Without constraint (3),

for values of X such that g(X) = 3, z1 = z2 = 1, r = f (1)+ f (2) would

be feasible, when in fact we should have r = f (3).
The correctness of the reformulation is given in the following the-

orem:

Theorem 1. If z̄, r̄ satisfy constraints (1), (2), and (3) for X̄ ∈ domain of

g(X), then r̄ = f (g(X̄)).

Proof. By definition, g(X̄) ∈ K, and there is a variable z̄g(X̄) defined.

Because exactly one variable zk can equal one, we must have that

z̄g(X̄) = 1 by constraint (2). As a result, by constraint (1) we have that

r̄ = f (g(X̄)).

If f (k) = a + h(k), we may rewrite constraint (1) as r = a +∑
k∈K h(k)zk. Lastly, we note that when solving a maximization prob-

lem wherein the objective is non-decreasing in r we can relax con-
traint (1) to r ≤ ∑
k∈K f (k)zk without changing the set of optimal

olutions.

. Capacity scaling algorithm

Capacity scaling is a well-known algorithmic strategy, often ap-

lied to network flow models, wherein an optimization problem that

s similar to, yet easier to solve, than the original is repeatedly solved

n order to produce high quality solutions to the original problem

Ahuja & Orlin, 1995). We use facet-defining valid inequalities of the

bove reformulation model to create these simpler problems.

Specifically, we consider the set

=
{

z ∈ {0, 1}n, x ∈ �, y ∈ � : x

=
n∑

j=1

ajzj, y ≤
n∑

j=1

f (aj)zj,

n∑
j=1

zj = 1, y ≤ b

}
(5)

nd seek to find facets of its convex hull, conv(S). As above, we have

ssumed that f (aj) > 0 ∀j = 1, . . . , n. Thus, we limit our attention to

ases wherein b > 0. We note, that in the definition of the set S,

e have modeled g(X) with the single variable x. We next show in

heorem 2 that, by tightening the right-hand side coefficients in the

nequality y ≤ ∑n
j=1 f (aj)zj based on the value of b to

≤
n∑

j=1

min(f (aj), b)zj, (6)

ne arrives at a facet of conv(S).

heorem 2. The inequality y ≤ ∑n
j=1 min(f (aj), b)zj defines a facet of

onv(S).

roof. It is easy to see that the inequality is valid. We first prove that

im(conv(S)) = n. We note that the two equations defining S,

= x −
n∑

j=1

ajzj

nd

=
n∑

j=1

zj,

re linearly independent, and thus dim(conv(S)) ≤ (n + 2)− 2 = n. We

ext consider the following n points pi, i = 1, . . . , n in S, such that

i : zi = 1, zj = 0, j �= i, x = ai, y = min(f (ai), b)

nd the point

0 : z1 = 1, zj = 0, j > 1, x = a1, y = 0.

ne can easily see that these n + 1 points are linearly (and hence

ffinely) independent. Thus, we have that dim(conv(S)) ≥ n and ulti-

ately that dim(conv(S)) = n. We next consider the face

=
{
(z, y, x) ∈ S : y =

n∑
j=1

min(f (aj), b)zj

}
(7)

nduced by the valid inequality. We note that p0 �∈ F and thus F ⊂
onv(S) and dim(F) < n. However, the n points pi, i = 1, . . . , n above

re in F. We see that they are linearly independent and thus dim(F) >=
− 1. Coupled with the observation that dim(F) < n, we have that

im(F) = n − 1 and the inequality induces a facet.

M. Hewitt et al. / European Journal of Operational Research 242 (2015) 942–950 945

Algorithm 1 Capacity scaling algorithm.

Set iteration counter k = 0

Calculate initial value of b0

while do not stop do

Solve P(bk)
Update bk to bk+1

Set k = k + 1

end while

u

t

m

s

y

x

∑

(

w

t

a

t

t

c

a

f

y

P

t

b

w

s

w

p

5

t

d

j

(

o

i

t

p

g

i

v

t

t

F

w

t

j

l

r

W

i

c

(

t

a

p

e

p

u

h

j

r

r

d

o

s

m

s

b

b

b

b

∑
j∑

o

r

x

b

T

C

t

d

c

(

Next, we consider an optimization problem P resulting from the

se of the reformulation technique presented in Section 3 and of

he form

aximize y

ubject to

≤
n∑

j=1

f (aj)zj,

=
n∑

j=1

ajzj,

n

j=1

zj = 1,

x, y) ∈ F,

here F is a set representing other constraints involving and po-

entially linking the x and y variables. Theorem 2 suggests that, by

rtificially constraining y, one may be able to solve the resulting op-

imization problem in much less time than required to solve P. With

his insight, we define the problem P(b) to be P, albeit with the extra

onstraint y ≤ b. We next present in Algorithm 1 a capacity scaling

lgorithm for problems of the form P where P(b) is repeatedly solved

or different values of b.

We note that, if one knew an upper bound ȳ on the optimal value of

(say by solving the linear relaxation of P), then when bk ≥ ȳ, solving

(bk) is equivalent to solving P. Thus, Algorithm 1 could be converted

o an exact algorithm by first determining ȳ and then iterating until

k ≥ ȳ. Also, if we always have bk ≤ bk+1 then the solution to P(bk)
ill be feasible for P(bk+1).

To offer a concrete example of the techniques presented in this

ection, we next present a non-linear task assignment model that we

ill ultimately reformulate to a mixed integer program (MIP). We also

rovide details for how to apply Algorithm 1 to the resulting MIP.

