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Optimizing the  locations of electric taxi  charging stations: 

A spatial–temporal demand coverage approach 
 

 
 a  b  s  t  r  a  c  t   

 
Vehicle electrification  is  a  promising approach towards attaining green transportation. 

However, the  absence of  charging stations limits the penetration  of  electric  vehicles. 

Current approaches for optimizing the locations of charging stations suffer from challenges 

associated with spatial–temporal dynamic travel demands and the lengthy period required 

for  the charging process. The  present article uses the electric taxi  as  an  example to 

develop a  spatial–temporal demand coverage approach for  optimizing the placement of 

ET charging stations in the space–time context. To this end, public taxi demands with spa- 

tial  and temporal attributes are  extracted from massive taxi GPS data. The  cyclical interac- 

tions between  taxi demands, ETs,  and charging stations  are   modeled with a  spatial– 

temporal path tool. A location model is developed to maximize the level of ET service on 

the road network and the level of charging service at the stations under spatial and tem- 

poral constraints such as the ET range, the charging time, and the capacity of charging sta- 

tions. The reduced carbon emission generated by used ETs with located charging stations is 

also evaluated. An experiment conducted in  Shenzhen, China demonstrates that the pro- 

posed approach not only exhibits good performance in  determining ET charging station 

locations by  considering temporal attributes, but also achieves a  high quality trade-off 

between the levels of ET service and charging service. The proposed approach and obtained 

results help the decision-making of urban ET charging station siting. 

   

 

 
 
 

1. Introduction 

 
Currently, the transportation sector contributes 20–30%  of the total production of greenhouse gases such as oxo- carbons 

and nitrous oxide. The reduction of GHGs in the transportation sector has  therefore 
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gained much attention from with respect to technical innovation and scientific research. Among various alternatives, vehicle 

electrification is a promising approach towards attaining green transportation . However, relative to alternative fuel  

vehicles, electric  generally have a shorter range that is compounded by the requirements of an extended charging period , 

which, with the absence of charging infrastructure, inspires a severe degree of anxiety regarding the allowable vehicle range. 

Meanwhile, the return of the considerable investment required for charging stations is exceedingly meager under 

conditions of low  EV penetration . Therefore, the EV market is dropping into a kind of ‘‘egg-chicken” paradox . Clearly, the 

relation- ship between active EVs and available EV charging stations must be carefully coordinated. 

Public transportation, such as bus  and taxi,  are  an  appropriate first  step towards electrification , and various cities have 

made efforts in this direction . For example, London plans to  substitute all taxis in the city  with EVs with the aim  of low  

carbon emissions . New  York issues roadmap for electrifying one-third of the city’s taxi  fleet by  2020 . In  China,   the city   

of  Shenzhen plans to  add   3000 electric taxis by  2015 . Therefore, the emerging question is where to locate charging 

stations to serve the var- ious  charging demands of a city. 

Location approaches  are  used to  address the facility location problem to  serve geographically distributed demands 

. These methods typically consist of two main components: a demand representation and a location model. Usually, the 

demand is represented as  points, polygons, or  flow  in  a spatial context . The  magnitude of the demand is generated by  a 

synthetic method based on  population or  travel surveys. Demand is defined as  being covered if it  is  within a  certain 

travel distance/time to  a  facility . A location model is designed to  select the best locations that achieve maximum 

system utility, minimum cost,  or other objective(s). Based  on various demand representations and objectives, a  number 

of location models have been proposed such as  the p-Median , p-Center , the maximum coverage location problem, and 

the flow capture location model  . With the aid  of geographic information systems in the inte- gration of spatial data 

management, visualization, and analysis, location models and optimization methods have been imple- mented and widely 

applied for  facility location in  public and private sectors . 

For appropriately locating ET charging stations, however, time is a crucial factor. Firstly, daily taxi  demand exhibits spa- 

tial–temporal variations from hour to hour and from place to place . This type of spatial–temporal dynamic feature is quite 

difficult to  capture using a synthetic demand approach, and has  therefore been ignored in current demand representation 

methods . This feature also  creates a substantial chal- lenge for defining the conditions whereby a charging demand is 

fulfilled, or formally, is covered . The acquisition of spatial–temporal variations in taxi  demand is a basic issue. Secondly, 

the required duration for ET charging at charging stations can  be  quite long,  where, depending on  the charging mode, the 

charging duration can  be  from 5 min to several hours . Such  an extensive duration will  heavily affect the interaction 

between taxi  demand and available ETs. Moreover, the capacity of a charging station is limited, depending upon the 

number of charging stakes, and only  a lim- ited number of ETs can  be  charged simultaneously at a given charging station. 

Any ETs in excess of the maximum service number arriving at a station for charging must therefore wait for service , which 

would also  affect sub- sequent ET service on  the roads. However, traditional location models cannot address these 

temporal issues at a facility. Clearly, an  extension of the conventional location model is needed. 

