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Incorporating institutional and  spatial factors in the  selection 

of the  optimal locations of public electric vehicle charging 

facilities: A case  study of Beijing,  China 
 

 

a  b  s  t  r  a  c  t   

 
In this paper, we  present a case study on  planning the locations of public electric vehicle  

charging stations in  Beijing, China. Our  objectives are  to incorporate the local con- 

straints of supply and demand on  public EV charging stations into facility location models 

and to compare the optimal locations from three different location models. On the supply 

side, we  analyse the institutional and spatial constraints in  public charging infrastructure 

construction to select the potential sites. On the demand side, interviews with stakeholders 

are   conducted and the  ranking-type Delphi method  is  used when estimating the EV 

demand with aggregate data from municipal statistical yearbooks and the national census. 

With the estimated EV demand, we  compare three classic facility location models – the set 

covering model, the maximal covering location model, and the p-median model – and we 

aim to provide policy-makers with a  comprehensive analysis to better understand the 

effectiveness of  these traditional models for  locating EV charging facilities. Our  results 

show that the p-median solutions are  more effective than the other two models in  the 

sense that the charging stations are  closer to the communities with higher EV demand, 

and, therefore, the majority of EV users have more convenient access to the charging facil- 

ities. From the experiments of  comparing only the p-median and the maximal covering 

location models, our results suggest that (1) the p-median model outperforms the maximal 

covering location model in terms of satisfying the other’s objective, and (2) when the num- 

ber of charging stations to be built is large, or when minor change is required, the solutions 

to both models are  more stable as  p increases. 

   

 

 
 
 

1. Introduction 

 
Promoting the usage of EVs is a long-term solution designed to maintain a healthy balance of urban mobility and energy 

consumption. As the largest carbon-emitting country in the world, China  is putting a great deal of effort into EV marketisa- 

tion. Central and local  governments have both launched many strategies to  promote the construction of public charging 
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infrastructure. However, because the EV market is  still   in  its  infancy and lacks   sophisticated planning methods, more 

research work is needed regarding an  appropriate deployment plan for public charging infrastructure. 

Optimal locations for public charging facilities are  an important issue in transport planning. EVs are  promoted worldwide 

as an effective mobility alternative to address peak oil and air pollution problems . However, along with this new technology 

come challenges. Among these factors, limited accessibility to  charging facilities has  been highlighted as  a very  pressing 

problem that largely constrains the popularisation and market acceptance of EVs. For many European and Asia-Pacific 

regions, where many people live  in high-rise apartments, people have to  rely  more on  public charging infrastructure due 

to  limited access to  off-street home charging. It is estimated that 45% of the charging demand would have to  be  satisfied 

by  fast  public charging stations. 

The  driving factors for  charging facility development  are  highly dependent on  the local  settings. The multiple 

stakeholders involved and their motivations will affect the constraints and objectives of the facility loca- tion models. 
Many other studies have suggested that the potential main locations for  charging facilities should be the workplace, 

public shopping malls, and university parking lots  , but these locations may not  be  the investment foci  in  many Chinese 
cities. The  present deployment of public charging stations in Beijing  is largely a top-down planning process. The 

government has  indicated a number of potential location sites for public charging stations. The unique planning system in 

Beijing  provides an  opportunity to improve the facility location decisions by considering contextual factors such as local  
settings, spatial settings, and government policies. Such  local  settings can  be the driving factors for charging facility 

development  . 
Unlike many other facility location problems, such as  in  the application domains of medical services, fire  facilities, 

humanitarian logistics, postal services, school locations and waste  management  , in our  application, the convenience of 

access to locations has  a direct impact on the consumption. The  more conveniently accessible are  the charging stations for  

potential EV users, the higher is the expected adoption level  of EVs. Particularly at the present time, when the government 

is strongly promoting the use  of environmen- tally sustainable vehicles and planning the supporting infrastructure, the ease 

of access to EV charging facilities should be a major consideration when determining their locations. This  also  motivates 

us  to  consider the socio-demographic factors, which may impact upon the EV adoption level,  in different areas of Beijing,  

when determining the optimal locations. 

This paper has  two objectives. The first  objective is to study the potential of incorporating institutional and spatial factors 

into facility location models, such as the local  government requirements on charging facility deployment and the spatial dis- 

tribution of the potential sites across the city. The second objective is to compare the optimal facility locations based on three 

classic location models and to  provide transport planning implications. Regarding the first  objective, we  will  first  derive 

potential demand and supply based on  the local  institutional and spatial constraints summarised from interviews, policy 

studies and spatial analysis. Then,  regarding the second objective, we  will  incorporate the supply and demand information 

into models of three popular facility location problems – the set  covering problem, the maximal covering location 

problem, and the p-median problem   – to conduct a case  study of public EV charging stations’ planning in Beijing,  China.  

By assessing the effectiveness of these models and examining the characteristics of the solutions, we  aim to  identify the 

optimal locations of public EV charging stations. 

