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Since the Semantic Social Network (SSN) is a new kind of complex networks, the traditional community
detection algorithms require giving the number of the communities and could not detect the overlapping
communities. To solve this problem, we propose improving multiple sampling models ARTs, consisting of
ART, LART, ARTF and LARTF, sampling the textual information specific to node, link, node field, and link
field correspondingly. The proposed ARTs models separate the semantic community detection into
context sampling and communities detecting stage. After the context sampling, the quantized semantic
coordinate is allocated to each sampling element, by which the cohesion for each sampling field can be
established, avoiding the presetting of the number of communities. As the ARTs models are not easy to
convergence, we explore the multiple sampling to accelerate the convergence, and the parameters of
ARTs are analyzed by experimental analysis. In evaluation aspect, some traditional evaluation models
are extended for semantic community measurement. Finally, efficiency of ARTs is verified by experiment.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

In accordance with the development of network communica-
tion, the electronic social network, such as Facebook and Twitter,
has played an important part in people’s daily social communica-
tion. Many social networking sites have launched the Community
Recommended and Friend Circle Service to enrich people’s web
life. Thus, the community detection and recommendation algo-
rithms have become the focus on social networks data mining.
To date, community detection researching includes the following
three aspects: hard community detection, overlapping community
detection and semantic community detection.

The hard and overlapping community detection belongs to the
topological community detection. The objective of these
algorithms is to detect the communities with close internal rela-
tionships utilizing the properties of the relationships. The hard
community detection is the pioneer work, and the ultimate goal
of which is to divide the social networks into several separate
networks (Newman, 2006; Newman & Girvan, 2004). The repre-
sentative algorithms include GN (Girvan & Newman, 2002) and
FN (Newman, 2004). In accordance with the development of hard
community detection, researchers gradually focus on the case that
a node belongs to several communities. Therefore, Palla, Derényi,
Farkas, and Vicsek (2005) suggested the CPM algorithm to detect
the overlapping structures. After that, overlapping community
detection research became the major concern in social networks
and many representative algorithms were proposed, such as EAGLE
(Shen, Cheng, Cai, & Hu, 2009), LFM (Lancichinetti, Fortunato, &
Kertész, 2009), COPRA (Gregory, 2010), UEOC (Jin et al., 2011),
et al. The objective of semantic community detection is to cluster
the nodes with similar semantic context (microblogging and social
labels) into the same community. Since the semantic communities
are detected by both context and relationship of the nodes, the
result could represent the cohesion of communities more effi-
ciently. For the semantic data mining must be based on the text
analysis, many semantic community detection algorithms
exploited the latent Dirichlet allocation (LDA) (Blei, Ng, & Jordan,
2003) model as the core model. According to the applied manner
of LDA model, semantic community detection algorithms can be
summarized as the following three categories:

(1) The LDA semantic analysis in terms of relationship. Such
algorithms treated the topology of the social networks as semantic
context, utilizing an improved LDA model to analyze the semantic
similarity of nodes. Zhang, Qiu, Giles, Foley, and Yen (2007) pro-
posed the SSN–LDA algorithm, regarding the ID and relationship
as semantic context, the similarity of nodes as the training result.
Henderson and Eliassi-Rad (2009) proposed the LDA-G algorithm
to extend the SSN–LDA model with infinite relational models
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(IRM) (Kemp, Tenenbaum, Griffiths, Yamada, & Ueda, 2006). The
LDA-G combined the LDA model with graph model, allowing it to
predict the potential links among the detected communities. Then
Henderson, Eliassi-Rad, Papadimitriou, and Faloutsos (2010) pro-
posed the HCDF algorithm, extending the LDA-G with multiple
attribute analysis and increasing its stability. The GWN-LDA
(Zhang, Giles, Foley, & Yen, 2007) devoting to the directed net-
works and the HSN-PAM (Zhang et al., 2007) to the hierarchical
networks were proposed based on the SSN-LDA. The advantage
of such algorithms is the simply structure and the less requirement
for input parameters, suitable for handling large-scale data. The
disadvantages are that the semantic of such algorithms is not con-
text and the detected community lack of the real semantic
relevance.

(2) The LDA semantic analysis in terms of relationship-topic.
Such algorithms treat the context of nodes as semantic context,
analyzing the similarity of the nodes with semantic context. Most
of such algorithms utilize the AT (Steyvers, Smyth, Rosen-Zvi, &
Griffiths, 2004) model as the basic model. The ART (McCallum,
Corrada-Emmanuel, & Wang, 2005) proposed by McCallum is the
representative model, which added the recipient sampling into
the AT model. The ART promoted the AT research into the field of
SSN. After that, McCallum, Wang, and Corrada-Emmanuel (2007)
designed the role analysis model (RART) based on the ART, extend-
ing the application fields of ART into the Social Computing. Zhou,
Manavoglu, Li, Giles, and Zha (2006) applied the user distribution
sampling to the AT model, suggesting the CUT model. Cha and
Cho (2012) proposed the HLDA model which extract the relational
tree model from online social networks on the basis of the relation-
ship of reply context and design a hierarchical LDA to simulate the
context relation tree. The advantages of such models are the exten-
sion of the context analysis into topological analysis for each node,
and the detected community having a higher internal similarity.
The disadvantages are that such models merely consider the
relationship properties of the social networks, lacking of the
consideration on the feature of local field. That would result in
the disconnected community.