Detailed-rich space–time data is an  aid  to decision-making and policy analysis. Recently, taxis with GPS that track real- 

time vehicle positions have been widely applied in transportation . Data  regarding taxi  service with corresponding time 

information in a city  could be extracted from raw taxi  GPS data. This  information would not  only  contribute to  traffic 

monitoring , travel time esti- mation , etc.,  but also  deepen our  understanding of  travel patterns, urban taxi  service , use  

of critical infrastructure , etc. Such time rich information also  provides an  opportunity to  capture city-wide spatial–

temporal variations in  taxi  demands, which could serve as the cornerstone for the optimal siting of ET charging stations. 

The present article develops a spatial–temporal demand coverage approach using big spatial–temporal data to facilitate 

charging station siting. To this end,  actual spatial–temporal taxi  demands in the city  of Shenzhen, China  has  been extracted 

from large volume raw taxi  GPS data. Using  the spatial–temporal path concept, the cyclical taxi  demand serving on the roads, 

ET charging, and possible additional ET waiting at charging stations are  modeled in a spatial–temporal context. A spatial– 

temporal demand coverage location model is proposed according to considerations of EV range, the requirements of charging 

and waiting at charging stations, and the competition of taxies. Only  the taxi  demand covered by  an  ET is included in the 

presented model. Analysis of the obtained results for  Shenzhen, China  indicates the good  performance of the proposed ET 

charging station siting approach obtained by  taking the time dimension into account. The  daily reduced carbon emission 

generated by the ETs with located charging stations is also  mapped to  evaluate the green effect. 

The  remainder of this article is organized as  follows. The  next section reviews existing location approaches and their 

applications to  charging station siting. Section describes the study area and associated data. Section presents the pro- 

posed spatial–temporal demand coverage approach. Section illustrates the obtained results, and analyzes the environmen- tal  

effect of used ETs with located charging stations. In the final  section, we  discuss and conclude the study. 
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2. Literature review 

 
Facility location begins with a representation of human demands and locates facilities at the places best suited to serve 

those demands. According to  the demand representation,  current location approaches are  divided into two approaches: 

point demand and flow  demand. This section briefly reviews the two approaches and their implementations in charging sta- 

tion siting. For comprehensive reviews related to  facility location, please refer to  , and . 
 

 
2.1. Point  demand location approach 

 
The point  demand location approach assumes that demand is located at distinct places, such as residential areas, working 

places, and shopping centers. The basic demand unit is a polygonal area based spatial object in a geographical space . The 

demand count or the demand density is usually derived from demographic data, topographic data, cadastral data, survey 

data, etc.  Because a polygonal area is much too  complex for geocomputing, the representation of the demand is usually 

simplified as a point at the center of the polygon by abstracting and aggregating . The inherent assumption is that dedicated 

travels between demand locations and facilities are  made to fulfill  geographical distributed needs. Therefore, the travel 

distance/time is defined as the key  system utility index. The demand unit is defined as covered if it is within a certain 

travel distance/time to  facilities. The objective is to  either minimize the total travel cost between demands and facilities, 

minimize the maximum travel cost, maximize the  demand  coverage with  a  given number  of  facilities, or optimize 

some other objectives relating to point demands. Thus far,  the point demand location approach has  been widely employed 

in  various decision making applications such as  the siting of warning sirens , bicycle stations , roads . 

Although the point demand location approach has  achieved success in many applications, it still  faces  a number of chal- 

lenges in  transportation such as  fuel  station siting and charging station locating, e.g., the demand occurring during a trip 

rather than a fixed  place, the cost  index, etc. Rather than engaging in dedicated travels between individual facilities and cus- 

tomer locations to procure services, drivers may prefer to fulfill  side  needs during a long  trip . Also, travel distance/time as 

the cost  in the point demand location approach is not  an appropriate measure for the system cost  in location modeling in 

transportation. Therefore, both the point demand representation and the covering definition are  inac- curate in this 

scenario. A new location model is therefore needed to  effectively handle this type of location problem. 
 

 
2.2. Flow demand location approach 

 
The flow demand location approach assumes that consumers search for a service during the travel to their destination loca- 

tions . In this approach, the basic demand unit is not  a polygon-based or a point-based spatial object representing 

aggregated human needs, but, rather, demand is represented as a flow  passing along consumer routes of travel . Formally, 

this location approach is denoted as the FCLM , which seeks to locate some facilities to intercept as many demand flow 

pathways as possible. In this method, an origin–destination matrix is typically first  generated to model the demand 

distribution in the study area. The demand is defined as covered when a facil- ity is located at any  point along a consumer 

travel pathway. Because the objective is to locate facilities to maximize the pass- ing  demand flow,  the FCLM is well  suited 

for  the types of facilities where consumers are  served on  their routes to  travel destinations . 

With considerations for limited travel distance, the FCLM has  been extended to the flow-refueling location model that 

locates a given number of stations to maximize the number of trips that can  be refueled during a long travel. Because 

refueling is also considered, this model is more effective for a larger study area . Both FCLM and FRLM have been successfully 

applied to  the transportation sector in the optimal siting of conventional and alternative fuel stations . How- ever,  these 

methods consider only  the spatial dimension of demand, and the temporal dimension of demand is ignored, such as the time 

of demand, service duration, and the possible waiting at a facility. 
 