The rest of the paper is organised as follows. In Section , we will review general facility location models and related stud- 

ies on public EV charging stations. In Section , we  will  describe the study area of Beijing,  the methods that we  used to esti- 

mate the demand and supply of  the EV charging stations, and the three models. The  socio-economic and demographic 

indicators of each census tract will  be considered in order to estimate the charging demand while the institutional and spa- 

tial  constraints will  influence the supply of public charging stations. We will  then present the mathematical formulations of 

SCP, MCLP and PMP. In Section , we will present and compare the results from these three models. In Section , we conclude 

the paper with policy recommendations for the deployment of public EV charging stations in Beijing. 
 

 
2. Literature review 

 
This research is grounded on classic location science. In this section, we will first  review the literature on general facility 

location models and then other recent relevant papers that develop models more specifically for EV charging infrastructure. 

 
2.1. Facility  location models 

 
Facility location problems have been studied for more than half a century. As the literature on location problems is vast,  

here we  review only  the papers on the fundamental models; for detailed surveys on facility loca- tion problems, we  refer 

the reader to . SCP is one  of the most popular problems for facility location planning. The objective of SCP is to minimise 

the number of facilities, whereas all the demands of communities have to be covered by an established facility within a 

specified distance; in the rest of this paper we call this the critical coverage distance or radius. considered SCP for 
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emergency facility location problems. In their problem, to ensure a short response time for each community, there should be 

at least one  emergency facility located within the critical coverage distance. used SCP to determine bus  stop locations. The 

objective was  to locate the minimum number of bus  stops so that each passenger did  not  need to walk more than a 

specified distance to the nearest bus  stop. proposed an  extended version of SCP for deter- mining the locations of fire  

trucks. In their model, multiple fire  trucks were required to  be  within an  acceptable standard distance from some 

communities. Although an  optimal solution for  the SCP can  minimise the number of facilities to  be located and ensure 

that all demand points are  covered by  at least one  facility within the critical coverage distance, SCP is quite restrictive in 

the sense that it requires all the demand points to  be  covered by the chosen set  of locations. However, in reality there are  

usually situations where there is no possible location to cover the demand point within the critical cov- erage distance or 

where the budget is not  sufficient to build all suggested facilities. Therefore, the ideal solution may become impractical. 

Furthermore, in SCP, each demand point is regarded as equally important because its level  of demand is not  con- sidered in 

the model. 

MCLP, introduced by  ,  addresses the above issues of SCM. Given  the number of facilities to be  built, denoted by  p,  

MCLP aims to  maximise the total level   of  demand to  be  covered, within the critical coverage distance, by  p  facilities. 

presented the problem of  locating basic facilities and specialised equip- ment for  a  fire  protection system in  Baltimore 

City.  presented  the maximal expected covering location problem that  takes into account the chance of  the server 

being busy when a  call  enters  the  service system. introduced a  probabilistic version of  MCLP which aims to  

maximise the population that will  find  a server within a  pre-specified limit of  time or  distance with a  probability of  

at least a  certain level.  introduced the generalised MCLP which allows for  partial coverage of  demand points. In  the 

generalised MCLP, the level   of  coverage is  a  decreasing step  function of  the distance to  the  closest established  

facility. used an  enhanced formulation of MCLP with a criticality index analysis metric to  track medical assets in a 

health- care  setting with an  RFID infrastructure.  Although MCLP has  greater problem feasibility over  SCP in  terms of  

coverage and  budgetary constraints, SCP  and MCLP  both  have shortcomings in  that  the distances are   used only   to   

indicate whether a  facility can  cover a  demand point or  not,  while the actual magnitude of the distance is  not  directly 

incorpo- rated into the model. 

PMP, which was  introduced by , aims to minimise the total demand-weighted distances between facilities and demand 

points, where the p facilities are  to be located. Thus,  the p-median model tends to locate facilities more conve- niently for 

the majority of the population they serve. This feature helps to overcome the shortcomings of the SCP and MCLP previously 

addressed. proposed an  integer linear program to  solve the problem. used  PMP  with  geographic information systems  

to   design  a  hydrogen-refuelling infrastructure  in   California. presented the reliability PMP which minimises a weighted 

sum of the day-to-day transportation cost  and the expected failure cost,  where each facility has  a chance of failing to  

operate. 

In addition to the above traditional models that specify the demands at nodes, facility location models that consider the 

demands of  origin–destination pairs are  becoming more popular for  determining the locations of  refuelling facilities in 

applications that involve trips. For  these models, the demands are  associated with the paths of the trips and are  called 

flows.  Each  refuelling facility can  capture the flows of  a  set  of  trips and the locations are  selected to  capture the flows 

as  much as  possible, given that p facilities are  to  be  built. proposed the flow-capturing location model as a 

mathematical formulation for this problem. considered the vehicle range limitations that (i)  vehicles may need to  refuel 

multiple times and (ii)  the locations of  refuelling stations along the path are  important whether or  not  the vehicle can  

finish the whole trip, and so  they developed a  flow-refuelling location model to determine the locations of  hydrogen 

stations to  refuel vehicles. The  model maximises the total flow  volume that can be  refuelled. used the  FRLM model 

to  design a  robust refuelling infrastructure  in  Florida at the metropolitan Orlando and statewide scales. presented a 

capacitated flow-refuelling location model  that limits the number of vehicles that can  be  refuelled at each alternative-

fuel station. They  conducted a case study of  the Arizona state highway network and found that the optimal locations to  

the incapacitated FRLM may only be  suboptimal to  CFRLM. 

