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Current methods often predefine fixed roles of members and only detect fixed hierarchy structures that
are not consistent with real-world communities; methods with hand-crafted thresholds bring difficulties
in real applications, while choosing the community corresponding to the maximal belonging coefficient
for each node results in a single boundary and neglects the multi-resolution of communities. In order to
solve the limitations above, we propose a novel structure to dig finer information by partitioning the
members into several levels according to their belonging coefficients. We call this novel structure
Hierarchical Structure of Members (HSM) and discuss its properties in continuity, comparability, consis-
tency and stability which reveal the multi-resolution of community as well as the intra-relations among
members. We propose a two-phrase method, Random Walk and Linear Regression (RWLR), to detect
HSM. The method measures the belonging coefficients of members by random walk and then divides
the members into multiple segments by linear regression. Experiments show that members in the same
level hold the same properties and HSM reveals multi-resolution of community. Besides, the comparison
in benchmarks shows the efficiency in community detection. Finally, we apply HSM to analyze social net-
works, including visualization of community structures in large social networks and interactive recom-
mendations in Amazon network.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Many social networks display communities, groups of vertices
with a higher-than-average density of edges connecting them.
Community structure is fundamental for uncovering the links
between structure and function in complex networks and for prac-
tical applications in many disciplines [1,17]. Members in a commu-
nity play different roles, such as cores, bridges and fringes, which
demonstrates the inner hierarchy of a community. Core members
have large influence on other members, while bridge members
help to keep communication with outside. Since the boundary of
a community in social network is often fuzzy [8], a community
can have different sizes from different views. Modeling a commu-
nity by multiple boundaries is more suitable for real social net-
works, and we call such model as multi-resolution of a community.

Existing community detection methods often predefine fixed
roles of members, resulting in a fixed hierarchical structure of com-
munity members [16,22,26]. However, communities in the real
world usually have a variety of structures rather than a specific
one. Take the relation of employees inside a company as an
example, the hierarchy structure reflects the leadership of the
company. Some companies have chairmen, department managers
and their staffs. While other companies have chairmen, depart-
ment managers, team leaders and team members. The hierarchy
structures are different. In addition, current work of detecting
multi-resolution of a community mainly follows two trends. One
is to set hand-crafted thresholds to filter out the multi-resolution
of community [18]. The choice of thresholds is not determined
by algorithms, which brings difficulties in real applications. The
other one is to choose the community corresponding to the maxi-
mal belonging coefficient for each node, which is easy to result in a
single boundary. In this case, we need to propose a new method to
detect the roles of community members as well as the
multi-resolution of community.

To address these problems, we propose a new concept, called
hierarchical structure of members (HSM), which describes a com-
munity by a ‘level’ structure according to the belonging coeffi-
cients. The belonging coefficients reflect the strength of relation
between a member and its community. Members with similar
belonging coefficients are in the same level. In the first level,
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members have the highest belonging coefficients, while those in
the last level have the lowest belonging coefficients. The former
ones are regarded as core members and the latter ones are treated
as marginal members. From the first level to the last level, one can
form the multi-resolution of community from the seed community
to the whole network.

HSM is different from the hierarchical structure of communities
(HSC) which gains attentions in recent years [4,10,11,14,30,31].
HSC describes nested community structures and shows the rela-
tions of communities, while HSM describes the levels of members
and shows the relations of nodes.

An ideal HSM detection approach should maintain continuity,
comparability, consistency and stability at the same time (see
Section 3), which becomes the most challenging part of this prob-
lem. Besides, the automatic determination of the number of levels
requires consideration as well. In this paper, we propose the RWLR
(Random Walk and Linear Regression) method to solve these prob-
lems. It measures the belonging coefficients by random walk from
a seed community and divides the members into levels by linear
regression on the sorted sequence of belonging coefficients. Our
method achieves a good performance on the benchmark datasets
as well as on the real-world networks, which demonstrates the
usefulness of HSM.

The rest of the paper is organized as follows. Section 2 reviews
some related work on belonging coefficients measurement and
hierarchical community detection. Section 3 defines the problem
in a more formal way and then illustrates the RWLR method with
a community detection framework. Section 4 shows the experi-
mental results and the statistical analysis. Section 5 discusses the
advantages and the limitation of RWLR method. Finally, we draw
the conclusions in Section 6.
2. Related work

According to the belonging coefficients, nodes are assigned into
different levels in HSM. Nodes play different roles in the commu-
nity. There are some works that divide members into predefined
roles. Nepusz et al. [22] detected the fuzzy communities and recog-
nized three kinds of nodes (‘outlier’, ‘bridge’ and ‘regular’) accord-
ing to the belonging coefficients. Huang et al. [11] expanded
communities locally from all the nodes to get the overlapping hier-
archical structure of communities (HSC) and then separated the
homeless nodes as ‘hub’ or ‘outlier’. Stanoev [26] used dynamic
process to reveal the fuzzy communities and assigned nodes to
one of the three roles, i.e. ‘leader’, ‘follower’ and ‘proxy’. Leskovec
[16] and Guimera [9] focused on two kinds of members, core mem-
bers and peripheral members. However, roles in these methods are
predefined, which limits the generalization ability of HSM.

The most relevant to ours is the work by Havemann [10] which
aims to detect HSC. They calculated all the proper values of param-
eter alpha which represents stable community structures to
improve the Fitness function proposed by Lancichinetti et al.
[14]. Although the multi-resolution of communities can be pro-
duced, their method cannot guarantee the consistency of belonging
coefficients in each level.