 
2.3. Charging  stations siting 

 
Recently, both location approaches have been used for charging station siting. used the MCLP model for optimal siting of  

public charging stations using household travel survey data for  Lisbon,  Portugal. implemented the FCLM to  locate fast  

charging stations in  Barcelona, Spain. determined  charging demand from demographic data, and employed a simulation–

optimization approach to  optimize the number of charging stakes at candidate places for public EV charging. However, the 

determination of travel demand in these applications of loca- tion modeling is  still  conducted without time information.  

developed a  location model based on 
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round-trip itineraries for  public EV charging station siting to  serve a  maximum number of trips. Nevertheless, potential 

waiting at the facility was  not  modeled. 

To date, have conducted the only  study where the potential waiting time of ETs, based on random itin- erary information 

over  an  8 h period in Seoul,  Korea,  was  considered to  optimize the configuration of charging stations for ETs. However, the 

stochastic demand data were synthesized using transportation planning software, which deviates sub- stantially from 

reality. Detailed spatial–temporal taxi  demand data is expected to  obtain better results. The  present study extracted 

actual taxi  travel demand from massive taxi  GPS data to model the space–time interaction between taxi  demands, ETs, and 

charging stations. A spatial–temporal demand coverage location model is developed to site  ET charging stations in a space–

time GIS environment, which benefits decision-making regarding ET charging station. 

 
3. Study area and data 

 
The research was  conducted in Shenzhen, a metropolitan area in South China,  as shown in . To reduce carbon emis- sion  

in  the transportation sector, the local  administration of Shenzhen plans to  implement the use  of ETs. Numerous ET 

charging stations are  expected to be built. In this study, we  propose a spatial–temporal demand coverage location approach 

using massive taxi  GPS data to facilitate the siting decision-making. Raw  taxi  GPS data, the transportation network, the ET, 

and charging station data are  used. The  details of the data are  described as follows. 

 
– Taxi GPS data. Every day in Shenzhen, about 15,000 taxis are actively engaged in transferring people between various loca- 

tions such as homes, workplaces, shopping centers, the airport, and parks. According to  transportation statistics, about 

420,000 to  460,000 trips are  conducted daily by  taxis, which is about 5% of the travel occurring in Shenzhen. Each  taxi 

has  been installed with a smart terminal connected with a GPS receiver, which records data concerning the vehicle iden- 

tification, time, position, speed, and working status with a sampling interval between 40 and 80 s. describes the taxi  

GPS format, and provides an example. In particular, the working status is a binary variable indicating whether or not the 

taxi  is serving a client at a given time, where the status is recorded as 1 if the taxi  is occupied, and 0 otherwise when the 

taxi  is vacant. Therefore, both the times and locations at which passengers are picked-up and dropped-off can be iden- 

tified from the taxi  GPS data. In the present study, we  employed raw taxi  GPS data for a seven-day period from October 

12,  2013 to  October 18,  2013 to  extract historical spatial–temporal dynamic taxi  demands. 

 
 
 

 
 

                                                                     

 
– The transportation network. The transportation network, derived from a professional navigation company, NavInfo, China, 

and displayed in , was  modeled as a directed graph including 13,107 nodes and 20,783 edges. The data was  used to 

recover taxi  trajectories and extract dynamic taxi  demands. 

– The electric  taxi. The ET employed in Shenzhen is the E6 model produced by BYD Auto  Co., Ltd. With a battery charged at 

full capacity, BYD E6 can  travel up to 250  km  . The charging time of the E6 varies from 1 h to  3 h depending upon the 

charging mode. 

– The charging stations. A charging station has  multiple charging stakes, which transfer power from the grid  to  an  ET. The 

number of stakes indicates a station’s charging capacity. Formally, a charging station s is defined as hx; y; ni, where (x, y) is 

the location and n is the number of stakes. The space occupied by the charging station is omitted by simplifying it as a 

point. We  set  n to  50  according to the guide from Shenzhen transportation administration. 
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4. The  spatial–temporal demand coverage approach for  ET charging station siting 

 
The presented location approach for ET charging station siting extends the demand representation and the location model 

into a spatial–temporal context. It makes use  of massive taxi  GPS data for optimizing the placement of ET charging station. 

illustrates the workflow of the approach. Firstly, dynamic taxi  demands are  extracted from the raw GPS data in con- 

junction with the transportation network data. The cyclical interaction between taxi  demands, ETs, and charging stations in 

the spatial–temporal context is modeled with a spatial–temporal path tool  which depicts an individual’s sequential activities 

at various locations over  a  time period . Then,  a  spatial–temporal demand coverage location model (STDCLM) is 

proposed to maximize ET service on the roads and charging service at the stations. A genetic algorithm is used to solve the 

STDCLM. Finally, the obtained results are  analyzed, including the spatial pattern of covered demands, the tem- poral 

pattern of demand serving, charging and waiting behaviors, the impact of charging speed, the marginal utility, and the daily 

RCE estimation. 