There is no  uniform criterion regarding which model is better than the others because it  depends considerably upon 

how we  measure the effectiveness of  facility location. Research has  been carried out   to  compare the effectiveness of  

different  facility location models. proposed a  hybrid model to  examine the trade-off between the FCLM and PMP 

objectives and they found that the PMP objective suffered more damage from the trade-off than the FCLM objective. 

conducted case  studies at the metropolitan scale of Orlando and  the  statewide  scale of  Florida  to   compare  PMP  

and  FRLM  for   locating  alternative-fuel  stations.  They assessed how well  the stations that had been located by  each 

model performed on  the other’s objective, and their results suggested that the stations obtained by  FRLM generally 

performed better. They  found that at the metropolitan scale both models produce similar results that tend to  disperse 

the charging facilities over  a  wide area. However, at the statewide scale the two models suggested very  different 

locations of stations, where PMP disperses the facilities while FRLM builds up  connected networks that can  cover long-

distance flows,  and they performed very  badly in  terms of the other’s objec- tive  function. In  terms of  solution stability, 

locations chosen by  FRLM were more stable than those suggested by  PMP, especially at the metropolitan scale. 
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2.2. Application of location models  in EV charging facilities 

 
In  recent years, due to  rapid technological advances in  EV, facility location models have been applied to  study the 

location-planning problem of EV charging facilities. The deployment of EV charging facilities shares some similarities with 

petrol-refuelling stations, such as the consideration of energy demand from car users and site  availability. On the other hand, 

there are  a couple of key differences. Firstly, the refuelling petrol vehicles can  take place only  at petrol stations, whereas EVs 

can  be  charged either at home or at public charging facilities. Secondly, the spatial distribution of EV charging facilities 

will  also  need to consider the local  electricity grid  system, in which stakeholders in the government-owned utility are  

involved. 

The studies of EV charging stations applying location models can be broadly categorised into three types. In the first  set of 

these studies, charging facilities were located where the charging demand was  the highest. used taxi  probe data to  

simulate the traffic at the district level,  and it  was  recommended that the charging stations should be placed in the most 

frequently visited districts. proposed a charging facility assignment model based on the regio- nal  charging demand, which 

was  estimated by  the regional parking spaces and the number of petrol-refuelling stations. developed a quantitative 

model for  EV charging stations based on  the energy consuming equivalence principle and recommended that charging 

stations be  located in areas with relatively higher petrol sales. In these studies, the ‘hotspots’ of the demand for charging 

would be served as a priority. This approach can  be used to solve the facility loca- tion problems at the demonstration stage 

of EV deployment. 

In the second category of studies, the objective of the facility location models was  to maximise the service coverage of EV 

demand. For example, used MCLP to decide the number of EV charging stations needed. used a dual-objective to maximise 

population coverage while minimising the locating cost  of vehicle refuelling sta- tions. proposed a GIS-based collective user 

utility maximisation model to determine the number of charging stations needed to match the urban charging demand. 

proposed an activity-based assessment method and used GPS-based travel survey data to analyse the impact of deploying 

charging infrastructure on promoting consumer accep- tance of battery electric vehicles. Their  objective was  to  minimise 

the total number of missed trips. presented a problem of determining wireless power transfer facilities for electric vehicles 

and the objective was  to maximise the captured traffic flow. 

In the last  group of studies that apply to  facility location models in EV charging stations, the objective function was  to 

minimise  costs  in   various  forms,  such  as   total  travel  distance  , time  and  budget, and the integrated cost   of  these 

three components. developed a parking-based assignment method to  determine the public charging facility location that 

aimed to minimise the EV users’ station access costs. presented a charging station planning model based on a weighted 

Voronoi diagram and they used minimum users’ loss  as the objective. considered a battery- swapping infrastructure 

planning problem for  EVs, the objective of which was  to  minimise the fixed  costs of opening and operating the battery-

swapping stations and the expected battery holding costs. proposed a mixed-integer lin- ear  program to minimise the cost  

of electric scooter battery exchange stations for tourism transport with the consideration of various factors such as a 

battery’s maximum range, the size  of ES fleets, location capacity, and service capacity. considered multiple types of EV 

charging stations of heterogeneous recharging rates and demonstrated that the use  of mixed stations was  more cost-

effective than using only  a single type of recharging station. proposed a bi-level simulation-optimisation approach to 

determine the EV charging locations. The objective of the upper level  was  to minimise the total queue delay and travel 

time, while on  the lower level  the objective was  to  minimise passenger waiting time and travel time. considered the 

drivers’ spontaneous adjustments  and interactions of  travel and recharging decisions. Their  goal  was  to  minimise the 

sum of total driving and recharging time, and the cost  incurred by missed trips. 

