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Demand clustering in freight logistics networks is an important strategic decision for car-
riers. It is used to incorporate new business to their networks, detecting potential econo-
mies, optimizing their operation, and developing revenue management strategies. A
specific example of demand clustering is truckload combinatorial auctions where carriers
bundle lanes of demand and price them taking advantage of economies of scope. This
research presents a novel approach to cluster lanes of demand. Community detection is
used to cluster the emergent network finding profitable collections of demand.
Numerical results show the advantages of this method.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Logistics clusters are increasing around the world following the example of successful models like Dubai, Panama,
Rotterdam, Memphis, Sao Paulo, Singapore, among others (Yu et al., 2005; Boile et al., 2011; Sheffi, 2012, 2013).
Complementarities and synergies contribute to the economic prosperity of the constituent firms (commodity production,
storage, transportation, and other supporting activities). Logistics clusters are significantly important for companies that pro-
vide freight transportation services. Sheffi (2013) summarizes the main competitive advantages achieved by transporters
providing services in these places. The high volume of freight between clusters generates larger shipments. Thus, economies
of scale are achieved because the shipment unitary cost is lower for vehicles that are filled to capacity. Firms operating large
vehicles, e.g., Valemax ships or double stacking trains, considerably benefit from these economies. When vehicles are not
filled by single shipments, freight logistics companies can distribute costs by consolidating several shipments in facilities
and vehicles, and, hence, achieving economies of density. Intermodal companies related to the maritime and railroad modes
usually benefit from this activity. Additionally, for the trucking mode, less-than-truckload (LTL) companies take advantage of
these features. The huge amount of freight entering and leaving logistics clusters reduces idling times and fosters economies
of frequency. In general, these economies benefit companies in all modes. Last but not least, symmetric flows between clus-
ters propitiate economies of scope by reducing the fraction of shipment unitary cost associated to empty repositioning. This
considerably benefits all modes, especially those with fixed facilities within clusters, e.g., docks, terminals, stations, consol-
idation facilities, etc.

Governments recognize the economic importance of logistics clusters and increasingly provide incentives for firms to
(re)locate into these facilities (Sheffi, 2013). However, this is a slow process. Sometimes it is not even an alternative for many
shippers and carriers that face enormous relocation costs, off-shoring issues, and potential detriment of relationships with
clients. Additionally, logistics clusters might not be a feasible option because they have not emerged naturally, they are not a
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priority for local governments, or they are not suitable for unstable economic landscapes. In these cases, flexible firms with
low use of specialized facilities have competitive advantages over other rigid modes. The challenge for these firms is devel-
oping operations that mimic the advantages of logistics clusters, increase revenues for transporters, and add value to their
clients.

Truckload (TL) companies are the best example of flexible freight transportation carriers. Undeniably, TL is the most pop-
ular type of operation for the most popular freight mode: Trucking. This mode accounts for 29% of the for-hire-transportation
market share. This value is higher than the joint share for the second and third modes, i.e., air (16%), and rail (8.0%) (USDOT,
2012). Setar (2013a, 2013b) estimates that TL accounts for 61% of the 2013 US general trucking industry revenue ($193.4
Billion). TL firms are considerably impacted by economies of scope (Caplice, 1996; Jara-Diaz, 1981, 1983; Mesa-Arango
and Ukkusuri, 2013) and frequency (Sheffi, 2013) induced by empty trips resulting from freight imbalances.