Basic assumptions about ETs and charging stations are: (1) all ETs have the identical electricity capacity, E; (2) with full 

capacity electricity, all ETs have the same maximum travel distance, Dmax; (3) the charging speed CS for all ETs in any  located 

station are  identical. It indicates that time E/CS will be cost  to recharge an ET from the zero-electricity state to the full capac- 

ity  electricity. It also  specifies that all  charging stations provide the same charging service; (4)  once a  charging process 
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6                                                                        
begins, it  can’t  be  interrupted or  stopped until the charging need is  completely fulfilled; (5)  the travelable distance d is 

proportional to the remaining capacity e, as given in Eq. , where 0 6 e 6 E. In other words, the remaining electricity is lin- 

early reduced with the traveled distance. 
 

4.1. Taxi demand and  taxi  travel 

 
In contrast to point demand or flow  demand, taxi  demand is based on a client’s plan to travel from some origin to a given 

destination at some time. Formally, the taxi  demand can  be defined as the triplet, where to denotes the beginning time of 

the demand, (xo, yo) denotes the spatial location of the origin, and (xd, yd) denotes the spatial location of the destination. 

To accommodate a travel demand, a taxi  picks up  a client at the origin, makes a dedicated transit to the destination, and 

drops  off   the  client.  Formally, taxi   travel  can   be   represented  by   extending the  taxi   demand  to   the  quintuplet, 

where the path denotes the driving route from the origin to  the destination, and td  is the 

arrival time at the destination. 

All taxi  demands and taxi  travels in  the city  are  extracted from the massive raw taxi  GPS data. To this end,  spatial– 

temporal trajectories are  firstly recovered using the map-matching algorithm of . Then,  in  accordance with changes in  a 

taxi’s  working status, the origin and the destination of a taxi  demand is identified. Based  on  the time-series GPS records 

for  a taxi  listed in , if the working status shifts from 0 to 1, a taxi  demand TD is generated in the spa- tial–temporal 

context. The  recorded position is  (xo, yo) of  TD, and the recorded time is  to.  After  encountering a  series of GPS records 

with a status of 1, the taxi  arrives at the destination of TD whereupon the status shifts to 0. The last  record with a status 1 

labels (xd, yd) and td. The sequence of road links traversed from the origin to the destination is the path,  which pre- serves the 

effect of numerous factors, such as road conditions, traffic congestion, and drivers’ personal preferences. After pro- cessing of 

all raw GPS data, all taxi  demands and taxi  travel data with exact spatial–temporal information are  stored in  a database 

for charging station siting. 

 
4.2. The interaction between taxi  demands, electric  taxies  and  charging stations 

 
When substituting a number of ETs into the current oil-based fuel  taxi  system, both ET drivers and oil-based fuel  taxi 

drivers explore dynamically changing demands to  provide good  taxi  service to  the public. If a taxi  demand is serviced by 

an ET, we  define the taxi  demand as covered by the ET. To identify taxi  demands covered by ETs, we  model the daily ET life- 

cycle  using the spatial–temporal path tool,  which illustrates the spatial–temporal interaction between taxi  demands, ETs and 

charging stations. gives  an  example of the spatial–temporal paths of ETs. Following the sequence of ET driver’s activ- ities, 

an ET continues serving taxi  demands (TD1, . . . , TDn  in ) when the remaining electricity is enough. Otherwise, the ET goes  to a 

charging station. According the charging state of charging station at the arrival time, the charging will  be done immediately 

(l1 in ) or after an essential waiting (l3 in ). The details of interactions are described below. 
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4.2.1. Taxi demand coverage and  charging decision 

With sufficient electrical power, the ET serves emerging taxi  demands for the public. An idle ET at a position (x, y) at a time 

t rationally seeks a taxi  request from the emerging demands nearby its current location. To model the competition between 

taxis, we  identify the covered demand from a set  of spatially near demands. The  roulette wheel selection rule is used to 

determine which demand will  be served by the ET to simulate the uncertainty in actual taxi  service. An uncovered demand 

neighbor list  nearby (x, y) after time t is first  filled  according to distance criteria. Then,  a random value d within [0, 1] is gen- 

erated to select the ith nearest demand TDi from the list to serve, as given by Eq. , where ai  is the accumulated probability 

that the ith nearest demand is served in historical taxi  serving. 
 

Whether or not  the current charge state of the ET is sufficient to  serve the selected demand TDi is examined before ini- 

tiation of taxi  travel. If the ET’s current charge state eto  is greater than the threshold required for  traveling to  the nearest 

charging station after serving TDi, the demand will  be  covered. The  demand is covered by picking up  the client at the cor- 

responding (xo, yo) and to  of TDi, traversing the path,  and arriving at (xd, yd) at td.  Afterwards, the space–time position of 

the ET is updated with (td, xd, yd) of TDi. The  remaining charge capacity eto  is updated by  Eq. ,  where dtd is the length of 

the corresponding driving path. Otherwise, the taxi  demand is rejected and the ET travels to  the nearest charging station 

for  battery recharging. The  remaining charge capacity when arriving a charging station will  be  updated according to the 

travel to  the charging station. 
 