. A task assignment model with human learning

We consider a model that prescribes the assignment of individuals

o tasks over a discretized planning period, where the tasks are or-

ered sequentially such that task j requires the finished work of task

− 1 and the objective is to maximize the output of finished product

the last task, |J |). The rate at which an individual is able to produce

utput of task j in period τ is governed by a functional model of learn-

ng and forgetting. The input to this function is the number of times

he individual has performed task j in periods up to and including τ .

We denote the set of individuals byI, the set of tasks byJ , and the

eriods in the planning horizon by T . We assume that production be-

ins in period 1. We define the binary variable xt
ij

to indicate whether

ndividual i ∈ I performs task j ∈ J in period t ∈ T , the continuous

ariable ot
ij

to indicate the amount produced by individual i ∈ I of

ask j ∈ J in period t ∈ T , and the continuous variable rt
ij

to indicate

he productivity rate of individual i ∈ I at task j ∈ J in period t ∈ T .

inally, we define the continuous variable bt
j

to indicate the amount of
ork-in-process inventory available at task j ∈ J at the end of period

∈ T , t ≥ 2. We let b0
j

denote the initial inventory available at task

∈ J .

In this work, we illustrate our reformulation using the following

earning and forgetting curve:

τ
ij

(τ∑
t=1

xt
ij

)
= Iij + Kij

[
1 − e

−
∑τ

t=1
xt
ij

Lij

]
e

∑τ
t=1

xt
ij

−τ

Fij . (8)

hile we illustrate our techniques on the learning function found

n Nembhard and Norman (2007), they can be applied to others, in-

luding the hyperbolic learning function used in Sayin and Karabati

2007), the logistic learning function used in Gutjahr et al. (2008), and

he exponential learning function of Heimerl and Kolisch (2010) (if

ssignments are restricted to being binary). The curve represents the

roductivity of individual i on task j in period τ as a function of i’s

xperience on task j up to time τ . Individual i’s experience level in

eriod τ is dictated by
∑τ

t=1 xt
ij

or the number of repetitions individ-

al i has had on task j by that time. In the τ periods, individual i also

as
∑τ

t=1 xt
ij

− τ periods in which forgetting occurs. For worker i and

ob j, Iij is i’s initial expertise at task j, Kij is i’s steady-state production

ate for task j, Lij is i’s learning rate for task j, and Fij is i’s forgetting

ate for task j. In practice, parameters Iij, Kij, Lij, and Fij are statistically

etermined based on observations collected on individual i on task j

r a related task.

The Assignment with Learning (AwL) model, which was first pre-

ented in Nembhard and Norman (2007), seeks to

aximize
∑
i∈I

∑
t∈T

ot
i|J |

ubject to

1
1 = b0

1 −
∑
i∈I

o1
i1 (9)

t
1 = bt−1

1 −
∑
i∈I

ot
i1 ∀t ∈ T , t ≥ 2, (10)

t
j = bt−1

j
+

∑
i∈I

ot
ij−1 −

∑
i∈I

ot
ij ∀j ∈ J , t ∈ T , t ≥ 2, j ≥ 2 (11)

1
j = b0

j +
∑
i∈I

o1
ij−1 −

∑
i∈I

o1
ij ∀j ∈ J , j ≥ 2, (12)

∈J
xt

ij ≤ 1 ∀i ∈ I, t ∈ T , (13)

i∈I
xt

ij ≤ 1 ∀j ∈ J , t ∈ T , (14)

t
ij ≤ rt

ijx
t
ij ∀i ∈ I, j ∈ J , t ∈ T , (15)

t
ij = Iij + Kij[1 − e− 1

L ij

∑τ
t=1 xt

ij]e
1
F ij

(
∑τ

t=1 xt
ij
−(τ)) ∀i ∈ I, j ∈ J , τ ∈ T

(16)

t
ij ∈ {0, 1}, ot

ij ∈ �+, rt
ij ∈ �+ i ∈ I, j ∈ J , t ∈ T , (17)

t
j ∈ �+ ∀j ∈ J , t ∈ T . (18)

he objective maximizes the output of finished product (task |J |).
onstraints (9) and (10) represent the relationship between inven-

ory levels and production quantities at the first task. Constraints (11)

efine the relationship between production and inventory at all ex-

ept the first task, with initial conditions considered in constraints

12). Constraints (13) ensure that each individual performs at most

946 M. Hewitt et al. / European Journal of Operational Research 242 (2015) 942–950

∑

∑

p

s

p

e

s

u

d

v

5

p

W

a

r

i

d

d

s

m

(

a

a

t

p

m

m

s

a

c

w

t

i

v

r

e

H

c

S

l

S

l

I

C

i

a

one task in a period and constraints (14) ensure that at most one

individual can do each task in a period. Constraints (15) bound an

individual’s output of a task in a period by their productivity rate

(we assume the rates are normalized such that all periods are of

length one). Constraints (16) dictate an individual’s productivity rate

at a task in a period based on prior performance of that task. Fi-

nally, constraints (17) and (18) restrict the domains of the decision

variables.

Before discussing whether this model is computationally tractable,

we first make an observation. This model allows for, and even encour-

ages “practicing.” That is, an individual can perform a task (xt
ij

= 1)

without producing any output (ot
ij

= 0). While such a combination is

not beneficial when learning is not recognized, in this model, practic-

ing can lead to greater output. The model can be adapted to disallow

practicing by assuming a parameter μ that represents the minimum

amount of output an individual can possibly produce and adding the

constraint

μxt
ij ≤ ot

ij.