In this paper, contextual, institutional and spatial factors are  incorporated to estimate the EV charging demands of loca- 

tions. The effectiveness of three different facility location models will be compared. Flow-capturing models are  not  

considered in our  analysis due to the unavailability of an original–destination traffic matrix, which is a main challenge 

when applying FCLM and FRLM. 

 
 

3. Methodology 

 
3.1. Study  area 

 
As the capital city of China,  Beijing  has  16 districts and its total resident population was  approximately 20 million in 2010. 

Beijing  is a pilot city  for the promotion of EVs and consumers are  eligible for subsidies from both the central and local  gov- 

ernments. Since  the city  government gives  more encouragement to  the promotion of pure battery EVs over  other vehicle 

types, due to  the urgent need to  improve the city’s  air  quality, more charging facilities will  be  needed in the future. Good 

access to  public charging infrastructure will  be  extremely important in Beijing  to  encourage EV adoption. Considering the 

local  travel profiles and the range of available EVs, the local  governments of Beijing  expect to install public charging facilities 

every 5 km, which feature is highlighted in the Action Plan of Beijing for Promoting EVs. It is expected that in 2017 
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there will  be  107  charging/battery swap stations. Because the urban area of Beijing  has  little vacant land, according to  the 

Beijing  Municipal Administration of Quality and Technology Supervision, the newly constructed charging stations should 

take advantage of the existing service facilities such as petrol-refuelling stations. 

 
3.2. Estimation of EV demand 

 
As a relatively new product, EV adoption is not  likely  to be evenly distributed across the study area. We estimated the EV 

demand in two steps. Firstly, we identify key attributes to characterise the EV early adopters from research literature. To 

examine whether these factors are  relevant to  China,  the research team conducted interviews with government officials 

and experts familiar with the EV markets in Beijing  and Shenzhen, China,  from August 2014 to January 2015. Based  on the 

literature review and field- work, we  selected six key socio-demographic attributes to estimate EV demand, namely, 

income, vehicle ownership, educa- tional level,  age,  gender, and family size. 

Secondly, we  used the ranking-type Delphi method to identify the relative importance of selected variables influential to 

EV adoption. The Delphi method was  developed by the RAND Corporation in the 1950s and it has  been widely used to obtain 

consensus from a group of experts. This method is especially useful in a situation where there is limited empirical evidence 

or inadequate statistics in the study area. According to a review conducted by that covered 42 publications, the majority of 

ranking-type Delphi sur- veys  reported a small sample size  . In our  study 11  representatives  were invited to  rank the 

relative importance of each attribute. The  final  ranking and weighting results are  shown in  . The  number 1 represents 

the most important, and the number 6 represents the least important. Kendall’s W coefficient of concordance  was  

calculated to  check the consistency of the collected ranking. The  W value for  the last  round survey is 

0.54  and it is higher than the critical value 0.491, which indicates strong agreement of the experts’ judgments. 

So the null  hypothesis is rejected and the rank results can  be  used to  calculate the weighting score of each attribute. The 

relative importance of these socio-demographic attributes is consistent with that revealed by  previous studies. 

The final  weighting score w from was  used to estimate the demand. Ideally, the estimation of the exact value of the 

charging demand should incorporate information of both EV characteristics  and driving characteristics. However, this type 

of information is difficult to obtain at the early EV penetration stage. Hence, we use  a weighted population in each cen- sus 

tract as a proxy to estimate the potential charging demand. Since most research is targeted on the population older than 18, 

the demand for EVs is estimated based on the population aged 20 or over.  In order to eliminate the impact of the unit and to 

keep the linear relationship of the data at the same time, normalisation was  used to standardise the kth variable into a range 

between 0 and 1, which is denoted by fk. The EV charging demand h of community i is estimated by: 

where gi  is the targeted population of a community i, wk   is the relative importance of the kth selected socio-

demographic variable,   represents the EV adoption potential index of a  community i. Information of these socio-

demographic variables is drawn from two sources: income and vehicle ownership information is obtained from the 

2011  Beijing Statistical Year Book at district level,  and other variable information is taken from the  Sixth National Population 

Census  of 2010. 

Based  on  our  analysis, residents living in  the inner city  areas are  more likely  to  buy  an  EV, which generates a higher 

demand for public charging facilities. This is consistent with our  expectation because downtown Beijing  has  a high concen- 

tration of car  owners, high-income households, and a well-educated workforce, all of which are  significant determinants  of 

EV adoption. 