(3) The LDA semantic analysis in terms of community-topic.
Such algorithms add the local field sampling into the relation-
ship-topic model, developing the adjacency sampling to local area
sampling. These algorithms avoid the case of disconnection in local
field. The GT model (Wang, Mohanty, & McCallum, 2005) sug-
gested by Wang, extending the ART model by replacing the recipi-
ent sampling with group recipient, is the representative model.
Then, Pathak, DeLong, Banerjee, and Erickson (2008) discussed
the necessity of recipient sampling and proposed the CART model,
adding the community sampling into the ART model. Recently,
community-topic model has become the focus on SSN research.
Mei, Cai, Zhang, and Zhai (2008) combining the topic distribution
in local field with the modularity, proposed the TMN model and
established the topic-community correlation function to optimize
the process of community detection. Sachan, Contractor,
Faruquie, and Subramaniam (2011, 2012) and Yin, Cao, Gu, and
Han (2012) proposed the TURCM and LCTA model, in terms of
topic-community and community-topic distribution respectively.
The both models above not only increased the difference of the
topic distributions in different communities, but also made the
result more reasonable. The advantage of such models is the high
accuracy of the result. The disadvantages are not only the complex
structure and the easy of getting over-fitting result, but the num-
ber of communities needs to be preset as the basic LDA model
requires the prior parameters. The result tends to be different as
the difference of presetting parameter.

Allowing for the advantage of LDA analysis of community-topic
on semantic community detection, we adopted the sampling
manner of community-topic. To avoid the number of community
presetting problem, we separated the community-topic detection
into LDA sampling and semantic community detection stage. In
the process of LDA sampling we designed the multiple sampling
ARTs (consisting of ART, ARTL, ARTF, LARTF) which have a higher
weight in the central of sampling field than the marginal. For this
manner replaced the community sampling with the field sampling,
it has not to preset the number of communities. In the multiple
sampling, we analyzed the convergence with various sampling fre-
quency, verifying the optimal sampling frequency for ARTs is 2. In
the semantic community detection, we designed the community
clustering algorithm. The clustering element is the sampling field
which represents the minimal community structure. There exist
intersections among different sampling fields. Therefore, the over-
lapping communities could be obtained. For the clustering process
have no requirement for the number of clusters, the semantic
community detection could be achieved without presetting the
number of communities.

2. ARTs model analysis

2.1. ARTs models

For the typical semantic community analysis algorithms, such
as AT, ART and HLDA, sample the context of SSN in the form of
point, field, radiation. The difference among them is shown in
Fig. 1. Fig. 1(a) is the sampling process of AT model. In the AT
the node G2;G5 are sampled separately without taking into account
the relationships. Therefore, the sampling process of AT model is
specific to node. Fig. 1(b) is the sampling process of ART model.
In the ART the nodes adjacent to the sampling node are treated
as the recipients. One of the recipients (G1;G3;G5) of G2 is sampled
at random when sampling the node G2. Separately, one of the
recipients (G5;G9) of G8 is sampled at random when sampling the
node G8. Essentially, the sampling process of ART is in the form
of the field around the node sampled, and the radius of the field
is 1. Fig. 1(c) shows the sampling process of HLDA. In the HLDA
each nodes is sampled in a hierarchical manner. When sampling
the node G2, the 1-dis nodes (G1;G3;G5) are sampled secondly,
the 2-dis nodes (G4;G6;G7;G8) are sampled thirdly, and so on. Obvi-
ously, the sampling process of HLDA is in the form of radiation.

The ART and HLDA models are the application of AT to the SSN.
As the radius of ART is 1, the sampling field is relatively small. The
sampling result merely representing the direct relationship could
not reflect the community’s block feature. The sampling process
of HLDA is in the form of radiation without considering the weight,
which ignores the impact of distance on sampling. For that, we
improve the ART and HLDA model, designing the 3 models Lin-
k_ART(LART), ART_Field(ARTF) and Link_ART_Field(LARTF) shown
in Fig. 1(d)–(f). Where Fig. 1(d) is the sampling illustration of LART.
In the LART, the link2;3 (the link between G2 and G3) treated as the
sampling center, the nodes (G2;G3) as the direct sampling nodes,
the nodes (G1;G4;G5) as the 1-dis sampling nodes, thus the sam-
pling radius of LART is 2. Fig. 1(e) is the sampling illustration of
ARTF, In the ARTF, the central node G2 is treated as the direct sam-
pling node, weighted sampling the 1-dis nodes (G1;G3;G5), 2-dis
nodes (G4;G6;G7;G8), and so on. For the sampling weight is
decreasing with increasing the distance, the sampling field of ARTF
forms a convergence region with a high weight in center and a low
weight in the edge. Fig. 1(f) shows the LARTF model. In the LARTF,
the endpoint (G2 and G3) of central link link2;3 are treated as the
direct sampling node, weighted sampling the 1-dis nodes
(G1;G4;G5), 2-dis nodes (G6;G7;G8), and so on. The LARTF extends
the sampling field of ARTF by link centralized sampling.

Eq. (1) is the force formula in the data field (Zhu, Ghahramani, &
Lafferty, 2003), representing the force between two elements on
topological distance. For the attenuation of context in propagation



Fig. 1. The sampling process of context.
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is increasing with increasing the distance, we choose Eq. (1) to sim-
ulate the influence of distance on the relevance of context. There-
fore, Eq. (1) is utilized as field sampling weight in ARTF and LARTF.

weightr;c ¼ exp � disðGr ; cÞ
r

� �2
 !

ð1Þ

where disðGi; cÞ is the distance between Gi and c, r is the distance
controlling factor. According to Eq. (1), the weight of Gi and c is
decreasing with increasing the distance of them, forming the field
with a high weight in center and a low weight in the edge. As the
center of the sampling field is c, the field is denoted as Fc . The prob-
ability density function of Fc can be express as follows:

fsðxjFcÞ ¼
weightx;cPjGj
x weightx;Gi

ð2Þ

where j G j is the number of nodes in the SSN.