Because of the nonlinearities in the constraints, particularly in

constraints (16), instances of this model can prove very difficult to

solve for all but small instances. For example, we developed a test set

of instances with five workers, 10 tasks, and 10 periods, and found

that KNITRO 7.0 (Waltz & Plantenga, 2009) was unable to produce a

feasible solution for any of them in 2 hours of execution.

5.1. Applying the reformulation

In this section, we present a reformulation of AwL using the technique

described in Section 3. Due to its discrete nature, the learning and

forgetting function given in Eq. (8) is a candidate for our reformulation

technique. Productivity is a function of the number of times individual

i has performed task j in periods up to and including τ (the
∑τ

t=1 xt
ij

and
∑τ

t=1 xt
ij

− τ terms in Eq. (8)). Thus, in period τ , we can compute

the productivity rate of the worker knowing only how many times

the task was performed in periods t = 1, . . . , τ . As there are only τ
possible values for how many times the task was performed, we can

enumerate the potential values of rτ
ij

and apply the reformulation

technique.

We next present our reformulation, called the Assignment with

Reformulated Learning model (AwRL), of the AwL. As noted previ-

ously, for a fixed time period, the domain of Eq. (8) is the possible

numbers of times a task has been performed for an individual and is

discrete and finite. As a result, the range of Eq. (8), the potential pro-

ductivity rates, is also discrete and finite. Thus, for constraints (16),

we can enumerate the set of potential productivity rates for individ-

ual i at task j in period t (there are t of them given that at most one

task may be done per period) and define the binary variable zkt
ij

to

indicate whether individual i is prescribed the productivity rate r̄k at

task j in period t.

Specifically, assume we have calculated the pairs (k, r̄kt
ij
) where

r̄kt
ij

= Iij + Kij[1 − e
− k

Lij]e
k−t
Fij and r̄tt

ij
= Iij + Kij(1 − e

− t
Lij) is used as an

upper bound in a constraint that linearizes constraints (15). We re-

formulate the previous model, using the variables zkt
ij

by removing

constraint sets (15) and (16) and adding the following:

ot
ij ≤ r̄tt

ij xt
ij ∀i ∈ I, j ∈ J , t ∈ T , (19)

ot
ij ≤ rt

ij ∀i ∈ I, j ∈ J , t ∈ T , (20)

rt
ij =

τ∑
k=1

r̄kt
ij zkt

ij ∀i ∈ I, j ∈ J , t ∈ T , (21)
fi

τ

k=1

kzkτ
ij ≤

τ∑
t=1

xt
ij ∀i ∈ I, τ ∈ T , (22)

τ

k=1

zkt
ij = xt

ij ∀i ∈ I, j ∈ J , t ∈ T . (23)

Constraints (19) linearize constraints (15) based on the maximum

ossible productivity rate for individual i at task j in period t. Con-

traints (20) bound the output of an individual at a task by their

roductivity rate at that task in that period. Constraints (21) and (22)

nsure that the productivity rate of an individual in period τ corre-

ponds to the number of times they performed the task in the periods

p to and including τ . Finally, constraints (23) ensure that each in-

ividual is assigned exactly one rate in each period. We derive the

alues r̄kt
ij

that parameterize our reformulation through enumeration.

.2. Implementing the capacity scaling algorithm

We next discuss how we adapt the capacity scaling algorithm

resented in Section 4 to produce high quality solutions to the AwRL.

e first relax the constraints (21) to rt
ij

≤ ∑τ
k=1 r̄kt

ij
zkt

ij
. We then enforce

rtificial bounds btν
ij on rt

ij
through the constraints

t
ij ≤

τ∑
k=1

min(rkt
ij , b

tν
ij)zkt

ij ∀i ∈ I, j ∈ J , t ∈ T (24)

n the hope that, because by Theorem 2 constraints (24) are facet-

efining, the resulting integer program will solve quickly.

Thus, we let AwRL(b) denote the AwRL with the constraints (24)

efined by the vector b. We then iteratively create the vector b and

olve the resulting instance of the AwRL(b). While any task assign-

ent that is feasible for the AwRL is also feasible for the AwRL(b)

and vice-versa), constraints (24) may lead a task assignment to have

lower objective function value in the AwRL(b) than in the AwRL.

To create the value btν
ij at iteration ν of the heuristic, we choose

n experience level ctν
ij

and then set btν
ij = r

ctν
ij

t

ij
= rt

ij
(ctν

ij
). Thus, we ar-

ificially constrain the impact learning can have on an individual’s

roductivity rate. To generate the initial values ct1
ij

, we solve the opti-

ization problem

aximize
∑
t∈T

∑
i∈I

ot
i|J |,

ubject to constraints (9), (10), (11), (12), (13), (14), (19), and the vari-

ble definitions in constraints (17) and (18). This problem, which we

all TA-MAX, is the task assignment model without learning, wherein

orkers can always produce at their maximum productivity rate. We

hen set ct1
ij

= ∑t
τ=1 xτ

ij
and bt1

ij = rt
ij
(ct1

ij
). We also note that, as TA-MAX

s a relaxation of the AwRL, it also provides a bound on the optimal

alue of the AwRL.