 
3.3. Potential sites  of EV charging stations 

 
Public charging stations in urban areas aim  to serve private vehicles; therefore, they should be located in places with easy 

public access and high visibility. Public charging facilities deployment, which began quite recently in Chinese cities, struggles 

to optimise their location in an already dense urban area. As pointed out  by a public charging facility investor in Beijing,  ‘It is 

quite difficult to find vacant space for the construction of public charging stations. Furthermore, the land use  for facility con- 

struction needs to be approved by the local  government first  and such a process will take approximately two years, which is 

too  long  a period for most investors.’ Some  investors may consider constructing the charging facility on temporarily vacant 

land rented from the government; however, because charging facility deployment is not  at present formally incorporated 

into the urban planning system, ‘The Government still  has  the authority to plan another use  for the land; in which case,  these 

charging facilities will  have to  be  torn down, which would result in  a great loss  of capital investment.’ These views were 

expressed by a public charging facility investor and a government planner. 
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In view of the space constraints, a practical alternative is to  take advantage of existing infrastructure to  install public 

charging facilities. The government has  made suggestions regarding potential locations for the installation of public charging 

facilities. According to  the Action  Plan  of Beijing for Promoting EVs,  announced by  the Beijing  government in 

2014, these locations include EV 4S shops, public car parks, universities, and petrol-refuelling stations. From  the geographical 

perspective, these locations are  usually in safe  and accessible areas. In fact,  the suggested location types are  also  common, 

potential location sites for  public charging facilities’ deployment  in other cities. 

In this study, the potential location sites include petrol-refuelling stations from SINOPEC  and CNPC, as well  as the 

public car parks of two big parking companies. Other public car parks will not  be considered at this stage due to  their 

relatively small scale. For safety reasons, charging points should be  located at least 6 m  away from petrol-refuelling 

equipment, and the station should also  be adequately spacious to provide parking space. Therefore, petrol-refuelling stations 

within the Third  Ring  Road  are  excluded in  this analysis since they can  hardly meet this size requirement according to the 

suggestion of a SINOPEC station manager. In total, there are  313  demand pointsand  1029  possible locations for charging 

stations. The spatial distribution of the  demand points and  potential sites is presented in . 

 
3.4. Model descriptions 

 
In this section, we will use  the demand points and their estimated EV demand along with the location of charging stations 

to  conduct a case  study of Beijing  by using the three facility location models. 

 
3.4.1. The set covering model 

In research literature, the SCP model has  been widely adopted for facility location problems. The notations used in SCP in 

an  EV charging station setting are  listed as follows. 

Sets and  parameters: 

 
the set  of demand points; 

the set  of potential locations of charging stations; 

the Euclidean distance between demand point i and charging station j; 

the critical coverage distance or radius, which is defined as the maximum Euclidean distance that a charging station can  

serve a demand point; and 

i.e., the set  of charging stations that are  within the critical coverage radius of demand point i. 

 
Decision  variables: 

  
if charging station j is established; 

 
 

otherwise: 
 

The  formulation of the set  covering model is as follows. 

 
3   

There were 325 census tracts in  2010 and 313 census tracts in  2006. We  have only the 2006 census boundary so the 2010 census data were converted to 

313 tracts. 
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In the set  covering model, objective is to  minimise the number of charging stations needed to  serve all the demand 

points. Constraints ensure that each demand point can  be served by at least one  charging station within the critical cov- 

erage radius. Constraints state that the decision variables can  only  be binary. In this paper, we  adopt Euclidean distances as 

the distances between the potential charging stations and the demand points. 

Although the SCP model is very  popular for facility location problems, it does not  take into account the level  of demand by 

the community; all the demand points are  treated as equally important in the model. Another shortcoming of the set  cov- 

ering model is that a solution is feasible only  if all the demand points are  covered. However, in practice, governments and 

organisations may have only  limited budgets to establish the charging stations so that the number of facilities to be built will 

be  limited. Moreover, the problem becomes impractical when none of the potential locations for the facilities is within an 

acceptable distance from a community. 

 
3.4.2. The maximal covering location model 

MCLP model is another popular one  for facility location planning. MCLP is similar to SCP in that a demand point is con- 

sidered to be covered if it falls  into the critical coverage radius of an established facility, but it is more realistic in the sense 

that it incorporates a budgetary constraint to limit the number of facilities to be built and it does not  require all the demand 

points to  be  covered. The  additional notations used in MCLP in an  EV charging station setting are  listed as follows. 

Additional parameter: 
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In MCLP, objective maximises the total level  of demand that can  be covered. Constraints state that a demand point can  be  

covered only  if at least one  charging facility within the critical coverage radius is built. Constraint requires that exactly p 

charging facilities are  built. Constraints state that the decision variables are  binary. 

Although MCLP is more realistic than SCP since (i) the budget can  be  specified (assuming that the costs of building all 

facilities are  the same), (ii) not  all the demand points are necessarily to be covered, and (iii) the level  of demand of each com- 

munity is considered, similar to SCP, the degree of convenience for EV drivers to access the charging facilities is not  recorded. 

The distance between a charging station and a community has  only  a binary effect: either the charging station can  serve a 

demand point, or  it  cannot. If a  demand point can  be  covered, the distance from the nearest station is  not  a  concern. 