2.2. Gibbs sampling analysis

In this section, the ARTs (ART, LART,ARTF, LARTF) models are
described, and the relevant notations are as follows:

G: The global networks, Gi is the ith node.
j G j: The number of nodes in G.
L: The links of G; linki;j is the link between Gi and Gj.
j L j: The number of links in G.
Fc: The sampling field around c(node or link).
x: A node chosen from Fc .
N: The number of key words in SSN, Ni is the number of key
works in Gi.
D: The number of messages in SSN.
w: The vocabulary vector of key words, wi is the ID of the ith
word in vector w.
z: The topic ID vector corresponding to w; zi is the topic ID the
wi belongs to.
T: The number of topics in SSN.
h: The topics distribution probability.
u: The key words distribution probability.
a: The topics priori argument to the topic distribution.
b: The key words priori argument to a special topic.

Fig. 2 shows the plate models of LDA, AT, ART, LART, ARTF and
LARTF.

The probabilistic generative process of ARTs can be described as
follows:
x j F � fsðx j FcÞ: Select an node from Fc as the sampling node.
z j h � MultinomialðhÞ: Extract a topic from the node in Fc. The

topic is obedient to the multinomial distribution with the priori
argument h.

h j a � DirichletðaÞ: The argument h is obedient to the Dirichlet
distribution with the priori argument a.

w j u � MultinomialðuÞ: The key word w in a topic is obedient
to the multinomial distribution with the priori argument u.

u j b � DirichletðbÞ: The u is obedient to the Dirichlet distribu-
tion with the priori argument b.

pðh;u; x; z;wja;b; FÞ ¼
YjLj
i¼1

YjGj
j¼1

pðhijjaÞ
YT

t¼1

pðutjbÞ

YD

d¼1

YN

n¼1

pðxdnjFÞpðzdnjhF;xÞpðwdnjudnÞð Þ
ð3Þ

where xdn represents the ID of the node the nth key word belongs to
in the dth message in field F; zdn represents the ID of the topic the
nth key word belongs to in the dth message in field F; wdn represents
the ID of the nth key word in the dth message in field F; hF;x and udn

represent the frequency of the topic zdn and wdn for a specific F when
the nth key word of dth message is generating. Integrating over the
hF;x and udn of Eq. (3), the marginal distribution function is obtained
in Eq. (4).

pðh;u; x; z;wja;b; FÞ ¼
YjLj
i¼1

YjGj
j¼1

pðhijjaÞ
YT

t¼1

pðutjbÞ

YD

d¼1

YN

n¼1

ðpðxdnjFÞpðzdnjhF;xÞpðwdnjudnÞÞ
ð4Þ

By the derivation of (McCallum et al., 2007), the conditional proba-
bility of x and z can be obtained as Eq. (5).

Pðxdn; zdnjx�dn; z�dn;w;a; b; FÞ /
azdn
þ nF;xdn ;zdn

� 1PT
t¼1 at þ nF;xdn ;t
� �

� 1

�
bwdn
þmzdn ;xdn

� 1PV
v¼1ðbv þmzdn ;vÞ � 1

ð5Þ

The posterior estimates of h and u can be calculated by Eq. (6)

ĥFjz ¼
az þ nF;x;zPT

t¼1ðat þ nF;x;tÞ
; ûtw ¼

bw þmt;wPV
v¼1ðbv þmt;vÞ

ð6Þ

where V is the number of words in vocabulary, nF;x;t denotes the
number of key word belong to the topic t in the node x specific to



Fig. 2. The plate models.
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F;mtv denotes the number of key word v long to the topic t. hFjz rep-
resents the frequency of the topic z occurrence in the context of Gj

specific to F. The Gibbs sampling process of ARTs is described in
Algorithm 1.
Algorithm 1. Parameter estimation in Gibbs sampling
1. initialize the node and topic assignments at random

2. repeat

3. for d ¼ 1 to D

4. for i ¼ 1 to N

5. draw xdn and zdn form Pðxdi; zdijx�di; z�di;w;a; b; FÞ

6. update nF;xdn ;zdn

and mzdn ;wdn
7. end for

8. end for

9. until reaching equilibrium

10. calculate the posterior estimates of h and u according to

Eq. (6)
3. Multiple sampling analysis

3.1. Semantic quantification

According to the analysis of ARTs, 3-dimensional topic distribu-
tion hcft can be obtained by Eq. (6), after the Gibbs sampling pro-
cess. For the hcft , the c is the element-dimension, ART (ARTF)
containing j G j elements, LART (LARTF) containing j L j. The f is
the field-dimension (link-dimension) containing j G j elements.
The t is the topic-dimension containing T-dimensional vector.
The T-dimensional vector represents the topic membership of a
node in the field Fc . Given an element in element-dimension, there
would be j G j nodes around it in field-dimension. Therefore, for the
3-dimensional topic distribution hcft , the field-dimension can be
seen as the subordinate of element-dimension. Summing over
the field-dimension could convert the 3-dimensional hcft into the
2-dimensional hct . The mct ¼

PjGj
j¼1hcjt represents the topic member-

ship of Fc. Thus, the mc ¼ ðmc1;mc2; . . . ;mcTÞ can be treated as the
coordinate of Fc in the sematic space.

3.2. Sampling convergence analysis

The General Gibbs sample the sampling field only once for each
iteration. There would be large differences of semantic coordinate
from each element (node or link), and the convergence is not easy
to be obtained. For that, we explore the multiple sampling in each
iteration, extending the ARTs into ARTs_Multiple. The relationships
of ARTs and ARTs_Multiple are illustrated in Fig. 3.