We present the Capacity Scaling for the AwRL (CS-AwRL) algo-

ithm in Algorithm 2. In the for-loop entered in Step 5, the allowed

xperience level is updated based on the most recent task assignment.

owever, because there is no guarantee that the task assignment will

hange from one iteration to the next, we include the if-statement in

tep 10 wherein all allowable experience levels are increased by one

evel. We then update the maximum allowable production rates in

tep 18 and repeat.

With the bound zUB provided by solving TA-MAX, we can calcu-

ate both absolute and relative gaps for each primal solution found.

f tolerances are given for each of those gaps, we can terminate the

S-AwRL when one of those gaps is within the stated tolerance. Sim-

larly, if the condition in Step 12 is never true, i.e. the level of learning

llowed for each individual on each task in each period is not arti-

cially constrained, then solving AwRL(bν) is equivalent to solving

M. Hewitt et al. / European Journal of Operational Research 242 (2015) 942–950 947

Algorithm 2 CS-AwRL.

1: Solve TA-MAX to get bound zUB

2: Set ct1
ij

= ∑t
τ=1 xτ

ij
and bt1

ij = rt
ij
(ct1

ij
)

3: while do not stop do

4: Solve AwRL(bν) for task assignment solution xν

5: for all i ∈ I, j ∈ J , t ∈ T do

6: if
∑t

τ=1 xτν
ij

> ctν
ij

then

7: Set ctν+1
ij

= ctν
ij

+ 1

8: end if

9: end for

10: if ctν+1
ij

= ctν
ij

∀i ∈ I, j ∈ J , t ∈ T then

11: for all i ∈ I, j ∈ J , t ∈ T do

12: if c
fν
ij

+ 1 < t + 1 then

13: Set ctν+1
ij

= ctν
ij

+ 1

14: end if

15: end for

16: end if

17: for all i ∈ I, j ∈ J , t ∈ T do

18: Set btν+1
ij = rt

ij
(ctν+1

ij
)

19: end for

20: end while

A

e

r

6

t

i

t

p

h

2

s

s

T

t

(

i

Table 1

Instance sizes.

|I| |J | |T |
5,10,15,20 5,10,15,20,25,30,35,40 10,15,20,25,30,35,40

p

b

t

w

A

s

r

c

a

s

a

e

p

o

b

r

l

(

a

s

i

t

h

w

a

d

b

w

6

s

a

a

a

wRL and the algorithm can terminate. Because of Steps 18 and 12 in

ach iteration, at least one rate will be increased unless they have all

eached their upper limit. Thus, the CS-AwRL is an exact algorithm.

. Computational analysis

To study the computational effectiveness of our reformulation

echnique and scaling algorithm, we solve instances of the AwRL us-

ng Gurobi 5.1 (Gurobi Optimization, 2012) to a relative optimality

olerance of 1 percent and an absolute optimality tolerance of 1. Ex-

eriments were performed on a computer cluster where each node

as 32–64 cores with AMD Opteron 2.2 gigahertz or AMD Interlagos

.6 “bulldozer” processors and 128–256 gigabytes of memory. When

olving instances of the AwRL, Gurobi was given a time limit of 3600

econds. All computational times reported are in seconds.

We give the instance sizes we consider (in terms of I,J ,T) in

able 1.

We only consider instances where there are at least as many

asks as workers (|J | ≥ |I|) and at least as many periods as tasks

|T | ≥ |J |). We initially report results for instances where the initial

nventory levels are set as b1
1 = |T |, b1

j
= 5, j ≥ 2, but study the im-
Fig. 1. Different learning
act of this parameter on instance solve time later. We chose b1
1 = |T |

ecause productivity rates in most instances would typically be less

han one and thus with this much raw material the production line

ill not be starved.

Along with studying the time required to solve instances of the

wRL of varying sizes, we also consider different workforce compo-

itions with respect to the learning factors Iij, Kij, Fij, and Lij. We de-

ive six different workforce composition cases from the four learning

urves depicted in Fig. 1a, with parameter values detailed in Fig. 1b,

nd describe these cases in Table 2.

Our primary purpose for constructing these learning curves is to

ee the performance of the reformulation both in settings that are

menable to approximation techniques and those that are not. For

xample, in learning curves 1 and 4, the number of times an individual

erforms a task has little or no impact on future productivity. Thus,

ne way to deal with the non-linearity of the learning function would

e to simply ignore learning and fix each individual’s productivity

ates a priori. In curve 3, learning occurs, but in a way that is nearly

inear, suggesting that a piecewise linear approximation could be used

and very accurate). Finally, in curve 2, learning occurs in a way that

piecewise linear approximation would not be as accurate.

Symmetry is an issue that often plagues branch-and-bound-based

olution methods for integer programming formulations of schedul-

ng problems. Thus, we have chosen these six workforce composi-

ions to see whether our reformulated model exhibits similar be-

avior. Specifically, Cases 1 through 4 and 6 represent homogeneous

orkforces, wherein symmetry could be an issue. Case 5 represents

heterogenous workforce, but assumes that the learning rate is in-

ependent of the task. Case 6 represents a homogenous workforce,

ut assumes that the learning rate does depend on the task. Thus, one

ould expect that symmetry will be less of an issue with Case 5.

.1. Effectiveness of reformulation

Table 3 reports the average solution times (Solve time) and ab-

olute optimality gaps (Abs. Gap) reported by Gurobi. We focus on

bsolute gaps because the objective function values in our instances

re often small enough that we believe relative gaps do not give

n accurate picture of the quality of solutions produced. We report
curves considered.