However, to  effectively set  up  the EV charging stations, one  may wish to establish them in such a way  that these charging 

facilities are closer to communities with a high EV charging demand. From  this aspect, the formulation that PMP can consider 

is an  enhanced model of MCLP. 

 
3.4.3. The p-median model 

The  p-median model requires the following additional decision variables. 

Additional decision  variables: 
   

 

An integer programming formulation of the p-median model for the EV charging station allocation problem is as follows. 

 
Objective aims to  minimise the total demand-weighted distance between the demand point and the closest estab- 

lished charging facility among all  possible pairs. By minimising Objective ,  the established charging facilities will  tend to  

be  closer to  communities with high EV charging demand in  an  optimal solution. Constraints ensure that charging station 

j cannot be  assigned to  demand point i if it  is not  established. Constraints state that there is  one,  and only one,  closest 

established charging station to each demand point. Constraints ensure that there are  exactly p charging sta- tions to  be  

established. Constraints state that the decision variables can  only  be  binary. 

Because the purpose of Objective is to minimise the total demand-weighted distance between the demand point and the 

closest established charging facility among all possible pairs, PMP produces an  optimal solution that tends to establish 

charging facilities closer to communities with high EV charging demand. As a result, PMP provides an optimal solution that is 

more convenient for the majority of EV drivers. 
 

 
4. Results 

 
In this section, we  compare the solutions produced by SCP, MCLP and PMP, and then we  examine the effect of adjusting 

the number of EV charging stations. In all the computation experiments, we used CPLEX 12.6.1 as our  integer linear program- 

ming solver. All the computational tests were performed on personal computer with. 

In the SCP and MCLP, we  set  the critical coverage distance to 5 km, i.e., D ¼ 5: In SCP, with D ¼ 5, there are  some demand 

points that cannot be served by any  one  of the potential charging stations and the constraints associated with these demand 

points were removed from the model to  guarantee the problem feasibility. Then,  we  solved SCP and obtained an  optimal 
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value of 118, i.e., 118  EV charging facilities are sufficient to cover all the remaining demand points. The locations of the charg- 

ing  stations are  shown in . 

With the number of EV charging facilities equal to 118,  we  solved the MCLP and PMP and obtained the optimal locations 

of EV charging facilities that minimise their objectives. The locations of their charging stations are shown in . We found that 

SCP and MCLP produce very  similar results; they both suggest charging facilities that are  more spread-out. PMP has  a very  

different result from SCP and MCLP and this suggests that the stations are closer to the points of high EV charging demand. 

Thus, PMP can  determine the location EV charging stations that would be  more accessible for the majority of potential EV 

users. 

The benefit of using PMP can  be  further affirmed from , which show the total number of demand points covered by the 

118  optimal EV charging facilities previously found by each model and their total covered charging demand within various 

coverage distances. Because SCP and MCLP suggest a high proportion of common charging facilities, their rep- resentative 

lines in are  very  similar and overlap in several segments. In both figures, we observe that SCP and MCLP have a very  ‘sharp’  

change at the critical coverage distance of 5 km, while the lines of PMP are  smoother. This is due to the fact that SCP and 

MCLP focus only  on whether a demand point is within 5 km of any  charging facility; how far apart they are  is not  a concern 

as long  as the distance is not  more than 5 km,  while the absolute distance is a factor to minimise in the objective of PMP. In 

, we  observe that significantly more demand points can  be covered by the PMP charging stations within a shorter coverage 

distance range,  compared with the SCP and MCLP solutions. Although for a critical coverage distance of 5 km or longer, the 

SCP and MCLP charging facilities cover more demand points than the ones of PMP, their total covered EV charging demands 

are  very  close. This indicates that the suggested sets of EV charging station locations by the three models can  cover similar 

levels of demand, within the critical coverage distance of 5 km.  In , for a coverage distance ranging from 1 km  to 4 km, a 

significantly higher total covered EV charging demand can be captured by the optimal PMP charging stations. With the EV 

charging facilities closer to the com- munities with high EV adoption intensity, this will  definitely encourage the majority of 

EV drivers to keep travelling by EVs and also  encourage other people in the area to  consider adopting EVs for 

transportation. From  a management perspective, having more charging facilities set  up in the high demand areas, as 

suggested by the PMP model, may be beneficial in terms of power management of the electricity grids. This  facility 

distribution scheme can  better respond to  the event of  facility disruptions  since a  demand point is  close to  multi-

charging stations simultaneously. The  idea of centralized location has  also  been applied to the location–allocation 

problems of other public facilities. For example, suggested that four  general hos- pitals in Toronto be located within a few  

city  blocks of downtown with high demand leaving vast areas of the city  with no general hospitals at all. 