In order to quantify the effect of multiple sampling, we design
the following 3 global similarity measurement sim1; sim3 and
sim block.

sim1c ¼ U mc0 ;mcð Þ; disðc0; cÞ ¼ 1 ð7Þ
sim3c ¼ U mc0 ;mcð Þ; disðc0; cÞ ¼ 3 ð8Þ
sim blockc ¼

X
disðc0 ;cÞ63

weightc0 ;cU mc0 ;mcð Þ ð9Þ

where Uðmc0 ;mcÞ is the cosine similarity between c0 and c;U mc0 ;mcð Þ
is the average of Uðmc0 ;mcÞ; weightc0 ;c is the weight coefficient
shown in Eq. (1); sim1c is the average similarity between c and 1-
dis element. The sim1 reflects the similarity between the sampling
center and the neighbors. sim3c is the average similarity between
c and 3-dis element. For the effective radius of the block community
(the Minimum community structures) (Girvan & Newman, 2002) is
3, the sim3 reflects the similarity the sampling center and the edge
elements. sim blockc is the weighted sum of the similarity of c and
the element in 3-dis. For the impact of sampling center on the
element around is decreasing with increasing the distance, the
sim block c reflects the cohesion of the block community. It is more
appropriate to measure the sampling result.

We utilize the LFM benchmark (Lancichinetti et al., 2009) to
generate the artificial dataset G_500, employing the topology of
which to analysis the influence of the sampling frequency fr on
sim1; sim3 and sim block. The parameter settings for the generating
of G_500 is (j G j¼ 500; ad ¼ 3; dmax ¼ 15; cmin ¼ 10; cmax ¼ 35,
on ¼ 40; om ¼ 3;mi ¼ 2:5), where j G j is the number of nodes, ad
and dmax are the average and largest degree, cmin and cmax are
the numbers of nodes in the smallest and largest community, on
is the overlapping nodes, om is the number of the communities
an overlapping node belong to. mi is mixing coefficient. The
community structure is getting fuzzy with increasing mi. As the
simulation of semantic context, we select 30 topics at random,
each topic containing 200 key words. We select 30 nodes with
the largest degree from the G_500, assigning the 30 topics to the
selected 30 nodes, correspondingly. Each of the node which is
assigned topics selects 80 key words and assigns them to the
neighbor iteratively, until the number of assigned key words in



Fig. 3. The relationships of ARTs and ARTs_Multiple.
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each node are more than 200. By that, the assigned key words can
be seen as the semantic context.

We utilize the ART, ARTF, LART(r = 2), LARTF(r = 2) to sample
the G_500 for fr ¼ f1;2;3g, obtaining the average of
sim1; sim3; sim block shown in Figs. 4–6. The demonstration for
the comparison of Figs. 4–6 is list as follows:

(1) In Figs. 4–6 the averages of sim1; sim3, sim block are mono-
tonically increasing and tend to convergence with increasing
the Gibbs iterations. There exists a critical value of iterations,
above which the averages of sim1; sim3, sim block get
convergence.

(2) When getting convergence, the averages of sim1; sim3,
sim block are increasing with increasing the fr.

(3) The iteration required to convergence is decreasing with
increasing the fr.

(4) In Fig. 4 the average sim1 of ART and LART are larger than
that of ARTF and LARTF, however, the average sim3 of ART
and LART are smaller than that of ARTF and LARTF. It can
be explained that the non-field models (ART and LART) have
an impact scope in 1-dis, the field model (ARTF and LARTF) in
3-dis.

(5) By the comparison of Fig. 6, the averages sim block of ARTF
and LARTF are larger than that of ART and LART. It can be
explained that the ARTF and LARTF have a more compact
and effective block community.

3.3. Global similarity analysis

As the similarity between two elements is increasing with
increasing the sampling frequency fr, thus the global similarity
appears to be closed to each other when the fr getting larger. In
that case, the semantic coordinate would lose the differentiation
from each element, therefore the performance of semantic
Fig. 4. The comparison of ARTs on
coordinate is undesirable. To analyze the changing of the global
similarity with the increasing fr, we utilize the k-means clustering
method to cluster the elements in SSN as follows:

(1) When Uðmc0 ;mcÞ the similarity of between two adjacent
elements c0 and c is larger than a certain threshold, the c0

and c are combined into a cluster.
(2) The combined cluster is treated as a new element c, the aver-

age semantic coordinate of the cluster as the coordinate of c.
Repeat the step 1) until any similarity between two adjacent
elements is less than the threshold.

(3) The ratio of the size of the largest cluster and the size of the
global is sim ratio.

We apply the k-means clustering method in G_500 dataset gen-
erated above, plotting the average sim ratioðyÞ against the
thresholdðxÞ in Fig. 2. The illustration specific to ART for fr = 2 is
precisely carried out as follows:

(1) When threshold < 0:1, average sim ratio ¼ 1. In this case, the
G is merged into one cluster, implying that any similarity
between adjacent elements is larger than 0.1.

(2) When 0:1 < threshold < 0:8;0:05 < average sim ratio < 1,
implying that 95% similarity is in the range (0.1, 0.8).

(3) When 0:8 < threshold < 1, average sim ratio close to 0,
implying that very little similarity is in the range (0.1, 0.8).

It is can be known from Fig. 7 that the similarity is major in the
range (0, 0.5) for fr = 1, therefore the similarity is too low. For fr = 3,
the similarity is major in the range (0.5, 1). In this case, the similar-
ity is too high and the global similarity is close to each other. The
desirable case is fr = 2, the similarity major in the range (0.2, 0.8).
Figs. 4–6 show that the similarity is increasing with increasing
the sampling frequency fr, therefore, for fr > 3, the similarity is
average sim1 for fr ¼ f1;2;3g.



Fig. 5. The comparison of ARTs on average sim3 for fr ¼ f1;2;3g.