948 M. Hewitt et al. / European Journal of Operational Research 242 (2015) 942–950

Table 2

Workforce compositions used to derive instances.

Workforce composition Description

Case 1 All workers learn each task according to learning curve 1

Case 2 All workers learn each task according to learning curve 2

Case 3 All workers learn each task according to learning curve 3

Case 4 All workers learn each task according to learning curve 4

Case 5 The I workers are divided into 4 (nearly) equal sized groups

Workers in group g learn each task according to learning curve g

Case 6 The J tasks are divided into 4 (nearly) equal sized groups

All workers learn each task in group g according to learning curve g

Table 3

Performance by worker composition and number of workers.

5 workers 10 workers 15 workers 20 workers

Worker Solve time Abs. Solve time Abs. Solve time Abs. Solve time Abs.

composition (seconds) Gap (seconds) Gap (seconds) Gap (seconds) Gap

Case 1 1385.80 5.15 118.74 0.11 233.77 0.10 619.62 0.13

Case 2 1367.79 4.04 232.63 0.25 466.67 0.30 902.16 0.23

Case 3 1032.48 1.60 196.22 0.14 397.20 0.37 776.41 0.23

Case 4 19.00 0.14 79.61 0.14 145.98 0.14 646.03 0.06

Case 5 2651.58 5.29 936.68 0.77 695.84 0.77 1407.14 1.00

Case 6 26.75 0.13 90.87 0.12 205.79 0.08 425.64 0.15

Average 1080.57 2.73 275.79 0.25 357.54 0.29 796.17 0.30

Table 4

Performance by number of periods and number of workers.

5 workers 10 workers 15 workers 20 workers

|T | Solve time Abs. Solve time Abs. Solve time Abs. Solve time Abs.

(seconds) Gap (seconds) Gap (seconds) Gap (seconds) Gap

10 0.42 0.00 0.99 0.08 − − − −
15 1.16 0.21 2.88 0.08 7.59 0.19 − −
20 5.18 0.27 9.65 0.23 19.84 0.27 34.55 0.20

25 573.50 0.41 28.69 0.14 64.13 0.20 92.67 0.07

30 675.95 0.70 77.20 0.28 137.11 0.28 294.81 0.21

35 1893.62 3.26 262.98 0.18 377.29 0.26 754.97 0.21

40 2202.03 8.08 801.11 0.45 805.64 0.41 1563.66 0.53

Table 5

Performance by number of tasks and number of workers.

5 workers 10 workers 15 workers 20 workers

|J | Solve time Abs. Solve time Abs. Solve time Abs. Solve time Abs.

(seconds) Gap (seconds) Gap (seconds) Gap (seconds) Gap

5 345.71 0.53 − − − − − −
10 835.71 1.96 45.95 0.15 − − − −
15 963.63 2.72 195.78 0.27 169.41 0.25 − −
20 1111.70 2.20 253.03 0.22 279.34 0.24 436.94 0.29

25 1478.85 3.38 351.41 0.52 334.45 0.18 730.47 0.42

30 1841.25 4.77 495.39 0.16 465.51 0.33 874.58 0.24

35 2171.10 7.28 586.22 0.20 569.07 0.28 1239.33 0.32

40 2428.28 8.31 896.42 0.27 1222.79 1.20 1733.53 0.05

w

i

3

w

t

s

w

f

a

l

w

h

c

these results by number of workers and worker composition cases,

averaging over instances with different numbers of tasks and pe-

riods. We observe that Gurobi is able to produce high-quality so-

lutions and is particularly effective with homogeneous workforces,

suggesting that symmetry is not an issue when solving instances of

the reformulated model. We also see that the approach is robust

with respect to the underlying learning curve. However, instances

that represent a heterogeneous workforce (Case 5) are the hardest to

solve.

Table 4 reports solver performance by number of periods (|T |),
where we average over instances with different numbers of tasks, and

Table 5 reports solver performance by number of tasks (|J |), where

we average over instances with different numbers of periods. We see

that with 10, 15, or 20 workers we are able to solve all instance sizes

to within our tolerances. While solve time grows much more rapidly
ith respect to number of tasks than number of periods this growth

s likely due to the nature of our set of instances, i.e. for instances with

0 tasks we only consider planning horizons of 30, 35, or 40 periods,

hereas for instances with 40 periods we consider all numbers of

asks given in Table 1.

We next examine the impact of initial buffer levels on instance

olve time. Specifically, we consider the same set of instances but

ith the initial buffer levels b0
1 = |T | (to not starve the line), and

or later stations, b0
j

= 1, j ≥ 2. We report aggregate solve times and

bsolute gaps over all instances in Table 6. We see that initial buffer

evels have a significant impact on solve time and solution quality.

Ultimately, recalling our computational study with KNITRO,

herein KNITRO was unable to produce a feasible solution in two

ours for instances with five workers, 10 tasks, and 10 periods, we

onclude from Tables 4, 5, and 6 that solving instances of the AwRL

M. Hewitt et al. / European Journal of Operational Research 242 (2015) 942–950 949

Table 6

Performance by number of workers and initial buffer level.

5 workers 10 workers 15 workers 20 workers

Initial Solve time Abs. Solve time Abs. Solve time Abs. Solve time Abs.

buffer (seconds) Gap (seconds) Gap (seconds) Gap (seconds) Gap

1 2588.33 5.60 2294.49 7.37 2333.39 8.21 2494.34 9.74

5 1080.57 2.73 275.79 0.25 357.54 0.29 796.17 0.30

Table 7

Root gap by initial buffer level.