We note from the literature that the critical coverage distance has  been an important aspect in determining EV charging 

facility locations. For example, adopted FRLM and considered a vehicle range of 100  miles  
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to determine optimal locations of EV charging facilities in Orlando, Florida. In the next few years, the advances in EV 

technology are  expected to be very  fruitful. For instance, Nissan is working on a next- generation battery that can achieve a 

vehicle range of 310  miles per charge. We observe from , for a coverage distance of 5 km  or further, SCP and MCLP appear to 

cover increased demand. We  also  report that using the data of  our  case  study, in  terms of  coverage, the 
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effectivenesses of the three models for longer coverage distances, e.g., 15 km and 20 km, are very  comparable: the differences 

between three models in  the two measures are  less  than 3%. However, for  highly compact cities, such as  Beijing,  battery 

capacity may not  be a crucial factor that impacts the spatial planning of charging facilities because residential and commer- 

cial areas are  mostly located within a reasonable vehicle range; instead, the convenience of access to charging facilities is the 

major concern. If the distance to the nearest station is too  far, potential EV users may give  up  the adoption of EVs. Thus,  in 

our  study, we focus on the performances of the three models with shorter coverage distances, which focus is in line  with the 

Municipal’s spatial planning scheme in which the service radius of refuelling stations is anticipated to range from 0.95  km to 

4.94  km. With an increasing number of EVs in the future, a higher density of charging facility is expected in order to meet the 

growing charging demand. For instance, a service radius of 2 km  for charg- ing stations in Beijing  is suggested in a study by . 

In such cases, the coverage of EV charging facilities for a distance of 5 km  or  longer may become less  relevant. From  this 

perspective, PMP appears to  be  more effective for  determining EV charging station locations. 

In practice, governments and organisations may have only  limited budgets to establish EV charging stations and,  thus, the 

number of facilities that can  be  built is limited. We  conducted another set  of computational experiments using MCLP and 

PMP to  examine the effect of varying the number of EV charging stations. The  SCP solution was  also  used for reference. 

This practice can  facilitate the cost-effectiveness analysis of the EV charging stations’ planning. In this set  of computational 

experiments, we increased the maximum number of EV charging stations to be established from 

20 to 200,  with an increment of 20 stations for each instance,.  In this experiment, we  recorded (i) the number of covered 

demand points, (ii) the maximum distance from a demand point to the nearest estab- lished charging facility, (iii) the 

amount of covered demand,  and (iv) the demand-weighted distance.  Their  figures are  respectively shown in  . For  

measures (i)  and (iii),  again, the critical coverage radius we  used was  5 km. 
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For measures (i) and (ii), we  aim  to  investigate how well  the two models perform in  terms of equity. From  ,  we 

observe that MCLP covers more demand points than PMP does; this is because SCP and MCLP have a high number of 

common locations for  EV charging stations. MCLP covers the same number of demand points as SCP when p P 120,  

whereas PMP cannot cover so many even when p ¼ 200.  This indicates that PMP does worse for covering demand points, 

because it tends to build charging stations near the communities of high demand but neglects others of low 
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demand. However, in , PMP appears to achieve a shorter maximum distance between a demand point and its nearest 

established charging station  than MCLP, particularly when p 6 100.  This is due to the fact that PMP  minimises the 

demand-weighted distance which tends to  avoid allocating a  community to  a  distant charging station. On  the other 

hand, MCLP captures distance in  such a way  that a community is considered to  be  covered within the coverage 

distance; but the information about how far a distant station is located from the community does not  matter as long  as it is 

within the coverage distance. Thus,  the optimally selected charging stations from PMP are  more conveniently accessible 

among all communities in terms of the longest travel distance. 

For measures (iii) and (iv), we aim  to assess how well  MCLP and PMP perform in satisfying the other’s objective. In , MCLP 

performs better than PMP on  its  own objective; it  covers a higher level  of demand, with an  average of 9.90% more across 

all instances. As shown in ,  PMP does better than MCLP on  its  own objective: the demand-weighted distance of PMP is less 

than the one  of MCLP, with an average of 35.74%. Although the observation that both models perform better on their own 

objective is not  surprising, the percentage gaps between the two models in suggest that PMP does considerably better on  

the MCLP’s objective than MCLP does on  the PMP’s objective. 

In , we also observe that, in general, the marginal increases/decreases in these measurements are greater when the 

number of EV charging facilities to  be  established is small, while they tend to  be  less  as we  increase this number. This 

result is expected because the contribution of additional resources would be  insignificant when the resources are  close to 

being saturated. 

We  report the number of demand points and the level  of EV charging demand covered by MCLP and PMP charging sta- 

tions in . As expected, the curves of N ¼ 120  in these figures are  similar to  their respective curves of p ¼ 118  in .  From  ,  we  

again observe the ‘sharp’  shape of MCLP lines at D ¼ 5 and the smooth PMP lines. ,  respectively, show the MCLP and 

PMP curves of the number of covered demand points versus the critical coverage radius. Similar to  what we  previously 

observed for  p ¼ 118,  the effect of increasing the number of EV facilities is more significant when p is small and then 

becomes less  when this number is large. show clearer pictures to determine the critical point that increasing the number of 

EV charging facilities does not  give  much significant improve- ment in terms of the total covered EV charging demand. In 

both figures, starting from 160  EV charging stations, the curves are  approximately the same as the others when increasing 

the number of stations. are  also  helpful for policy- makers in the sense that the effect of changing the number of EV charging 

facilities on the demand to be covered within var- ious  distance ranges can  be  easily examined. Our  approach that 

integrates location models with contextual factors can, therefore, provide policy-makers with a  convenient and effective 

way  of conducting a  cost-effectiveness analysis and of understanding the additional benefit of increasing the number of 

EV charging facilities. 