Fig. 6. The comparison of ARTs on average sim block for fr ¼ f1;2;3g.

Fig. 7. The average sim ratio against threshold for G_500.
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larger than 0.5. When ARTs applied to the G_500 dataset got
converge, the iterations, sim1; sim3, sim block; threshold range
(0:1 < sim ratio < 0:9) for fr=f1;2; . . . ;6g are listed in Table 1. The
comprehensive analysis of Figs. 4–7 and Table 1 shows the optimal
fr is 2 specific to G_500.
3.4. The analysis of fr in various scale datasets

To analyze the effective value of fr in various scale datasets, we
generate 10 groups of datasets with the size in f1000;2000; . . . ;

10;000g, utilizing the generative method of G_500. The iterations,
sim1; sim3, average sim block; threshold range ð10% < sim ratio
< 90%Þ calculated by the ART, LART, ARTF (r = 2), LARTF (r = 2)
are shown in Figs. 8–10. The analysis is as follows:

(1) When the scale gets larger, the iterations, sim1, sim3, aver-
age sim block; threshold range ð10% < sim ratio < 90%Þ are
tend to stable. It verified that the correlation between data
scale and convergence can be ignored.

(2) When the fr gets larger, the iterations get smaller. For fr = 3,
the iterations, average sim block and threshold range close to
the extremum.

(3) The relation of ARTs in the aspects of iterations and average
sim block are LARTF > ARTF > LART > ART, implying the
LARTF requires the most iteration to get converge and has
the best performance at average sim block.
(4) By the comparison of threshold in Fig. 10, for fr = 1 the max-
imum of the threshold is small, implying the global similarity
is too low, while for fr P 3, the global similarity is too high.
Therefore, the threshold the has an optical solution with
fr = 2.

From the analysis of Fig. 8–10 above, the optical sampling fre-
quency of ARTs is fr = 2 in various scale datasets.
3.5. The analysis of distance controlling factor r

The r is the input parameter of ARTF and LARTF. According to
Eq. (1) and (2), the r affects the size of sampling field and the
ratio of sampling weight within the sampling field. To demon-
strate the influence of r on the size and sampling weight, we
calculate the dis ratio of n-dis element with various r by Eq.
(10). The dis ratio for dis=f0;1;2;3;4;5g when r=f1;1:5;2;2:5;
3;3:5;4;4:5;5:5g is shown in Fig. 11. It can be known that the
dis ratio is close to 0 for dis > 1 when r < 1:5, implying the
scope of sampling field is within 1-dis. In this case the size of
sampling field is too small. According to Eq. (2), when r > 2:5
the valid n-dis is larger than 3, moreover the dis ratios of n-dis
are close to each other. In this case, the size of sampling field
is too large, and the differentiation of dis ratios are not obvious.
By the demonstration above, the valid value of r is within (1.5,
2.5) and valid dis 6 3.



Table 1
The iterations, sim1; sim3; sim block, threshold range as G_500 getting converge.

ARTs Measurement fr ¼ 1 fr ¼ 2 fr ¼ 3 fr ¼ 4 fr ¼ 5 fr ¼ 6

ART Iterations 17 15 12 12 11 11
sim1 0.34 0.44 0.62 0.63 0.64 0.64
sim3 0.06 0.07 0.08 0.08 0.08 0.08
sim block 2.34 3.07 4.5 4.56 4.59 4.61
threshold (0.05, 0.4) (0.27, 0.59) (0.5, 0.91) (0.56, 0.93) (0.62, 0.94) (0.69, 0.95)

LART Iterations 22 20 18 17 17 17
sim1 0.3 0.38 0.52 0.52 0.52 0.53
sim3 0.08 0.11 0.13 0.13 0.14 0.14
sim block 2.85 3.3 4.62 4.68 4.71 4.72
threshold (0.07, 0.51) (0.28, 0.64) (0.59, 0.96) (0.63, 0.97) (0.71, 0.98) (0.75, 0.99)

ARTF Iterations 34 30 22 22 21 21
sim1 0.3 0.35 0.37 0.38 0.38 0.38
sim3 0.16 0.19 0.24 0.24 0.24 0.25
sim block 3.35 4.01 5.05 5.21 5.29 5.35
threshold (0.1, 0.57) (0.31, 0.73) (0.69, 0.97) (0.76, 0.98) (0.81, 0.99) (0.85, 0.99)

LARTF Iterations 34 30 24 24 24 23
sim1 0.25 0.29 0.32 0.32 0.33 0.33
sim3 0.18 0.21 0.26 0.26 0.27 0.27
sim block 3.63 4.49 5.84 5.92 6.11 6.19
threshold (0.18, 0.59) (0.35, 0.81) (0.76, 0.98) (0.82, 0.99) (0.87, 0.99) (0.90, 0.99)

Fig. 8. The comparison of iterations for various scale datasets.

Fig. 9. The comparison of average sim block for various scale datasets.

Fig. 10. The comparison of threshold (10% < sim ratio < 90%) for various scale datasets.
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dis ratioðdis;rÞ ¼ expð�ðdis=rÞ2ÞP1
i¼1 expð�ði=rÞ2Þ

ð10Þ

We generate various scale datasets with the size of
f1000;2000; . . . ;10;000g, for each size generating 20 times, then
separating the 200 dataset into 10 groups by the scale. Fig. 12 is
the threshold ð10% < sim ratio < 90%Þ distribution box plot of ARTF
and LARTF for the 10 groups scale datasets. In Fig. 12 each box
represents the distribution of the threshold of 20 datasets with the
same scale. On each box, the central mark is the median, the edges
of the box are the 25th and 75th percentiles, and the whiskers
extend to the most extreme points. In Fig. 12 when r < 1:5 the
maximum threshold of ARTF and LARTF is less than 0.5, implying
the 80% global similarities are less than 0.5, and the sampling is
insufficient. When r > 2:5 the minimum threshold of ARTF and
LARTF is larger than 0.6, implying the 80% global similarities are



Fig. 11. The histogram of dis ratio against r for dis ¼ f0;1;2;3;4;5g.