Measurement of belonging coefficients has been studied for
years, and their corresponding methods are often called fuzzy or
overlapping methods. Liu [18] extended the modularity to fuzzy
modularity based on a random walk process. Psorakis et al. [23]
utilized a Bayesian nonnegative matrix factorization (NMF) model
to assign the participation scores of nodes. Nepusz et al. [22] con-
sidered the fuzzy community detection as a constrained optimiza-
tion problem which minimized the difference between adjacency
matrix. The similarity matrix is generated by belonging coefficients
of nodes. Zhang et al. [34] mapped network nodes to Euclidean
space based on a generalized modularity and applied fuzzy
c-means to obtain a soft assignment. Steve et al. [7] extended the
label and propagation dynamic process to fuzzy community detec-
tion. Similarly, based on information dynamic process, Xie et al.
[29] defined the membership strength as the probability of observ-
ing a label in a node’s memory.

Although there are many measurements, they are oriented to
nodes, i.e. the sum of belonging coefficients of a node to all com-
munities is equal to 1. Since the normalization is independently
for each node, these measurements are not suitable for comparison
among nodes. Unlike the methods above, another measurements
are oriented to the community, where the sum of all nodes’ belong-
ing coefficients to a community is equal to 1 [25]. But, the belong-
ing coefficients are dependent on the resolution of community,
which is complex to get multi-resolution of community. Other gen-
erative models have the same constraints [20].

In addition, current work of detecting multi-resolution of a
community mainly follows two trends. One is to set hand-crafted
thresholds to filter out the multi-resolution of community, which
brings difficulties in real applications. The other one is to choose
the community corresponding to the maximal belonging coeffi-
cient for each node, which is easy to result in a single boundary.
In this case, we need to propose a new method to detect the
multi-resolution of community.

In this paper, we propose a method called RWLR to detect HSM.
First, we measure the belonging coefficients oriented to communi-
ties by random walk and sort them in descending order. Second,
we divide the order of belonging coefficients into multiple seg-
ments by linear regression and then get the HSM, where belonging
coefficients are consistent in each level and the community struc-
ture is stable.
3. Method

3.1. Problem formulation

To simplify the problem, we mainly focus on the undirected,
unweighted and simple network. The hierarchical structure of
members for community C is defined as

HierðCÞ ¼ flevelig; i ¼ 1;2; . . . ;K; ð1Þ

where K is the number of levels. Each leveli is a subset of members
in community C and satisfies constraints below[

i

leveli ¼ SC ; ð2Þ

leveli \ levelj ¼£; 8i – j; ð3Þ

MaxfBCðaÞ;a 2 levelig < MinfBCðbÞ; b 2 leveljg; 8i > j; ð4Þ

where SC is the set of members in the community C and BCðaÞ indi-
cates the belonging coefficient of node a. level1 has the highest
belonging coefficient where the members are called core members;
levelK has the lowest belonging coefficient where the members are
called marginal members.

Besides the definition of basic structure, HSM should hold sev-
eral properties.

� Continuity: Nodes in any top levels will construct a connected
component. Formally, for any levelk, each pair of node a; b 2Sk

i¼1leveli, exists a path a; p1; . . . ; pr; b, where pi 2
Sk

i¼1leveli.
� Comparability: The belonging coefficients of nodes to a commu-

nity should be comparable. In other words, the belonging coef-
ficients of a node to all communities should not be normalized
independently.
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� Consistency: The belonging coefficients of nodes in the same
level are similar, while they have big differences in different
levels. We evaluate the consistency in a level by mapping the
sorted sequence of belonging coefficients to a line, because
nodes in the same level have small differences relative to other
levels, and they tend to be on a line. The formulation of consis-
tency e is defined in Eq. (5).
e ¼ 1
XK

k¼1

, Xnk

i¼nk�1þ1

ðyðiÞ � LiÞ2; ð5Þ

yðiÞ ¼ wiþ b; ð6Þ

where K is the number of levels in HSM; nk is the breakpoint of
the kth level; n0 ¼ 0; and Li is the ith largest belonging
coefficient.
� Stability: Given a level k, top k levels can form the stable com-

munity. Stable community means that removing any node
inside the community or adding any node outside will lower
down the quality of community. The quality of community is
evaluated by Eq. (7).
Fig. 1. Community detection framework.

FLk ¼ FitnessðCkÞ ¼

din

din þ dout
; ð7Þ

Ck ¼
[k
k0¼1

levelk0 ; ð8Þ

where Ck is the community composed of the top k levels, din and
dout are the internal and external degrees of the nodes in the
community respectively. The Fitness function is proposed by
[24] which is widely used.

In order to detect the HSM, we propose a method, called RWLR,
as a part of community detection framework.

3.2. Community detection framework

The target for traditional community detection is to generate a
partition of the graph, i.e. graph partition. As shown in Fig. 1, it is
the framework that widely used in many community detection
algorithms [3,6,14,15,21,27]. For a graph, the seeds of communities
are found firstly. We choose the node with the lowest degree as the
first seed. Other seeds are recursively chosen with the lowest
degree outside any communities. Next, each seed is extended to
construct a community. Finally, the communities are collected
and form the graph partition. Some practical techniques can
improve the performance, such as selecting little fraction of seeds
inside the community and merging similar communities.