5 workers 10 workers 15 workers 20 workers

1 5.63 7.38 8.22 9.74

5 2.73 0.25 0.29 0.30

i

p

b

f

t

r

t

t

a

g

fi

l

t

t

t

o

c

t

6

A

f

Table 10

Experience levels enumerated by CS-AwRL.

Initial Number Pct. exp. Pct. exp.

buffer iterations levels levels for best

1 48.65 0.34 0.17

5 75.67 0.51 0.15

t

F

p

l

g

m

a

s

a

A

o

s

p

a

t

t

t

a

a

a

l

r

C

s much less computationally intensive than the original non-linear

rogram.

We next seek to understand why initial buffer levels and the num-

er of workers have such an impact on solution time. One diagnostic

or the difficulty in solving an integer program is the gap between

he optimal value of the linear programming relaxation solved at the

oot node of a branch-and-bound-based algorithm and the final op-

imal solution, as this gives a sense of how often branching is likely

o be required to solve the integer program. Thus, Table 7 presents

verages over all instances for each initial buffer level of the absolute

ap (Root gap) between the bound produced at the root node and the

nal primal solution produced. These two parameters (initial buffer

evels and the number of workers) partially determine the produc-

ion capability for an instance. Comparing the two rows, we conclude

hat the greater the production capability of an instance the closer

he root node bound is to the value of the optimal solution. A similar

bservation can be made when comparing the columns of the row

ontaining results for an initial buffer equal to five for stations after

he first.

.2. Effectiveness of the CS-AwRL

We next compare the effectiveness of the CS-AwRL to solving the

wRL for both initial buffer levels. To do so, we execute the CS-AwRL

or 30 minutes (the only stopping criteria) for each instance and report
Table 8

Capacity scaling heuristic—initial buffer = 5.

Worker Pct. Abs opt Time

composition solved gap best

Case 1 0.19 0.32 446.96

Case 2 0.22 0.89 538.29

Case 3 0.25 1.11 523.00

Case 4 0.26 0.04 253.18

Case 5 0.14 1.14 718.11

Case 6 0.27 0.11 266.80

Average 0.22 0.60 457.72

Table 9

Capacity scaling heuristic—initial buffer = 1.

Worker Pct. Abs opt Time

composition solved gap best

Case 1 0.13 1.30 958.32

Case 2 0.12 3.72 1238.25

Case 3 0.11 4.20 1095.56

Case 4 0.18 2.18 748.67

Case 5 0.03 4.24 1506.27

Case 6 0.21 1.50 651.58

Average 0.13 2.86 1033.11
he results, again for different initial buffer levels, in Tables 8 and 9.

irst, because the CS-AwRL is an exact algorithm, we present the

ercentage of instances the CS-AwRL solves to optimality in the time

imit (Pct. solved). Next, we report the average absolute optimality

ap (Abs opt gap) of the best solution produced by the CS-AwRL as

easured against the dual bound produced when solving the AwRL

nd the time required to find that solution (Time best). The results

how that CS-AwRL is able to produce high-quality solutions quickly

nd solve some instances to optimality.

We also compare in Tables 8 and 9 the performance of the CS-

wRL with solving the AwRL. Specifically, we present the percentage

f instances for which the CS-AwRL produces an equivalent or better

olution (Pct. beat/tie AwRL), the average of the time required to

roduce an equivalent or better solution (Time beat/tie AwRL), and the

bsolute gap in the two solutions (Abs gap AwRL). Across all instances,

he CS-AwRL beats or ties the reformulation alone 88 percent of the

ime in both the one and five buffer cases. Further, CS-AWRL is able

o achieve these results faster than is possible for the reformulation

lone.

Finally, we note that, at any iteration, the CS-AwRL works with

limited set of potential experience levels, with new levels added

t each iteration until the algorithm can conclude that all necessary

evels have been enumerated or the time limit has been reached. We

eport in Table 10 the average number of iterations executed by the

S-AwRL (Number iterations), the average number of the percentage
Pct. beat/tie Time beat/tie Abs gap

AwRL AwRL AwRL

0.81 212.06 1.57

0.88 337.87 0.71

0.85 305.46 −0.39

0.98 235.19 0.09

0.76 219.66 1.27

0.98 250.55 0.01

0.88 260.13 0.54

Pct. beat/tie Time beat/tie Abs gap

AwRL AwRL AwRL

0.95 82.85 10.67

0.91 130.35 5.88

0.94 213.16 3.19

0.82 310.05 0.58

0.94 226.87 6.23

0.74 276.57 −0.01

0.88 206.64 4.42

950 M. Hewitt et al. / European Journal of Operational Research 242 (2015) 942–950

B

C

D

F

G

G

H

N

N

N

O

S

of all possible experience levels generated at termination (Pct. exp.

levels), and the average number of the percentage of experience levels

generated when the best solution was found (Pct. exp. levels for best).

We again report these results by initial buffer level. We conclude

from these results that the CS-AwRL is able to produce high quality

solutions with very few potential experience levels.

7. Conclusions and future work

In this paper, we adapt a technique for modeling a (non-linear)

function with binary variables and linear constraints to a case where

the function has a finite and discrete domain. We show that, in this

case, solving the resulting mixed integer program yields an optimal

solution to the original non-linear program (unlike the case for gen-

eral, non-convex optimization problems wherein the resulting MIP is

an approximation). With this technique, workforce planning models

that contain non-linear models of human learning can be reformu-

lated as mixed integer programs. Our computational study indicates

that the resulting instances are much easier to solve and thus much

larger instances can be solved than when the original non-linear pro-

gram is solved with commercial software. We also use the resulting

mixed integer program to develop an integer programming-based

exact algorithm that can quickly produce a high quality solution.