 
4.2.2. Charging  at  the  station 

The charging of an ET at a station is decided by the arrival time and current charge state at the station. If an idle  charging 

stake is found at the station, the charging action will  begin at once when ET v arrives at time T 
a 
. The  charging duration is 

determined by the remaining charge capacity ev , the expected charge capacity e0
v  and CS. In this paper, we set  e0

v  as a random 

value within [0.95E, E] to model the diversity of charging decisions. The  charging duration tcv   of v is given by  Eq. . The  

charging of v will  be end at time. Finally, the ET’s charge state ev  is updated with the value e0  . After  charging,
  

the ET will  return to  serving the taxi  demand in the city. 
 

 
4.2.3. Waiting at  the  station 

In the absence of an  idle  charging stake at the station, ET v must wait until a charging ET in  the station completes its 

charging action and releases a stake. In this case,  the wait time tw for v is equal to  the difference between the arrival time 

T 
a                                                                                                                                                       a

 

v  and the earliest charging completion time at the station min T 
u 
, as given by Eq. ,  where u denotes a charging ET at a 

u2V s 

station s and Vs denotes the set  of charging ETs at s at time Ta. Based  upon Eqs. ,  the charging for  v will  end at 

time. After  charging, the ET leaves the station and proceeds to  serve taxi  demands on  the roads.
 

 

Owing to  the cyclical demand serving, vehicle charging, and waiting, the siting of charging stations will  heavily affect 

public ET service and the charging service for ET drivers. 

 
4.3. The spatial–temporal demand coverage location model 

 
The STDCLM aims to  locate a set  of ET charging stations to  maximize both the ET service level  and the charging service 

level.  The ET service level  is indicated by the ET covered taxi  demands, and we  measure it according to the total distances of 

the taxi  travel of all ET covered taxi  demands. The longer the total distances, the better is the level  of ET service. The charging 

service level  is indicated by  the extent to  which ET drivers must wait to  charge at charging stations, and we  measure it 

according to the total wait time at all charging stations. The lower the total wait time, the better is the level  of charging ser- 

vice.  It should be mentioned that travel distance/time to located stations is not  explicitly included in the STDCLM. Reasons 

are  from two aspects. Firstly, a survey of ETs on taxi  drivers in Shenzhen, China,  indicates that, because of the lengthy period 

required for the charging process, drivers care  more about the waiting time at stations than the travel time to/from stations. 

Secondly, as illustrates, in order to  calculate the total taxi  travel distances of all ET covered demands, the travel dis- tances 

to  charging stations have been subtracted from the total travel distances. 

The mathematical formulation of the STDCLM is as below. 

 

Here,  S is the set  of candidate locations to site  charging stations, Q is the set  of spatial–temporal taxi  demands, V is the set  of 

ETs, T is the time period, n is the number of stakes in a charging station, M is the number of charging stations to be located, q 

is a taxi  demand, and dq is the taxi  travel distance (/km) from q’s origin to  the destination. In addition, we  employ the fol- 

lowing binary variables, where xvqt is 1 if q is covered by v at a time t, and is 0 otherwise; yvst is 1 if v is charging at s at time t, 

and is 0 otherwise; wvt is 1 if v is waiting at s at time t, and is 0 otherwise; zs  is 1 if s is to  be  located and is 0 otherwise. 

Furthermore, d
t;t0   

is the accumulated travel distance of v within a time window [t, t0 ], where t is the leaving time from a sta- 

tion after the ith charging, and t0   is the arrival time at a station for the (i + 1)th charging event. 
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max max 

max max 

The objective of is to maximize the ET service level  and the charging service level.  The expression  

(km) is the total taxi  travel distance of all ET covered taxi  demands, indicating the ET service level,  and 
 

the value of total waiting time for all ETs, indicating the charging service level.  The negative sign  and the weight coefficient k 

before  are  used to adjust the relationship between the ET service and charging service. In this research, we set 

k to  the average travel speed of all roads across a whole day  in the city  reported by the Shenzhen transportation adminis- 

tration, which is 26 (km/h), with the goal to transform waiting time into travel distances for the second objective. Constraint 

indicates that each taxi  demand can  be covered once only  by a single ET. Constraint requires that the total number of 

charging ETs at a given station and time cannot exceed the number of stakes at that station. This constraint introduces the 

temporal competition between ET charging actions. Constraint specifies that the charging service at a station is available 

only  when that charging station is chosen to be located. Constraint requires that the number of charging stations to be 

located is equal to M. Constraint indicates that the travel distance of v between consecutive charging events is propor- 

tional to the cost  electricity over  the time period ½t; t0   in accordance with the assumption in Eq. . Because ev  and 

 

ev
 

are  in the range [0, E], the limitation of the ET range is also  specified. Constraints impose integrality conditions 

on  decision variables. 

 
4.4. The genetic  optimization procedure 

 
Location problems are  difficult to solve due to their inherent complexity. The heuristic algorithm is a promising method 

for complex location problems. Genetic algorithms evolve to globally optimal solutions for complex optimization problems 

by simulating natural behavior . Therefore, this method has  been successfully applied to many location prob- lems . In the 

present study, we  employ a genetic algorithm to  solve the STDCLM. 