In this paper, we focus on the ‘Measure BC’ and ‘Detect Levels’.
We detect not only the community structure but also the hierar-
chical structure of members. Our method consists of two parts:
measuring belonging coefficients (RW) and dividing community
hierarchy (LR).

3.3. Measurement of belonging coefficient

Belonging coefficients describe how close the nodes connect to
the community. Nodes with the largest belonging coefficients cor-
respond to core members. We will find breakpoints to divide nodes
into levels. Nodes whose belonging coefficients are larger than a
breakpoint’s will construct a resolution of the community. As a
community, these nodes should form a connected component, i.e.
Continuity.

Besides, we prefer the community-oriented measurement,
which hold the Comparability, to node-oriented measurement. In
node-oriented measurements, the belonging coefficient of a node
to all communities are normalized to 1, which are not comparable
(as discussed in Section 2) and restrain the belonging coefficients
of overlapping nodes. For example, in Fig. 2a, the toy network
has two communities separated by colors. Overlapping node 4
belongs to both two communities. Since node 5,6,7 only belong
to one community, their belonging coefficients to the pink commu-
nity are equal to 1. Since the belonging coefficients of node 4 to the
blue community is larger than 0, the belonging coefficients to the
pink community must be smaller than 1. However, connecting to
all the nodes in the pink community, node 4 has much closer con-
nection to this community and should have higher belonging coef-
ficients to the pink community than node 5,6,7, which is not
available for the measurements that oriented to nodes. That’s
why our measurement should be oriented to communities espe-
cially for the detection of overlapping community.

In order to satisfy the continuity and comparability, we design a
community-oriented measurement based on random walk which
is useful in detecting community [2,5,12]. At each step, a walker
is on one node and moves to another chosen randomly and uni-
formly among its neighbors. The probability of arriving a node is
decreasing while walking. This process guarantees that there’s a
path with decreasing probabilities for any node to the source node
(see proof in Appendix). It means that nodes with probability
above any positive threshold can construct a connected
component.

Let us give a formal description. At each step, the transition
probability from node i to node j is given by

Pij ¼
Aij

di
; ð9Þ

where Aij ¼ 1, if there’s a link between i and j; otherwise, Aij ¼ 0. di

is the degree of the node i. The corresponding matrix P is called the
transition matrix. Given a source node s, the probability walking
from node i to node s with t steps is defined as

qt
sðiÞ ¼

XN

j¼1

qt�1
s ðjÞQ ij; ð10Þ

where Q equals to transition matrix except for Qsi ¼ 0; i ¼ 1 . . . N.
Then we define the measurement of belonging coefficients as the
probability walking from node i to node s within T steps:



Fig. 2. An example network and its sorted order of belonging coefficients. (a) Shows the HSM. (b) Shows the belonging coefficients to the community with seed node 0.

Fig. 3. The HSM in the karate club network. (a) Shows the structure of network.
Nodes at different levels are drawn by different colors, i.e. orange, yellow, light blue
and deep blue. The seed node 34 is colored in red. The green dash line in (a)
indicates the top 2 levels. (b) Shows the values of BC and Fitness corresponding to
the nodes ranked by BC. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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BCT
s ðiÞ ¼

XT

t¼1

qt
sðiÞ; ð11Þ

which means how close the node i is connected to the community
with source s. s is also called the seed of the community.

This measurement can satisfy the requirements above. Because
more links are inside the community than outside, the probability
of the random walker walking inside is higher than walking out-
side. Thus the gap in the sorted order of belonging coefficients
can indicate the boundary of community structure. Since the nodes
with more paths and less steps to the seed have higher belonging
coefficients, nodes with belonging coefficients above any positive
threshold can construct a connected component. For the toy
network in Fig. 2a, belonging coefficients to the community with
seed node 0 are shown in Fig. 2b. There are two gaps that indicate
the core community (node 0,1,2,3) and the pink community
respectively. Furthermore, there’s no constrain about the sum of
node’s belonging coefficients and we can give fine belonging
coefficients for overlapping nodes (node 4).

For each node i in Eq. (10), we just need to enumerate its
neighbors to update qt

sðiÞ. Thus the time to update all nodes with
one step is OðMÞ where M is the number of links in the network.
The total time complexity of measurement is OðTMÞ where T is
the number of steps. In the next part, we will use the order of
nodes sorted by their belonging coefficients to generate HSM. As
analyzed in [12], the order will keep unchanged through a number
of steps. We also discuss the selection of step T in the experiment.

3.4. Detection of levels

After having the belonging coefficients of each node, we divide
the nodes into levels by their belonging coefficients to generate
HSM. The division should keep the Consistency of members.

We sort the belonging coefficients in descending order and
denote the result sequence as L. Observing the sequence of a toy
network in Fig. 2a, nodes in the same level tend to form a line
and the whole sequence can be regarded as a combination of mul-
tiple lines (Fig. 2b). Nodes in the same level have small differences
relative to the nodes in other levels, so they tend to be on a line.
Similar phenomenas can be observed in real social networks
(Fig. 3a) too. That’s why we use line segments to map the sequence
and define the consistency as Eq. (5). The consistency can also
catch the gap, because the breakpoint on the gap has higher consis-
tency than the breakpoint beneath the gap.