While this reformulation technique does reduce solve times and

enable larger instances to be solved, there is room for improvement.

Our results indicate that strengthening the formulation with valid

inequalities may greatly reduce solution times for instances that are

tightly capacitated. Further, this paper is intended to demonstrate

the general value of the reformulation technique. We have not ad-

dressed any particular workforce planning problem, and future stud-

ies demonstrating the impact of the reformulation on solving such

practical problems would be valuable. Also, we are developing mod-

els that are similar to the AwRL, but that recognize there may be

uncertainty with respect to a worker’s learning parameters.

Acknowledgments

We would like to thank the Associate Editor and two anonymous

referees for their helpful comments. This material is based upon work

supported by the National Science Foundation under Grant No. CMMI-

1266010.

References

Ahuja, R. K., & Orlin, J. B. (1995). A capacity scaling algorithm for the constrained

maximum flow problem. Networks, 25(2), 89–98.
Anzanello, M. J., & Fogliatto, F. S. (2011). Learning curve models and applications: Liter-

ature review and research directions. International Journal of Industrial Ergonomics,

41(5), 573–583. doi: 10.1016/j.ergon.2011.05.001.
Beale, E. M. L., & Tomlin, J. A. (1970). Special facilities in a general mathematical pro-

gramming system for non-convex problems using ordered sets of variables. In J.
Lawrence (Ed.), Proceedings of the 5th national conference in operational research

(pp. 447–454). London: Tavistock.
Bentefouet, F., & Nembhard, D. A. (2013). Optimal flow-line conditions with worker

variability. International Journal of Production Economics, 141(2), 675–684. doi:

10.1016/j.ijpe.2012.10.008.
urer, S., & Letchford, A. N. (2012). Non-convex mixed-integer nonlinear programming:
A survey. Surveys in Operations Research and Management Science, 17(2), 97–106.

orominas, A., Olivella, J., & Pastor, R. (2010). A model for the assignment of a set of tasks
when work performance depends on experience of all tasks involved. International

Journal of Production Economics, 126(2), 335–340. doi: 10.1016/j.ijpe.2010.04.012.
ar-El, E. M. (2000). Human learning: From learning curves to learning organizations.

Boston: Kluwer Academic Publishers.
owler, J., Wirojanagud, P., & Gel, E. (2008). Heuristics for workforce planning with

worker differences. European Journal of Operational Research, 190(3), 724–740. doi:

10.1016/j.ejor.2007.06.038.
urobi Optimization (2012). Gurobi reference manual: Technical report. Gurobi Opti-

mization.
utjahr, W. J., Katzensteiner, S., Reiter, P., Stummer, C., & Denk, M. (2008). Competence-

driven project portfolio selection, scheduling and staff assignment. Central European
Journal of Operations Research, 16(3), 281–306. doi: 10.1007/s10100-008-0057-z.

eimerl, C., & Kolisch, R. (2010). Work assignment to and qualification of multi-

skilled human resources under knowledge depreciation and company skill level
targets. International Journal of Production Research, 48(13), 3759–3781. doi:

10.1080/00207540902852785.
Jaber, M. Y., & Sikström, S. (2004). A numerical comparison of three potential learning

and forgetting models. International Journal of Production Economics, 92(3), 281–294.
doi: 10.1016/j.ijpe.2003.10.019.

Kapp, K. M. (1999). Transforming your manufacturing organization into a learning

organization. Hospital Material Management Quarterly, 20(4), 46–54.
Kim, S., & Nembhard, D. A. (2010). Cross-trained staffing levels with heterogeneous

learning / forgetting. IEEE Transactions on Engineering Management, 57(4), 560–574.
Levinthal, D. A., & March, J. G. (1993). The myopia of learning. Strategic Management

Journal, 14, 95–112.
Moustaghfir, K. (2009). How knowledge assets lead to a sustainable competitive ad-

vantage: Are organizational capabilities a missing link? Knowledge Management

Research & Practice, 7(4), 339–355. doi: 10.1057/kmrp.2009.26.
Nembhard, D., & Uzumeri, M. V. (2000a). An individual-based description of learning

within an organization. IEEE Transactions on Engineering Management, 47(3), 370–
378. doi: 10.1109/17.865905.

Nembhard, D., & Uzumeri, M. V. (2000b). Experiential learning and forgetting for man-
ual and cognitive tasks. International Journal of Industrial Ergonomics, 25(4), 315–326.

doi: 10.1016/S0169-8141(99)00021-9.

embhard, D. A. (2001). Heuristic approach for assigning workers to tasks based on
individual learning rates. International Journal of Production Research, 39(9), 1955–

1968. doi: 10.1080/00207540110036696.
embhard, D. A., & Bentefouet, F. (2012). Parallel system scheduling with general

worker learning and forgetting. International Journal of Production Economics, 139(2),
533–542. doi: 10.1016/j.ijpe.2012.05.024.

embhard, D. A., & Norman, B. A. (2007). Cross training in production systems with

human learning and forgetting. In D. A. Nembhard (Ed.), Workforce cross training
(pp. 111–129). Boca Raton, FL, USA: CRC Press.

livella, J., Corominas, A., & Pastor, R. (2013). Task assignment considering cross-
training goals and due dates. International Journal of Production Research, 51(3),

952–962.
ayin, S., & Karabati, S. (2007). Assigning cross-trained workers to departments: A two-

stage optimization model to maximize utility and skill improvement. European
Journal of Operational Research, 176(3), 1643–1658. doi: 10.1016/j.ejor.2005.10.045.