Genetic algorithms involve several components, namely, genome coding, population generation, fitness function, and 

selection, crossover, mutation, and stopping criteria. For the STDCLM, we  use  an integer representation to encode sited loca- 

tions as a chromosome. The code length of a genome is equal to the number of located stations. The bit value indicates which 

the candidate places has  been selected for a charging station. The  objective function of the STDCLM serves as the fitness 

function of each individual. An initial population of selected locations is randomly generated. At each generation, the 

roulette wheel selection is conducted according to the fitness value. Crossover is accomplished by the single point cross- over  

operator. Mutation is employed at some random bits.  Simulated evolution is repeated until the maximum number of 

iterations N
1

 have been reached or the objective has  not  been improved over  a fixed  number of iterations N
2      

. 

Finally, the optimal results are  reported, and the corresponding charging stations are  displayed. Details concerning the 

demand coverage, ET charging, and essential waiting at the located stations are  also  obtained. 

Before  optimizing the STDCLM, the parameters of genetic algorithm, such as the population size p, the selection rate a, the 

mutation rate b, N
1

 , and N
2

 , are  established after intensive experiments using the parameter tuning method of  

. The  top-k locations with the greatest taxi  demands are  generated as candidate places. 



Please cite  this article in press as:  Tu, W.,  et al. Optimizing the locations of electric taxi charging stations: A spatial–temporal demand cov- 

erage approach. Transport. Res. Part C (2015),  

 

 

 

9 

 
4.5. Analysis  of results 

 
According to the performance of used ET BYD E6 in Shenzhen, China,  we set the maximum travel distance Dmax  to 250  km, 

the charging speed CS to E/120  min   1. An initial scenario with 12 charging stations and 2000 ETs was  designed to assess the 

proposed approach. The  obtained result is analyzed from both spatial and temporal perspective, including the spatial 

distribution of covered taxi  demands, and the temporal patterns of ET serving, charging and waiting behaviors. The impact 

of charging speed is investigated by solving the scenario S0 with different settings of the parameter CS, from E/240  min  1 to 

E/60 min   1. To evaluate the marginal utility of various numbers of sited charging stations, another four  scenarios (S1–S4) 

were also  designed and solved. Scenarios S1 and S2 are  with 4 and 8 stations, respectively,  whereas S3 and S4 are  with 

16 and 20 stations, respectively. The setting of each scenario, including the name, the number of ETs, the number of located 

stations, the number of stakes, and the ratio between ETs and stakes, is presented in . 

To evaluate the environmental effect of the ET service, the daily RCE is also  estimated using the evaluation model of ,  

which estimates the carbon emission per  mile of  a  light-duty internal combustion vehicle according to  the running 

speed. As the ET releases zero carbon emission to  air,  we  measured the ET’s RCE with the carbon emission generated by an 

oil-taxi traveling the same route. So, with the speed information and the travel path obtained from the taxi  GPS data, the 

amount of RCE owing to ET covered taxi  demands is calculated. By accumulating all the RCE on road segments, we  map the 

green effect of the ET system based on  the number of ETs and the located charging stations. 

 
5. Experiment and results 

 
5.1. Spatial–temporal distribution of taxi  demands 

 
displays the temporal variation and the spatial distribution of taxi  demands, and the aggregation of taxi  travel flow for 

Shenzhen based on taxi  GPS data. a indicates that the quantity of taxi  demands per  hour changes from 4260 in the 
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hour range to  25,660 in  the hour range. Three taxi  demand peaks are  observed in  the morning interval of, in the evening 

interval of, and in the night interval of. b demon- strates that taxi  demands are also  non-uniform spatially. Most taxi  

demands are aggregated in the south and west Shenzhen, such as the downtown area, the airport, the railway station, and 

ports to Hong  Kong. Demand is low  in the north area, and nearly no demand appears in east Shenzhen, which is a nature 

reserve area. c illustrates the taxi  travel flow. Such  tem- poral and spatial dynamics lead to uneven taxi  service requests in 

the city.  shows the candidate nodes that have the highest taxi  demand for charging station siting. 
 

 
5.2. The obtained result 

 
The obtained results from the scenario S0 are  summarized in , where it is demonstrated that the 2000 ETs served 

69,151 taxi  demands, or about 15.6% of 443,201 total daily taxi  demands, and traveled a total of 928240.7 km  each day.  The 

total distance traveled while specifically covering demands was  642300.3 km, or about 69.2% of the total daily traveling 

distance by ETs. The ET’s limited range is evident by a total of 5530 charging actions requiring 9382.4 total hours in a day.  

On average, each ET charged 2.765 times per  day  for an average charging time of 1.70  h, which is clearly a key issue in the 

siting of ET charging stations. Because numerous ETs travel to charging stations simultaneously, 2033 waiting actions for a 

total of 1193.9 h of waiting occurred at the 12 stations employed in the scenario,  or   about  36.8%  of  all   daily  charging  

actions.  The   average waiting  time  was   0.59  h . 

displays the optimized locations of the 12 charging stations. Five stations are  located in the downtown area with the 

highest density of taxi  demands. Three stations are  located in  the west high-technology innovation area 
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with a higher density of demands. Three stations are  located in Buji, a sub-center area of the city  of Shenzhen. Only a single 

station is located in Longhua to  provide essential ET service for taxi  demands in north Shenzhen. 