Fig. 12. The distribution box plot of the threshold (10% < sim ratio < 90%) for ARTF and LARTF.
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larger than 0.6, and the sampling is overfitting. Therefore, the valid
value of r is within (1.5, 2.5), and the valid sampling field radius
(dis) of ARTF and LARTF is 3.
4. Semantic community detection method and estimation
model

4.1. Field clustering method

From the analysis of distance controlling factor r, the ART and
LART can be also seen as the field sampling model with the radius
(dis) = 1, the radius of ARTF and LARTF is 3. From the semantic
quantification, the semantic coordinate mc of element c represents
the multidimensional topic membership of the field Fc . Therefore
the cohesion of field Fc can be obtained by mc. Thus we employ
the PCA method to weight the semantic coordinate mc , obtaining
the cohesion Wc of field Fc expressed in Eq. (11).

Wc ¼ mc �K;K ¼ ½k1; k2; . . . ; kT � ð11Þ

where, ki is the ith eigenvalue of the correlation matrix of the T-
dimensional semantic coordinate.

The field clustering method treats the field as a unit, the clusters
as detected community. If two element c and c0 have a dis equal to
1, the fieldc and fieldc0 are more similar to each other. Therefore, the
case that the dis of the two core elements is 2 is defined as core-
related. The clustering process is to cluster the two core-related
fields into a new field, the merged two core elements treating as
the new core element of the new field. The process can be precisely
described as follows:

(1) Sort the semantic cohesion W in descending order, forming
the W-queue;

(2) Select the top k fields from W-queue, guaranteeing the
selected k fields cover the entire network justly;
(3) After combining the core-related fields in the selected k
fields, the clusters are the detected communities, moreover
the intersecting nodes of the clusters are overlapping nodes.

Fig. 13(a) is a representative illustration of ART in field cluster-
ing, assuming the G3;G4;G5;G7 have the larger cohesion, F3 and
F4; F4 and F5 are core-related, G3–G5 are the core elements of the
cluster formed by merging F3–F5. Fig. 13(b) is an illustration of
LART, assuming the L1–L4 have the larger cohesion, F2 and F3 are
core-related, L2–L3 are the core elements of the cluster formed by
merging F2–F3. Fig. 13(c) is an illustration of ARTF, assuming the
G1;G2;G6;G7 have the larger cohesion, F1 and F2; F6 and F7 are
core-related, G1–G2 are the core elements of the cluster formed
by merging F1–F2;G6–G7 are the core elements of the cluster com-
bined by F6–F7. Fig. 13(d) is an illustration of LARTF, assuming the
L2–L3 have the larger cohesion, F2 and F3 are core-related, L2–L3 are
the core elements of the cluster formed by merging F2–F3.

4.2. Evaluation models

According to the quantification of semantic coordinate in ARTs,
the semantic coordinate mc of element c represents the coordinate
of node (ART, ARTF) or link (LART, LARTF). For the traditional eval-
uation model designed specific to node, we convert the link coor-
dinate (LART, LARTF) into node coordinate via Eq. (12). The
similarity Uðmi;mjÞ between the adjacent node (Gi, Gj) represents
the weight of linki;j, thus adjacent matrix S of G can be obtained
by Uðmi;mjÞ.

mi ¼
X

disðGi ;GjÞ¼1

mlinki;j

degreeðGiÞ
ð12Þ

The traditional evaluation models are listed as follows, where

Cout
i ¼

P
p2Ci ;qRCi

Apq; C
in
i ¼

P
p;q2Ci

Apq; j L j¼
P

p;q2GApq;C
in
i ðjÞ ¼

P
p2Ci

Ajp;

Cout
i ðjÞ ¼

P
pRCi

Ajp. In semantic aspects, we take advantage of the
formation of traditional evaluation models, improving the variable



Fig. 13. The sample process of context.
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as Cout
i ¼

P
p2Ci ;qRCi

Spq; Cin
i ¼

P
p;q2Ci

Spq; j L j ¼
P

p;q2GSpq;C
in
i ðjÞ

¼
P

p2Ci
Sjp;C

out
i ðjÞ ¼

P
pRCi

Sjp, allowing the traditional evaluation to
evaluate the semantic communities. The improved models are
noted as s-model.

EQ ¼ 1
2jLj

XjCj
i¼1

X
v;w2Ci

1
OvOw

Avw �
degreeðvÞdegreeðwÞ

2jLj

� �
:

s� EQ ¼ 1
2jLj

XjCj
i¼1

X
v;w2Ci

simðmi;mjÞ
OvOw

Avw �
degreeðvÞdegreeðwÞ

2jLj

� �
:

AC ¼ 1
jCj
XjCj
i¼1

Cout
i

min Cout
i þ 1

2 Cin
i

� �
; 2jLj � Cout

i � 1
2 Cin

i

� �� � :

MMC ¼
XjCj
i¼1

2Cout
i

Cin
i

:

Silhouette ¼ 1
jCj
XjCj
j¼1

1
jCjj

X
i2Cj

ai � bi

maxðbi; aiÞ

0
@

1
A;

ai ¼
1
jCkj

X
i;j2Ck

Aij; bi ¼max
1
jCrj

X
iRCr ;j2Cr

Aij

 !
:

Ductance ¼
XjCj
i¼1

Cout
i

Cin
i þ Cout

i

:

Expansion ¼
XjCj
i¼1

Cout
i

jCij
:

NCut ¼
XjCj
i¼1

Cout
i

Cin
i þ Cout

i

þ Cout
i

2 jLj � 1
2 Cin

i

� �
þ Cout

i

:

AF ¼ 1
jCj
XjCj
i¼1

X
j2Ci

Cin
i ðjÞ

Cin
i ðjÞ þ Cout

i ðjÞ
� �r :
5. Experiment

5.1. The comparison of ARTs on evaluation models

We conduct the experiments on ARTs with non-semantic (tradi-
tional) and semantic evaluation models. The experimental process
is the following. (1) Generate 100 datasets with 5000 nodes via the
method of G_500. (2) Carry out the semantic community detection
method and record the detected communities for ART, LART, ARTF
(r = 2), LARTF (r = 2). (3) Employ the non-semantic and semantic
evaluation models to evaluate the detected communities. Fig. 14
shows the distribution histogram of ARTs on the 100 datasets.
Table 2 is the 25th and 75th percentiles of the ARTs on the 100
datasets, in which EQ ; Silhouette; Expansion;AF are larger (AC,
MMC;Ductance;Ncutare smaller) the detected communities are
more reasonable. In the same way, s-EQ ; s-Silhouette, s-
Expansion; s-AF are larger (s-AC, s-MMC; s-Ductance; s-Ncut) the
detected communities are more reasonable.

Taking the case of EQ and s-EQ in Fig. 14, the ARTs is distributed
evenly in terms of EQ, implying the ARTs have a similar non-
semantic structure. In terms of s-EQ the frequency of ARTF and
LARTF is less than ART and LART within (0.25, 0.35), and more than
ART and LART within (0.35, 0.4), implying the distribution of ARTF
and LARTF is larger than that of ART and LART. Therefore, the ARTF
and LARTF have a better performance than ART and LART on s-EQ.
The comprehensive analysis of Fig. 14 and Table 2 shows the ART
and ARTF perform better than ARTF and LARTF on non-semantic
models (EQ, AC; Expansion;Ncut and AF), however undesirable on
semantic models (s-EQ ; s-AC; s-MMC, s-Silhouette; s-Ductance; s-
Expansion, s-Ncut and s-AF). This experimental study has verified
the ARTF and LARTF have a better performance than ART and ARTF
on semantic community evaluation.

5.2. The comparison on semantic evaluation models

In this section, the performance of semantic evaluation models
is compared by increasing the inner similarity of community under
the premise the community structure is constant. 20 sets of



Fig. 14. The histogram or non-semantic and semantic evaluation models.
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artificial datasets are generated by LFR (Lancichinetti et al., 2009),
with j G j¼ 2000, ad ¼ 5; dmax ¼ 30; cmin ¼ 10; cmax ¼ 100;
on ¼ 300; om ¼ 4;mi ¼ 2:5. The semantic coordinate is allocated
as follows:
(1) Choose one node in the center of the community as the
community label node.

(2) Each community label node propagate its label to its
sampling field with the weight in Eq. (2).



Fig. 16. The comparison of ARTs and non-semantic algorithms.

Fig. 15. The histogram or non-semantic and semantic evaluation models.

Table 2
The 25th and 75th percentiles of the ARTs.

Models ART LART ARTF LARTF

EQ ð0:4316;0:4763Þ ð0:4327;0:4739Þ (0.4159, 0.476) (0.4149, 0.4773)
s-EQ (0.3078, 0.3523) (0.3143, 0.3567) ð0:3246;0:3655Þ ð0:3263;0:3612Þ
AC ð1:9791;2:2643Þ ð1:9374;2:3009Þ (2.0272, 2.3222) (1.9946, 2.3111)
s-AC (0.9802, 1.4088) (0.8393, 1.2011) (0.3935, 0.9103) ð0:3256;0:9989Þ
MMC (4.3312, 5.2827) (4.0991, 5.0891) ð3:6157;4:736Þ ð3:5493;4:8254Þ
s-MMC (3.3655, 3.961) (3.0999, 3.7937) ð2:5991;3:3894Þ ð2:4371;3:3577Þ
Silhouette ð0:5206;0:6611Þ ð0:5401;0:6943Þ (0.4944, 0.6559) (0.4798, 0.6484)
s-Silhouette (0.4826, 0.5728) (0.4958, 0.591) ð0:5104;0:6274Þ ð0:5367;0:6353Þ
Ductance (0.6617, 1.1225) (0.6919, 1.1393) ð0:6331;1:0727Þ ð0:6111;1:0113Þ
s-Ductance (0.9112, 1.2892) (0.8878, 1.2474) ð0:6525;1:1373Þ ð0:6453;1:0974Þ
Expansion ð4:5877;5:9056Þ ð4:5257;5:9226Þ (4.1301, 5.4029) (4.3533, 5.6348)
s-Expansion (0.849, 1.3999) (0.9826, 1.5487) ð1:2756;1:7819Þ ð1:2600;1:8522Þ
Ncut (0.8696, 1.3252) (0.8913, 1.2691) ð0:8585;1:4999Þ ð0:8748;1:3772Þ
s-Ncut (1.6476, 2.0376) (1.5481, 1.9766) ð1:1592;1:6848Þ ð1:1637;1:6747Þ
AF ð1:6500;1:8849Þ ð1:6545;1:9025Þ (1.6341, 1.8684) (1.6452, 1.8558)
s-AF (1.9865, 2.2200) (2.0259, 2.3201) ð2:1479;2:3934Þ ð2:1199;2:3498Þ
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(3) The received weighted labels are treated as the semantic
coordinate for each node.