For a given K, we should select the best K � 1 breakpoints to
minimize the inconsistency which is the reciprocal of consistency.
To solve this optimization problem, we design an algorithm based
on the dynamic programming. We define the state f ij as the mini-
mum inconsistency of the first j nodes within i levels. Assuming
that f i�1;j0 ðj
0 ¼ 1;2; . . . ; jÞ have been calculated, we can enumerate

the last breakpoints to calculate f ij. Then the transition function
is defined as

f ij ¼ minff i�1;k þ costðkþ 1; jÞg; k ¼ i� 1 . . . j� 1; ð12Þ

gij ¼ argminkff i�1;k þ costðkþ 1; jÞg; k ¼ i� 1 . . . j� 1; ð13Þ

where gij records the breakpoint selected by f ij and the costðp; qÞ is
the minimum residual error to fit the part of order from the pth
node to the qth node, which is defined as

costðp; qÞ ¼
Xq

i¼p

ðyðiÞ � LiÞ2 ¼
Xq

i¼p

ðwiþ b� LiÞ2: ð14Þ
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The minimal cost is computed by the least square method and the
parameter w and b are given by Eqs. (15) and (16) respectively.

w ¼ n
P

iiLðiÞ �
P

ii
P

iLðiÞ
n
P

ii
2 �

P
ii
P

ii
; ð15Þ

b ¼
P

ii
2P

iLðiÞ �
P

ii
P

iiLðiÞ
n
P

ii
2 �

P
ii
P

ii
; ð16Þ

where i ¼ p; . . . ; q and n ¼ q� pþ 1. Calculating f iteratively, we can
obtain the division for the HSM by the breakpoints stored in g.

We can further improve the complexity of the algorithm. After
state f ij is calculated, the state chooses k ¼ gij as the better decision
than previous decisions p which satisfies p < k. It means that
breaking the last level at k is better than at p, since
fnodekþ1; . . . ;nodejg and fnodepþ1; . . . ;nodekg are very inconsistent.
For latter states f i;j0>j, if fnodejþ1; . . . ;nodej0 g and
fnodepþ1; . . . ;nodejg are inconsistent, f ij0 prefers to break at k than
p; otherwise, f ij0 prefers to break at p. However, it’s hard to satisfy
the latter condition because we have the conclusion that
fnodekþ1; . . . ;nodejg and fnodepþ1; . . . ;nodekg are very inconsistent.
Hence, for later states f i;j0>j, it’s more probable to prefer decision k
to p, which means the decisions are non-descending. Observing the
decisions based on real networks (Table 2), we count the number
of decisions gij satisfying gij >¼ gi;j�1 and show the result in
Table 1. There are over 99% decisions which are non-descending
with j. Then we assume that if f i�1;k þ costðkþ 1; jÞ <
¼ f i�1;p þ costðpþ 1; jÞ, where p < k; f i�1;k þ costðkþ 1; jþ 1Þ <¼
f i�1;p þ costðpþ 1; jþ 1Þ is as well for f i;jþ1. With this assumption,

we can reduce the time complexity of division from OðKN2Þ to
OðKNÞ where N is the number of nodes in the network. Although
there are near 1% conditions that cannot satisfy this assumption,
RWLR with this improvement still has competitive performance
in the experiments.

Proposition 1 (Time complexity). When calculating f ij, if
f i�1;k þ costðkþ 1; jÞ <¼ f i�1;p þ costðpþ 1; jÞ, where p < k, we will
remove p from the decisions of f i;j0>j, and the calculation of f K;N can be
reduced to OðKNÞ.

Proof. Calculating f ij from j ¼ 1 to j ¼ N, we can construct a queue
to hold the decisions. For f ij, we add decision k ¼ j� 1 into the
queue and remove the decisions p that 9k; p < k and
f i�1;k þ cost <¼ f i�1;p þ cost. Then the head of the queue is the best
decision for f ij. Each decision k is added in the queue and removed
from the queue only once. The time complexity for f i;� is OðNÞ and
the total time complexity is OðKNÞ. h

As for the number of levels K, we select it according to the
Stability of the community structure. The community with local
maximal quality is regarded as stable one. With increasing K, there
are more line segments that can better map the order, then the
inconsistency keeps decreasing. So we want to use as less lines
as possible to obtain good community structure. Starting from
Table 1
The non-descending decisions of dynamic programming.

Networks Non-descending (%)

Karate 0.968944
Dolphins 0.972244
University 0.978979
Amazon 0.999925
DBLP 0.9998
Youtbe 0.99965

Average 0.997158
K ¼ 1, we test whether K þ 1 can obtain better community struc-
ture. If the best community quality among all the levels cannot
be increased with K þ 1 levels, we regard this local best commu-
nity structure as the stable one and take K as a result. Otherwise,
we keep increasing K by one and repeat the test. To measure the
quality of the community, we choose the Fitness function proposed
by [24] which provided good results in a wide range of synthetic
and empirical networks [15] (Eq. (7)).

In the experiments, the selected K is often small which ranges in
½2;8�. It deserves noticing that the selection does not influence the
time complexity which is still OðKNÞ. The pseudo-code of the RWLR
method is shown in Algorithm 1.

Algorithm 1. RWLR.