 
5.3. The spatial pattern and  temporal pattern analysis of the  obtained result 

 
The  spatial distribution of the covered taxi  demands by  ETs is displayed in  . The  results indicate that a relatively 

small number of stations can  support the ET service for  the entire city.  Most of these demands are  spatially aggregated in 
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the downtown area. Some  places, like  the airport, the railway stations, and ports to Hong  Kong also  have intensive covered 

demands. However, much dispersed covered demands are  observed in other areas like  the north and east Shenzhen. 

displays the spatial distribution of the ET covered ratio obtained by  dividing the count of ET covered taxi  demands to  the 
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total demands in the same place in the city,  based on b. In contrast to the spatial aggregation observed for the covered taxi  

demands, the ratio distribution is quite spatially homogeneous. The  ratios over  most areas of the city  are  in the range 

[10%, 20%]. A ratio of less than 10% is observed in a small area in northeast Shenzhen. Ratios greater than 20% are observed for 

only  a few areas at the border of the covered area, where taxi  demands are  quite few, as shown in b. Therefore, in these 

places, when two or three demands are  covered by ETs, as shown in , the ratios will  be  high as shown in . 

In addition to the spatial dynamics, the ET service on the road and the charging service at the stations also  exhibit highly 

temporal dynamics. a illustrates the temporal variation of ET service on the roads. Following the taxi  demand rhythm, the 

ET coverage peaks are  in  the periods [8:00, 10:00] and [15:00, 22:00]. However, the lower period of demand coverage 

occurs during [11:00, 13:00] because of the large number of ETs that travel to charging stations for first  charging during that 

period, which leads to a decreased ET service on  the road. b  displays the varying ET charging behaviors at the located 

charging stations. In contrast to  the rhythm of demand servicing shown in a, two charging peaks are  observed in the 

periods [11:00, 14:00] and [21:00, 1:00], a few  hours later than the peaks in demand serving on the roads. Such  a temporal 

dynamic feature validates the necessity for including the time dimension in the proposed STDCLM. 

The temporal dynamic of ET waiting is shown to be similar to that of charging, as indicated by c, where two waiting 

peaks are  observed in the daily ET lifecycle. The first  peak occurs in the period [12:00, 14:00], one  hour later than the first 

charging peak, whereas the other peak occurs in the period [22:00, 3:00], just after the nighttime charging peak. Therefore, 

taxi  demand coverage on the road, ET charging, and waiting at charging stations can  be significantly influenced by temporal 

variations of the taxi  demand in the city, none of which can be considered or analyzed in point demand or flow demand loca- 

tion approaches. 
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5.4. Impact of charging speed 

 
presents the obtained results of scenario S0 with different charging speeds. It indicates that the faster the charging speed 

CS is, the better the obtained results are.  As the charging speed improves from E/240  min  1 to  E/60 min   1, the total 

charging actions of 2000 used ETs at 4 located stations increase from 4390 to  6146, while the total charging time per  day 

decreases from 11758.3 h to 4172.5 h and the total waiting time sharply decreases from 4507.7 h to 17.8  h. As the ET spends 

will  spend more time on  the roads, the improvement of charging service at stations generates a better ET service on  the 

roads. Total  travel distance of covered demands increases from 476469.7 km  to  662930.8 km. 
 

 
5.5. Marginal utility  of located ET charging stations 

 
and depict the objectives of each scenario and their tendencies as a function of the located stations. With the charging 

service supply increasing from S1 to S4, the obtained solutions exhibit a uniform improvement in both the ET service on  

the roads and the charging service at stations. For the ET service, the total length of ET covered travel increases 
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from 403707.3 km  to  659167.1 km  (S4).  For the charging service, the total waiting time reduces from 8930.3 h with 

1939 waiting actions  to  121.1 h  with 498  actions.  Meanwhile, the total charging time increases from 4448.4 h to 

9836.6 h. The total number of charging actions increases from 2733 to 5777. The average charging time at the stations also 

increases from 1.63  h to 1.70  h, which is due to the reduced distance to a station with a greater number of charging stations. 

It is noteworthy that new stations may induce an  increase in  the number of waiting actions. As shown in  , the 

number of waiting actions at stations is nearly doubled between scenarios S1 and S2. This is mainly due to the inadequate 

charging service supply under the conditions in S1, in which each ET charges 1.367 times on  average with 4 charging 

stations. With the addition of 4 more stations in S2, the charging service supply increases, and each ET charges an  average 

of 2.52  times per  day,  which also  generates an increased number of waiting actions at the stations. Nevertheless, the 

total waiting time still  decreases from 8930 h to   4379 h,   as   illustrated  in.   The   average waiting  time  is   also   

significantly  improved  from  4.61 h to 1.21  h between scenarios S1 and S2. This truth validates the improvement of the 

objec- tives with more charging stations. 