Senge, P. (2006). The fifth discipline: The art & practice of the learning organization (Re-

vised and updated ed.). New York: Doubleday.
Shafer, S. M., Nembhard, D. A., & Uzumeri, M. V. (2001). The effects worker learning,

forgetting, and heterogeneity on assembly line productivity. Management Science,
47(12), 1639–1653.

Thomas, B. G., & Nembhard, D. A. (2005). Preference based search approach for schedul-
ing workers with learning and forgetting. In Presentation to manufacturing & service

management sponsored cluster of the INFORMS annual meeting in Denver, Colorado.

Waltz, R. A., & Plantenga, T. D. (2009). Knitro 6.0 user’s manual: Technical report. Ziena
Optimization, Inc.

Wirojanagud, P., Gel, E. S., Fowler, J. W., & Cardy, R. (2007). Modelling inherent worker
differences for workforce planning. International Journal of Production Research,

45(3), 525–553. doi: 10.1080/00207540600792242.
Yan, J.-H., & Wang, Z.-M. (2011). GA based algorithm for staff scheduling con-

sidering learning-forgetting effect. In 2011 IEEE 18th international conference

on industrial engineering and engineering management (pp. 122–126). doi:
10.1109/ICIEEM.2011.6035120.

http://dx.doi.org/10.13039/100000001
http://refhub.elsevier.com/S0377-2217(14)00899-6/bib001
http://dx.doi.org/10.1016/j.ergon.2011.05.001
http://refhub.elsevier.com/S0377-2217(14)00899-6/bib002
http://refhub.elsevier.com/S0377-2217(14)00899-6/bib003
http://dx.doi.org/10.1016/j.ijpe.2012.10.008
http://refhub.elsevier.com/S0377-2217(14)00899-6/bib004
http://refhub.elsevier.com/S0377-2217(14)00899-6/bib005
http://dx.doi.org/10.1016/j.ijpe.2010.04.012
http://refhub.elsevier.com/S0377-2217(14)00899-6/bib006
http://refhub.elsevier.com/S0377-2217(14)00899-6/bib007
http://dx.doi.org/10.1016/j.ejor.2007.06.038
http://refhub.elsevier.com/S0377-2217(14)00899-6/bib008
http://refhub.elsevier.com/S0377-2217(14)00899-6/bib009
http://dx.doi.org/10.1007/s10100-008-0057-z
http://refhub.elsevier.com/S0377-2217(14)00899-6/bib010
http://dx.doi.org/10.1080/00207540902852785
http://refhub.elsevier.com/S0377-2217(14)00899-6/bib011
http://dx.doi.org/10.1016/j.ijpe.2003.10.019
http://refhub.elsevier.com/S0377-2217(14)00899-6/bib012
http://refhub.elsevier.com/S0377-2217(14)00899-6/bib013
http://refhub.elsevier.com/S0377-2217(14)00899-6/bib014
http://refhub.elsevier.com/S0377-2217(14)00899-6/bib015
http://dx.doi.org/10.1057/kmrp.2009.26
http://refhub.elsevier.com/S0377-2217(14)00899-6/bib016
http://dx.doi.org/10.1109/17.865905
http://refhub.elsevier.com/S0377-2217(14)00899-6/bib017
http://dx.doi.org/10.1016/S0169-8141(99)00021-9
http://refhub.elsevier.com/S0377-2217(14)00899-6/bib018
http://dx.doi.org/10.1080/00207540110036696
http://refhub.elsevier.com/S0377-2217(14)00899-6/bib019
http://dx.doi.org/10.1016/j.ijpe.2012.05.024
http://refhub.elsevier.com/S0377-2217(14)00899-6/bib020
http://refhub.elsevier.com/S0377-2217(14)00899-6/bib021
http://refhub.elsevier.com/S0377-2217(14)00899-6/bib022
http://dx.doi.org/10.1016/j.ejor.2005.10.045
http://refhub.elsevier.com/S0377-2217(14)00899-6/bib023
http://refhub.elsevier.com/S0377-2217(14)00899-6/bib024
http://refhub.elsevier.com/S0377-2217(14)00899-6/bib025
http://refhub.elsevier.com/S0377-2217(14)00899-6/bib026
http://refhub.elsevier.com/S0377-2217(14)00899-6/bib027
http://dx.doi.org/10.1080/00207540600792242
http://refhub.elsevier.com/S0377-2217(14)00899-6/bib028
http://dx.doi.org/10.1109/ICIEEM.2011.6035120
http://refhub.elsevier.com/S0377-2217(14)00899-6/bib029

	Integer programming techniques for solving non-linear workforce planning models with learning
	1 Introduction
	2 Literature review
	3 A mixed integer reformulation of a function with a discrete and finite domain
	4 Capacity scaling algorithm
	5 A task assignment model with human learning
	5.1 Applying the reformulation
	5.2 Implementing the capacity scaling algorithm

	6 Computational analysis
	6.1 Effectiveness of reformulation
	6.2 Effectiveness of the CS-AwRL

	7 Conclusions and future work
	Acknowledgments
	References