Input: GðV ; EÞ, seed S, step T ¼ 50
Output: leveli, number of levels K
n ¼ jV j
for i ¼ 1 to n do

calculate BT
S ðiÞ

end for
Set initial number of levels K ¼ 1
Set previous best quality of community preQua ¼ 0
Set current best quality of community curQua ¼ 0
for i ¼ 1 to n do

f 1;i ¼ costð1; iÞ
g1;i ¼ �1

end for
repeat

K ¼ K þ 1
for i ¼ 1 to n do

calculate f K;i and gK;i

end for
k ¼ K
i ¼ n
repeat

clear levelk
for j ¼ i to gk;i � 1 do

add node j to levelk
end for
i ¼ gk;i

k ¼ k� 1
until k > 0
preQua ¼ curQua
curQua ¼ maxðFLi; i ¼ 1 . . . KÞ

until curQua > preQua
K ¼ K � 1
k ¼ K
i ¼ n
repeat

clear levelk
for j ¼ i to gk;i � 1 do

add node j to levelk
end for
i ¼ gk;i

k ¼ k� 1
until k > 0
4. Experiments

There are three parts with five experiments in this section. First,
we give qualitative analysis of HSM in small networks. Second, we
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test the efficiency of RWLR method qualitatively. The accuracy is
evaluated by detecting community structures on LFR benchmarks.
The speed is tested to show the scalability. Besides, we analyze the
selection of the only parameter, step T, in our method. Finally, we
apply HSM to do social network analysis, including visualization of
community structures in large social networks and interactive rec-
ommendations in the Amazon network.

4.1. Datasets

We test the method in both real networks and synthetic net-
works. The real networks are composed of three small networks
and three large networks whose profiles are shown in Table 2.
The synthetic networks are of two kinds, networks with overlap-
ping communities and networks with hierarchical structure of
communities (HSC) [13].

4.2. Qualitative analysis

To show the properties of HSM, we conduct experiments in
three real networks (i.e. karate, dolphins and university networks),
and a synthetic network, with ground truths.

4.2.1. Karate club network
The first one is the classical karate club network consisting of

friendships between 34 members of a karate club [32]. This net-
work is of particular interest because the club is split in two parts
during the course of observations as a result of an internal dispute
between the president and the instructor. We detect the HSM from
the view of instructor (node 34) in Fig. 3.

The selected number of levels K is 2 (i.e. green dash line in
Fig. 3a) and the division correctly maps the real partition except
for node 8 which is at the end of the first level. Increasing K to three
levels, the method splits the first level into two levels (orange and
yellow). The orange level indicates a lower resolution which is the
same as the result in [5]. Different from [10], which recognized the
orange nodes as the last level, we can correctly recognize the
multi-resolution of community. With K increased, the blue level
is split into two levels (light blue, deep blue), and the light blue
nodes are overlapping nodes.

We also show the order of nodes by their belonging coefficients
(Eq. (11)) and the corresponding Fitness (Eq. (7)) in Fig. 3b, where
levels are drawn by red dash lines and the best fit line segments are
drawn as blue dash lines on data points. In the figure, the line seg-
ments map the consistency of belonging coefficients. The gap
between the 7th node and the 8th node, and the bend between
the 17th node and 18th node are also caught by RWLR.
Comparing the belonging coefficient with Fitness, we can see that
the local maximal Fitness points correspond to big gaps or bends in
the line of belonging coefficients, which shows that the detected
levels can form meaningful community structures.

If we just maximize the Fitness functions, the maximal result
will be the whole network which is meaningless. Local expansion
methods [15,14] try to detect the local maximal result (the stable
Table 2
Profiles of real networks.

Networks Nodes Edges Diameter

Karate [32] 34 78 5
Dolphins [19] 62 159 4
University [22] 81 577 4
Amazon [33] 334,863 925,872 44
DBLP [33] 317,080 1,049,866 21
Youtbe [33] 1,134,890 2,987,624 20
community) which corresponds to the first 10 nodes which are
not consistent. Combining the stability of community structure
with the consistency of belonging coefficients can obtain better
result.
4.2.2. Dolphins network
The second network is the network of bottle nose dolphins liv-

ing in Doubtful Sound (New Zealand) analyzed by Lusseau [19].
Nodes represent dolphins and edges are set between animals that
are seen together more often than expected by chance. The dol-
phins fall into two groups after a dolphin leaves the place for some
time. We detect the HSM with the seed node 9.

In the Fig. 4a, the real parts are separated by the dash line, and
the two levels (orange, blue) we detected correctly match it, except
for the node 39 which is often regard as the overlap node. In order
to show the influence of different seed nodes, we depict the
sequences of belonging coefficients with each orange node as seed
in Fig. 4b. In the figure, values in each sequence are distributed dif-
ferently. It’s not suitable to set a common threshold to filter out the
communities, which is often used by fuzzy detection methods
[7,25]. Although these sequences are different, the general shapes
are similar, and so are the divisions. There are several dash lines
to indicate the levels in each HSM. Most HSMs contain the break-
point corresponding to Fig. 4a and we highlight it with a thick dash
line. Consequently, from different seed nodes in the same commu-
nity, we construct different sequences of belonging coefficients but
the generated HSMs are still similar.
Fig. 4. The HSM in the dolphins network. (a) Shows the HSM and the green dash
line indicates the top 1 level. Regarding each orange node as seed, (b) shows all the
orders of BC and the red dash lines indicate divisions for each HSM whose numbers
of levels are mostly 2 or 3. Most HSMs have the same division drawn by thick dash
line which is also the real boundary of community. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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4.2.3. University network
The third network is the university network of the academic