However, the marginal utility of more located charging stations diminishes. Between scenarios S1 and S2, both the ET 

service on the road and the charging service at the stations significantly improve with more stations. The  increase of the 

total distance of ET covered travel between S1 and S2 is 147481.6 km.  The increase of total charging time at located 

stations is 3984.8 h. The decrease of the total waiting time is 4551.3 h. However, with respect to the differences between 

scenarios S3 and S4, the improvement of the total distance of ET covered travel is only  14937.6 km. The increase of total 

charging time is only  263  h. The decrease of total waiting time is 1078.4 h. 

illustrates the positions of the located charging stations for the 5 scenarios considered. The distributions of located 

stations are  observed to be very  different with respect to the different numbers of sited stations. Charging stations initially 
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appear along main roads in S1. With increasing number of charging stations, new stations tend to be located in the high 

density taxi  demand areas in S2 and S0.  Finally, new stations are  sited at the airport or low  density taxi  demand areas in 

northern Shenzhen in S3 and S4. 

 
5.6. Mapping the  reduced carbon emission 

 
summarizes the total daily RCE when operating 2000 ETs in  conjunction with the varying number of charging stations 

associated with scenarios S0–S4.  The  table indicates that ET use  can  reduce daily carbon emission from about 

211118.1 to 339891.4 kg depending upon the number of charging stations employed. illustrates the spatial distribu- tion of 

the daily RCE. In accordance with the ET footprint, reduced RCE is observed over  nearly the entire road network. The most 

prominent effects occur in the downtown area, corridors to the downtown area, and the highway to the airport. Once  again, 

the green effect obtained with more located charging stations diminishes. Between scenarios S1 and S2, the total RCE 

increases by 104999.7 kg, and a more uniformly distributed green effect is generated. How- ever,  the total RCE only  increases 

by 1275.1 kg between scenarios S3 and S4 because the charging supply provided by 16  stations in S3 is nearly sufficient for 

the 2000 ETs used. Differences between the spatial RCE distri- butions in d  and e are  also  very  slight. 

 
6. Conclusion 

 
The electrification of public transportation has  been a pioneer in attaining the goal  of green transportation. With respect 

to the electric taxi, one  key to success lies in the location of charging stations to provide a high quality ET service for the 

public and a convenient charging service for ET drivers . However, in the dynamics of taxi  demand and ET charging, time 

becomes a crucial factor, which is neglected in current location approaches that consider only  spatial issues. 

In recognition of this limitation, this article has  addressed the location problem of ET charging stations by presenting a 

novel spatial–temporal demand coverage location approach. Detailed taxi  demand data that captures spatial–temporal taxi 

request dynamics have been extracted from massive spatial–temporal GPS data for Shenzhen, China.  The ET demand cover- 

age  is identified according to  the spatial–temporal path that models the cyclic  interaction between taxi  demands, ETs, and 

charging stations. The  objective of the presented spatial–temporal demand coverage location model is to  maxi- mize the 

ET service on the roads and the charging service at the stations. This approach enables the siting of charging facil- ities in  a  

spatial–temporal context rather  than  merely a  spatial  context. Experiments in  Shenzhen,  China   not   only 

demonstrate the effectiveness of  the proposed location approach,  but also  validate the essential nature of the temporal 

dimension in taxi  demand representation and the presented STDCLM. It has  been shown that the optimized siting of charg- 

ing stations can  improve both the ET service on the roads and the charging service at stations. The estimation of daily RCEs 

also  illustrates the environmental effect of ETs in conjunction with the located ET charging stations. 

The main contributions of this research are  three fold, as follows. Firstly, a novel location model was  presented from the 

spatial–temporal perspective, which extends current location approach to  address dynamic demand rather than static 

demand. Additionally, the complex interaction between travel demand and transportation service supply has  been handled 

in  a spatial–temporal  context. Secondly, this research makes use  of massive GPS data to  support public policy making in 

transportation sectors, which acknowledges the value of big data and advances towards smart decisions in a highly dynamic 

environment. Thirdly, the problem of optimizing siting of ET charging stations has  been addressed. This  work cannot only 

support short-term decision making regarding the use  of ETs as  a  public utility, but can  also  help to  promote the long- 

term development of the electric vehicle market. 

Clearly, the results offered by the proposed approach are of great practical use  for ET charging station siting. Nevertheless, 

the approach also  demonstrates some notable limitations. Firstly, the located stations are  only  aimed at servicing ETs, and 

private EVs are  not  considered. In the future, the presented work should be extended towards the fulfillment of the charging 

requests of all EVs. The second limitation is the neglect of the variability of taxi  demand. If taxi  service is absent for a time, 

taxi  demand nearby bus  stations or metro stations may transfer to the bus  or the metro system. Therefore, more public trans- 

portation data must be collected and be further involved in the presented work. The third limitation is the disregard for the 

relation between charging stations and grids. More data regarding grid  infrastructure should be collected, and the candidate 

ET charging station sites should be  adjusted accordingly. The  last  limitation is about the parameter k, which is set  to  the 

mean travel speed of all  roads across a  whole day.  However, urban traffic varies significantly across space and time , 

leading to  quite different reduced travel distances of the waiting. Hence, a spatial–temporal dependent value should be  set  

according to historical traffic information in the further. 

 