The original propagation point is center of community, thus the
nodes in the same community have the similar semantic
coordinate. That approximates the feature of semantic structure.
According to the analysis of r, when r gets larger the sampling
weight tends to evenly. Therefore, when the r is small, the inner
similarity of community is larger than outer. In this case, the
semantic community structure is more valid. The experiment is
carried out for r within (1, 5.5), then normalize the result of
semantic evaluation models to compare them obviously. The



Table 4
The s-EQ ; s-AC; s-MMC; s-AF of semantic community detection algorithms.

Methods CS = 6 CS = 8 CS = 10 CS = 12 CS = 14

TURCM s-EQ 0.198 0.271 0.339 0:331 0.283
s-AC 2.434 2.113 1.812 1:503 2.016
s-MMC 4.231 3.311 2.381 1.864 2.336
s-AF 1.867 1.922 2.174 2.232 2.031

CART s-EQ 0.152 0.249 0.302 0.294 0.255
s-AC 2.727 2.468 2.163 1.783 2.364
s-MMC 4.084 3.293 2.287 1:665 2.134
s-AF 1.934 2.043 2.096 2.241 1.918

CUT s-EQ 0.133 0.231 0.266 0.278 0.227
s-AC 2.562 2.151 1.837 1.652 2.029
s-MMC 4.147 3.581 2.599 1.952 2.463
s-AF 1.882 1.914 1.952 2.169 1.847

LCTA s-EQ 0.164 0.239 0.278 0.311 0.249
s-AC 2.611 2.282 1.733 1.597 2.257
s-MMC 3.819 3.083 2.441 1.784 2.515
s-AF 2.03 2.075 2.133 2:346 2.121

The bold figure means the optimal value.

Table 3
The topics extracted from Enron dataset.

Topic California power Gas transportation Trading Deals

Word Power Gas Price Meeting
Transmission Energy Market Contract
Energy Enron Dollar Report
Calpx Transco Nymex Enron
California Chris Trade Deal
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normalized semantic evaluation models are shown in Fig. 15,
where the average increment of 20 datasets is plotted using the
ladder diagram on the bottom, the filled ladder diagram represents
the increment is larger than 0.015.

It can be seen from Fig. 15, for r > 3:5, the increment of
s-Silhouette; s-Ductance; s-Expansion, s-Ncut is less than 0.015,
implying the differentiation of them is weak. Therefore the s-
Silhouette; s-Ductance, s-Expansion; s-Ncut are merely suit to evalu-
ate the communities with big differentiation. The efficiency of s-EQ,
s-AC; s-MMC; s-AF are better than s-Silhouette; s-Ductance; s-Expan-
sion, s-Ncut.
5.3. The comparison on non-semantic community detection algorithms

In this section we choose the representative community
detection algorithm COPAR (Gregory, 2010), Infomap (Rosvall &
Bergstrom, 2008), LFM, as the non-semantic algorithms, comparing
the performance of EQ, s-EQ ;AC; s-AC;MMC; s-MMC;AF, s-AF. We
generate 12 sets of datasets utilizing the LFR benchmark
(Lancichinetti & Fortunato, 2009) with j G j = 2000, ad = 5,
dmax = 30, cmin = 10, cmax = 100, on = 300, om = 4, mi = 2.5. To
intuitively contrast the difference from each algorithm, the aver-
ages of 12 datasets are ascending sorted in Fig. 16. The analysis from
Fig. 16 is the following: (1) The EQ ;AF of ARTs are lower than that of
non-semantic algorithms, however the AC, MMC are higher than
them. (2) The s-EQ ; s-AF of ARTs are higher than that of non-seman-
tic algorithms, however the AC, MMC are lower than them. That has
verified that ARTs has an undesirable topological structure but a
more reasonable semantic structure than non-semantic algorithms.
5.4. The comparison on semantic community detection algorithms

In this section, we give a comparison on the representative
semantic community detection algorithms which need to preset
the number of communities. We choose the Enron dataset
(McCallum et al., 2007) which is widely used in semantic
community detection as the experimental data. The Enron dataset
contains data from about 150 users, mostly senior management of
Enron, about 0.5 M items. Table 3 is the four groups of topics
extracted from the Enron dataset by LDA analysis. For the s-EQ ; s-
AC; s-MMC; s-AF have been verified to be the appropriate
evaluation modes, we choose them to measure the semantic com-
munities. Table 4 is the s-EQ, s-AC; s-MMC; s-AF obtained by the
semantic algorithms of TURCM (Sachan et al., 2011), CART
(Pathak et al., 2008), CUT (Zhou et al., 2006), LCAT (Yin et al.,
2012). The CS in Table 4 represents the number of communities.
By the comparison of Table 4, the optimal number of communities
for Enron is 10 for each semantic community detection algorithm.
For ARTs, the detected number of communities is 11, the optimal s-
EQ ; s-AC; s-MMC; s-AF is 0.352, 0.134, 0.148, 0.258 respectively. It’s
verified the result of ARTs approaches to the optimum of all the
semantic community detection algorithms. And the advantage of
ARTs is need not to preset the number of communities.
6. Conclusion

We have presented the multiple sampling ARTs model, the
improving LDA models for overlapping community detection,
which avoid presetting the number and the size of communities.
The multiple sampling, with sampling frequency equal to 2, can
either accelerate the convergence or improve the efficient of sam-
pling. The proposed multiple sampling ARTs models, treating the
field as the clustering unit, can achieve overlapping community
detection.

For the Semantic Social Network, the ARTs models can be
applied to discover the dynamic topic, model the structural
transformation, and predict the emotional tendency. The model
would form a useful component in systems for routing message
recommendation and prioritization, and understanding the inter-
actions in an organization in order to make recommendation about
improving organizational efficiency.

The ARTs model explicitly quantizes the semantic information
hidden in the social network. Future work will develop the ARTs
models to quantize the dynamic community-topic relationship.
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