staff of a given Faculty of a UK university consisting of three
Fig. 5. The HSM in the university network. (a) Shows three real communities with two un
HSMs are shown in (c–e) separately, where levels are marked by different colors and the
for further analysis. (For interpretation of the references to colour in this figure legend,
separate schools [22]. In the network, nodes represent person
and links represent friendship. The friendship is measured with
questionnaires, and all academic staff participate in the survey.
determined nodes (gray). (b) Shows the neighborhood of overlapping node 61. Three
dash lines indicate the divisions automatically determined by RWLR. (c) Is zoomed
the reader is referred to the web version of this article.)
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The real partition of the network is shown in Fig. 5a where commu-
nities indicate schools. There are two gray nodes that have not
been determined. We detect HSMs with the seed node 50, 67, 44
respectively which correspond to three schools. In Fig. 5c,d,e the
dash lines correctly separate the real communities from others
except for few overlapping nodes.

In order to analyze the overlapping nodes, we increase the
number levels for each HSM and obtain finer resolutions of com-
munities. In Fig. 5c, the first level (orange) has the core members
which densely connect to seed, and the second level (yellow) is
almost the real community. Node 61 and node 59 are at the third
level (green). Node 59 has two links connecting to two communi-
ties respectively, and it can belong to both communities. Node 61
is more interesting, because it has lots of links connecting to three
communities in Fig. 5b, and three communities we detected all
include node 61 at larger resolutions. In [22], node 61 is also called
bridge node which plays an important role in the network. In the
Fig. 5c, we can regard these special nodes as a single level in
HSM where levels can indicate their roles in the network. Nodes
at the fourth level are also fuzzy but not strong than the third level.
Similar phenomena is observed in Fig. 5d.
4.2.4. Hierarchical synthetic network
In order to show the hierarchy in HSM, we generate a hierarchi-

cal synthetic network in Fig. 6a. There are 128 nodes and 1228
links in the network where more links are inside the communities
than outside. 8 small communities have 16 nodes respectively and
2 large communities which consist of 4 small communities have 64
nodes respectively. All the communities are circled by dash lines in
the figure. We detect HSM with the seed node 1 and the result has
four levels separated by colors.

In the figure, we can correctly reveal the small community
which is the first level in HSM. The large community can also be
revealed successfully by the third level except for few nodes with
many connections to this community. Except for these two levels,
we can also reveal a level with overlapping nodes (the second
level), which are very important for information spreading in social
networks [28].

In the Fig. 6b, we show that the divisions of HSM can catch the
local maximal Fitness. There is a local maximal Fitness at the 34th
node, and it is the combination of two small communities A and B
in Fig. 6c. However, we did not set this property when generating
the network. Observing the neighbors of community A in Fig. 6c, A
has dense connections with B, C and D but a little more with B. So A
and B cannot combine to an independent community to C or D.
Thanks to the HSM, we prevent from the unsuitable local maxi-
mization and obtain multi-resolution of the community.
Fig. 6. The HSM in hierarchical synthetic network. The real partitions are circled in
(a). There are two large communities and further four small communities in each
large community. The seed node is colored in red. The corresponding order of
belonging coefficients and Fitness are shown in (b). In order to analyze the relations
among small communities, we highlight the community A and its neighborhood in
(c). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
4.3. Quantitative analysis

4.3.1. Accuracy analysis
The comparison of community detection is conducted with

three competitive methods, UEOC [12], LFM [14] and Copra [7].
LFM constructed the community from a seed independently by a
greedy algorithm that maximized the local Fitness which is similar
to our method, excepting that we detect the HSM at the same time.
The Fitness function is widely used to evaluate the quality of com-
munities [10,15], which is also the quality function used in our
method. UEOC combined random walk and annealed network to
unfold communities effectively. With the same measurement, ran-
dom walk, we show similar properties in community detection.
Copra is an overlapping community detection method based on
dynamic process and has good performance in the recent study
[28], which is the baseline in the comparison to show the perfor-
mance among current methods.
These methods are tested in 4 � 1100 benchmark networks. The
benchmark network is generated by LFR [13] and the accuracy is
measured by the extended NMI [14]. The LFR parameters are
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similar to [8]: the network size n is 1000 or 5000; the minimum
community size cmin is 10 or 20; the maximal community size
cmax is 5 � cmin; the average degree is 16 and the maximal degree
is 40; the exponents parameters s1 is �2 and s2 is �1; the propor-
tion of links between communities is 0.1 and the maximal number
of communities that each node can belong to is 2. The fraction of
overlapping nodes ðon=nÞ varies from 0 to 0.5 with interval 0.05.
For each set of parameters, we generate 100 networks and use
the average result that is detected in the 100 networks to eliminate
the random factor. The parameters in the compared method are set
default values. The Fitness alpha in LFM is 1 which is the same as
RWLR. To obtain good performance of Copra, we set the maximal
number of communities that a node can belong to as the real value
2 and repeat the method 10 times to select the best result.

Although, there are several methods can detect the HSC or gen-
erate the benchmarks of HSC [13], the HSM has finer resolutions
than HSC, so they cannot directly be compared. Hence, in this sec-
tion, we mainly test the quality of a single level in HSM and left the
test with hierarchy to future work. Similar with [12], we select the
level with the best Fitness in HSM.