Another important aspect for choosing the EV charging station locations is the stability of solutions; this is because 
governments and organisations may wish to establish the locations progressively in multiple phases. By stability, we 
mean how likely  an optimal charging station remains in the choice set when the number of charging facilities to  be  built 

increases. The  relocation of charging stations will  incur additional costs for  the removal and reconstruction of facilities. 

Therefore, the more stable the solution, the better is the planning of the EV charging infrastructure.  
show, respectively, the percentages of optimal MCLP and PMP EV charging stations remaining optimal when increasing the 

number of charging facilities to be built from p to p0 . The higher the curve, the more stable is the solution. In both figures, we 

observe that the curves of different values of p appear to be ‘U-shaped’. This indicates that, in general, the solution is more 

stable when the increment of the number of charging stations is either low  or high; but when the increment is moderate the 

locations can  be  very  different. This  phenomenon may be  due to  the fact  that when the change in the number of charging 

stations is  not  significant then the choice of locations should be  similar, and when there are  more facilities to  be  built; 
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therefore the originally determined stations are  more likely  to be chosen again. When the change is significant but the num- 

ber of charging stations to be built is not  sufficient, then the models can suggest very  different results. Another observation is 

that the curves are  higher for large p. This means that solutions are  more stable if the number of EV charging stations to be 

built is large. This may be due to the fact  that the objective function is hard to improve for large p, and therefore the choice 

of locations should be similar. From  , it appears that PMP is more stable in general and particularly when p is large. 
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5. Conclusions 

 
In this study, we  argue that contextual factors matter in the location–allocation problems of public EV charging stations 

because the demand and supply of these stations will  vary  across different countries and regions. Therefore, our  first  objec- 

tive  in this study is to incorporate the contextualised institutional and spatial constraints of Beijing  in the deployment of EV 
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public charging stations. From  an  institutional perspective, because the deployment of charging stations in  Beijing  is still 

based on a top-down approach, the regulations and policies serve as a principle that needs to be followed in practice. Hence, 

in our  models we carefully select the potential sites and also  target the service radius of the charging stations. From  a spatial 

perspective, given that Beijing  still  has  a largely monocentric urban structure, the city  centre is expected to generate a high 

demand for  EV due to  the socio-demographic profile of the residents. Together with the contextualised factors taken into 

account, our  research will be useful for government and business sectors that aim  to improve the effectiveness of the spatial 

planning for public EV charging stations. 

Our  second objective is to  compare the optimal locations from three classic facility location models: the set  covering 

model; the maximal covering location model; and the p-median model. Our  computation results show that the p-median 

model is more effective than the other two models for  facility location decisions for  public charging station planning in 

the sense that the suggested public charging facilities are  more convenient for  the population with a higher EV charging 

adoption intensity. Considering the government’s goal  of satisfying the charging demand within 5 km,  p-median charging 

stations are  distributed mainly in the city  centre as well  so that areas with high demand can  be  served better within rela- 

tively short distances.  We  believe that high accessibility to  EV charging stations would encourage drivers to adopt EVs for  

transportation and also  encourage existing EV users to  continue driving EVs. Our  results also  suggest that the p-median 

model performs better than the maximal covering location model in terms of satisfying the objective of the other model. 

In terms of stability, we  found that when the number of charging stations to be built is large, or when the rel- ative 

changes are  minor, the solutions to  both models are  more stable as  p increases. Finally, we  also  demonstrate in  the 

present paper how to  use  our  approach to  analyse the cost-effectiveness of establishing different numbers of public EV 

charging facilities. 

This study can  be further improved in a number of ways. Firstly, the 52 pilot stations were taken as potential sites rather 

than as existing public charging stations, and this may result in some of these pilot stations not  being selected by our models. 

Secondly, our  demand points were based on  the census data of 2010, which can  be  updated with Census Statistics period- 

ically  in the long  term. Thirdly, we  weighted the six socio-demographic factors based on interviews with a relatively small 

sample size.  A large-scale questionnaire survey can  be conducted to gain  a better understanding of the contextual factors in 

EV adoption in our  study area. 

In the future, more research needs to  be  carried out  to  further study the deployment of charging stations with special 

consideration of the local  institutional and spatial settings, and this would make the facility location models more pragmatic 

and policy-relevant. The  outcomes may help not  only  the popularisation of EVs but may also  help to  achieve low-carbon 

transport in our  urban systems. 
 

 