The comparison results are shown in Fig. 7. In the figure, the
performance of RWLR is not influenced by the size of network,
while UECO has lower performance in larger network. Copra has
the similar performances no matter how the network size or com-
munity size changes. In all these conditions, RWLR performs better
than UECO and Copra. When communities are large, RWLR has the
best performance than all the other methods. UEOC also has better
performance for large communities. It’s the advantage of random
walk.

Local expansion method LFM is good at detecting small commu-
nities. However, in real social networks, the size of community
ranges largely and large communities are more important. So
RWLR has better performance than LFM in real social networks.
Although RWLR has lower NMI than LFM in small communities,
its NMI can keep upon 0.8 which is much larger than other
methods.
(a) n=1000,cin=10,cmax=50 (

(c) n=5000,cin=10,cmax=50 (

Fig. 7. Comparison results in
With the increase of the overlapping nodes, the community
structures become mixed and the NMI should go down. The down-
trend of RWLR is similar to UECO in large communities and slower
than Copra and UECO under other conditions. It’s interesting that
LFM has lower NMI for small overlaps compared with the larger
one. When there’s a community structure with small overlaps,
RWLR can accurately detect it; when there’s one with large over-
laps, RWLR also can yield an accuracy over 0.8 on small communi-
ties and over 0.9 on large communities. In conclusion, RWLR can
detect community structures accurately, especially in the networks
with large range of community sizes and small overlaps.
4.3.2. Scalability analysis
Since our method detects not only the community structure but

also the hierarchy, and the time complexity depends on the selec-
tion of seeds which is not part of our method, it’s unfair to compare
time complexity with normal community detection method. So in
this section, we analyze the relation between the theoretical time
complexity and the practical time complexity.

The experiment is conducted on a PC with Intel(R) Core(TM)2
Quad CPU and 4 GB RAM. We generate networks with nodes range
from 100 to 100,000 by the same method in Section 4.3.1. For each
number of nodes, we generate 100 networks and run the RWLR
method 100 times in each network. Finally, the average time is
used to eliminate noises. The result is shown in Fig. 8. Since the
range of X axis is large, we use logarithmic axis to show all the
numbers. The time cost of RWLR is linear to the number of nodes,
which indicates that the time complexity is OðNÞ, where N is the
number of nodes in the network. Although the theoretical time
complexity is OðKNÞ, the number of levels K is small (ranges in
2;8½ �) that does not influence much on the time.
4.3.3. Parameter analysis
Furthermore, we analyze the only parameter in our method, the

number of step T in Eq. (11). After each step, the belonging coeffi-
cients of nodes will be updated and the order of the sorted nodes
b) n=1000,cin=20,cmax=100

d) n=5000,cin=20,cmax=100

benchmark networks.



Fig. 8. The cost time that runs by RWLR in networks with nodes ranging from 100
to 1,000,000. X axis and Y axis are logarithmic that can show all the numbers
clearly.
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will be updated as well. Until the order is stationary, the nodes
with close connections will be in the top of the order, which is ben-
eficial to the division of HSM. To show the relationship between
the number of step and the belonging coefficients, we depict
Fig. 9. The difference between the two consecutive sorted node
order, O1 and O2, is defined as nnzðO1� O2Þ. We test it in six net-
works and the details are listed in Table 2.

For small networks in Fig. 9a, the orders convergence quickly
and become stationary after 20 steps. For large networks, it’s hard
to walk enough among all the nodes within 20 steps, because most
nodes have less connections to the seed. Then, we turn to focus on
the first 100 nodes in the order which are often in the top levels of
HSM. In Fig. 9, the orders can converge after 50 steps which is
enough to catch the important top levels. With less connections
to the seed, most nodes will be divided into bottom levels in
Fig. 9. Analysis of parameter step T. (a) and (c) Show the relationship between paramete
belonging coefficients. The number of nodes are small in (a) and (b), while large in (c) a
HSM where we do not need to consider their order in the same
levels. Consequently, we set the step T to a constant 50.

Apart from the convergence of the order, the number of step
also influences the average value of belonging coefficients. In
Fig. 9b,d, with the steps increasing, the belonging coefficients will
increase as well. Small networks will have larger values than large
networks since the random walker has more probability to arrive
the seed. That’s why the values in Fig. 3a are upon 0.9 while the
values in Fig. 6b are much less.

4.4. Applications

4.4.1. Community visualization
In this section, we use HSM to analyze large real networks. It’s

hard to observe the whole graph in large networks. With the help
of HSM, we map similar nodes into each level and obtain the over-
all picture of the whole network for the observed seed. In the pic-
ture, white circles indicate levels. The radius of each circle
indicates the number of members at that level. Ranging from warm
to cold, colors indicate the belonging coefficients from high to low.
Since the number of nodes is large, we log them before normalizing
them. The original number of nodes at each level are also labeled in
the picture. We test in three large networks, Amazon, DBLP and
Youtube networks, whose statistics are shown in Table 2. In
Amazon network, nodes represent products. If two products are
frequently co-purchased, a link between them will be contained
in the network. In DBLP network, nodes represent authors. If two
authors published at least one paper together, the network con-
tains a link between them. In the Youtube network, nodes repre-
sent users and links represent friendship.

In Fig. 10, the pictures of HSMs with random seeds show the
properties of each community. Fig. 10c has smooth color and uni-
form radii, which means the community boundaries are fuzzy. On
the contrary, Fig. 10b has sharp change of colors between the first
two levels, which means that there is a large gap of belonging
r step T and the rank of nodes. (b) and (d) Show the relationship between step T and
nd (d).
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coefficients and the first level is more important to the community
than others. Fig. 10d also has clear change of colors but not as
sharp as Fig. 10b. Different from the figures mentioned above,
Fig. 10a and e have few varied colors at their first levels. That
means their core members are equally important and have similar
connections in the network.

For all the figures, most belonging coefficients are gathered in
the first several levels. In Fig. 10f and b, we should pay more atten-
tion to the first levels because the sum of their belonging coeffi-
cients almost equals to 1. With further division of levels, we can
obtain finer resolutions in Fig. 11. From the figure, we can learn
that the first 10 nodes are more closely connected, though they
are not as strong as the first level in Fig. 10a and e. The colors in
finer levels are as smooth as the original level, which shows their
nodes are consistent in belonging coefficients.

The structure of HSMs are different for seeds in these different
communities, while seeds in the same community have similar
HSMs shown in Fig. 12 shows. Consequently, HSM can give an
overall observation of the communities in large networks.
Fig. 10. Visualizing different com
4.4.2. Interactive recommendation
Moreover, for those users who have purchased some specific

products, we can use HSM to provide an interactive recommenda-
tion according to the product co-purchase relations. Traditional
methods usually recommend top K products according to their
similarity scores. However, small K has high precision but low
recall, while large K has high recall but low precision. An interac-
tive recommendation can be a better solution that provides multi-
ple levels of products with dynamic K. User can choose the next
level or zoom in the current level, where products have consistent
probability to be purchased in the same level. We take product
ID7438 as an example and its HSM is shown in Fig. 13a. In the fig-
ure, the products at the first level have the closest connections and
we can take them as the first recommendation. If the user does not
find the interest product, he can require the next level of recom-
mendations, the second level. With the categories labeled in [33],
we can see the two levels are two categories of the product
ID7438. Since there are too many products at the second level, as
shown in Fig. 13b, user can zoom the level, i.e. divide it further into
munities in large networks.



Fig. 11. The HSM with different number of levels. We divide the first level in (a) to obtain finer levels in (b).

Fig. 12. The seeds of two HSMs in the same community.

Fig. 13. The HSM of product ID7438 in Amazon network is shown in (a). We divide the second level to obtain finer levels in (b).
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finer levels, and take the first 22 products as the next
recommendation.

5. Discussion

The RWLR method has several advantages. First, RWLR satisfies
the properties of HSM. The continuity and comparability is satis-
fied by the measurement based on random walk; the consistency
is satisfied by the linear regression, and the stability is satisfied
by selecting proper number of levels. Second, RWLR is also scal-
able. We use improved dynamic program to maximize Eq. (5) in
linear time complexity OðKNÞ, where K is the number of levels
and N is the number of nodes. Third, RWLR has few parameters
that the only parameter, step T, can be set as a constant, such as
50 in our experiments. Finally, the experimental results show that
the detected HSMs are meaningful. In Fig. 5, nodes on each level of
HSM represent core member, overlapping member, bridge mem-
ber, and so on.

As a two phase method, we can use any other measurements
satisfying continuity and comparability, which are more suitable
for specific networks. We use random walk based measurement
as an example in this paper, which performances better in net-
works with large communities. Although RWLR focuses on
detecting the levels of a community but not the partition of a
graph, it can achieve common performance in the community
detection.
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In addition, we note that the efficiency depends on the selection
of seeds, which is also important. There are methods [6] that focus
on the selection of seeds which may improve the performance. The
discussion of seeds is out of our scope in this paper under the com-
munity detection framework (see Fig. 1).

6. Conclusions and further study

In this paper, we introduce a novel concept, hierarchical struc-
ture of members (HSM), to describe the community structure in a
‘level’ way. Each level of HSM can be regarded as a stable commu-
nity boundary, which forms the multi-resolution of community.
Besides, nodes in the same level have consistent belonging coeffi-
cients, which keeps them sharing similar properties. HSM can
reveal more information from the relations among levels and the
relations among members in the same level. We also propose a
RWLR method to detect the HSM. Experiments show that the
detected HSMs can reveal multi-resolution of communities and
the relations among members. The only parameter, step T, can be
set to a constant. The method is scalable since it’s time complexity
is linear to the number of nodes in the network. We also test the
community structures on benchmarks against competitive meth-
ods, and the result shows the good performance of RWLR in net-
works with large communities and small overlaps. Taking the
consistency of belonging coefficients into account, we can prevent
unreasonable community generated by the local maximal Fitness.
Furthermore, we apply the HSM to draw an overall picture of the
large network and provide interactive recommendations in
Amazon network.

In the future, we will apply the HSM to more social network
analysis and mine its potential power. Besides, we will improve
the detection method by trying other measurement and taking
seed selection into consideration.
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Appendix A. Proof of the existence of the path from any node to
source

In a connected component, we need to prove that for any node i,
if there exists a neighbor j that BCðjÞ > BCðiÞ, we move it to node j.
Otherwise, i is the source node.

Proof. (By Contradiction) We assume that there exists a node i
that has no neighbor with higher BC and is not source node. The
neighbors of i that connect to i and source node are noted as S. For
any node j in S; j is in a path from i to source node, and j is more
closer to source node than i, so BCðjÞ > BCðiÞ. It is contrary to the
assumption. Therefore, for node i, moving along the ascending
order of BC, it will arrive at source node. h
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