Firms know that empty trips profoundly affect their economy. Companies like Best Buy, Coca-Cola Supply LLC, JB Hunt
Transport, Johnson & Johnson, Walmart Stores, Inc, among others, have participated of the Empty Miles program (VICS,
2014) to share unused transportation capacity and reduce empty-trip inefficiencies (Belson, 2010). In 2009, the chain of
department stores Macy’s cooperated with shippers and carriers to reduce 1500 empty trips in the US. In average, they saved
$25,000 transportation costs annually for each shared lane (VICS, 2009). JCPenney, another important department-store
chain, shared 41,000 backhauls that saved them $8.1 Million between 2008 and 2009 (Andraski, 2010). Schneider
National, the largest private TL carrier in North America, increased dedicated backhaul revenue by 25% on specific accounts
thanks to this initiative (VICS, 2009). Unfortunately, empty trips are not rare for trucking operations. 25% of the 2010
truck-kilometers in Europe where traveled empty (De Angelis, 2011). Reduction of empty trips can significantly benefit soci-
ety because they are related to serious externalities like emissions, traffic congestion, and wear of roads. The monetary sav-
ings obtained by Scheider National also saved them 5554 gallons of diesel fuel that eliminated 61.65 tons of carbon dioxide,
147.24 tons of articulate matter, and 1.47 tons of nitrous oxide. Similarly, JCPenny eliminated 9750 tons of CO2 by utilizing
20% of its empty miles in 2009 (4 million miles) and 6% (1.3 million miles) in 2008.

Although empty trips can be reduced through collaboration, TL carriers can develop strategies to promote this behavior
making them more attractive and profitable. The challenge is detecting and clustering synergetic lanes, i.e., lanes that min-
imize empty trips when operated together. Additionally from a revenue management perspective, the right combination of
TL volume and price has to be considered in the development of profitable clusters of demand. However, prices and volumes
add a new level of complexity to this problem. The high level of competition in the TL market makes the development of
pricing strategies very difficult. Thus, carriers that look at market values when analyzing clusters realize that they vary sig-
nificantly. Variations in the observed traffic volumes (Caplice and Sheffi, 2006) also occur in a symbiotic fashion. This hap-
pens for several reasons: seasonal changes (e.g., end of the year or harvests), forecasting errors, macroeconomic impacts (e.g.,
economic recessions or booms), network disruptions (e.g., inclement weather), among others. An approach that incorporates
these sources of uncertainty can significantly benefit the development of demand clusters.

The concept of clustering has been approached in similar works. Bidding advisory models have been developed to bundle
lanes in TL combinatorial auctions (CA) (Song and Regan, 2003, 2005; Wang and Xia, 2005; Lee et al., 2007; Chang, 2009;
Huang and Xu, 2013; Xu and Huang, 2013, 2014; Kuyzu et al., 2015; Triki et al., 2014; Ergun et al., 2007). Additionally, geo-
graphic clustering has been used to reduce the computational complexity of vehicle routing problems (Bowerman et al.,
1994; Bodin and Golden, 1981; Dondo and Cerdá, 2007; Özdamar and Demir, 2012; Schönberger, 2006; Simchi-Levi et al.,
2005). Similarly, clustering has been used to understand the distribution of freight demand and simplify logistics operations
(Cao and Glover, 2010; Sharman and Roorda, 2011; Singh et al., 2007; Qiong et al., 2011). However, these works present sev-
eral limitations. In many cases revenues are not considered -or highly simplified- when demand bundles are constructed.
Furthermore, uncertainty related to lane price and volume is not captured. On the other hand, clustering approaches used
in the past focus on geographic proximity but cannot capture network effects resulting from the complex interdependencies
among lanes. The main objective of this paper is proposing a systematic framework for demand clustering in freight logistics
networks that overcomes these limitations. The contributions of the framework to literature are fourfold: (1) incorporating
economic interdependencies among clustered lanes considering network effects, (2) considering market prices in the clus-
tering process, (3) integrating uncertainty associated to variations on lane prices and volume, (4) developing a computation-
ally efficient method. These contributions are demonstrated with numerical experiments.

The paper is organized as follows. Section 1 introduces and motivates this research. Section 2 reviews related literature.
Section 3 clearly defines the problem to be solved. Section 4 presents the methodology to solve it. Section 5 presents numer-
ical results and advantages. Section 6 summarizes the work and provides future research directions.
2. Literature review

This section reviews relevant literature related to carrier economies and network clustering. It is observed that an effi-
cient method for demand clustering in freight logistics networks that accounts for shipment volume and price uncertainty
is missing in literature. This motivates the development of the proposed model.

Finding groups of demand with synergetic properties in freight logistics networks is very important for strategic analysis,
decision making, and business improvement at TL firms. However, detecting these lanes is not an easy task. Analyzing the
exponential number of all the possible combinations of lanes (Song and Regan, 2003), prices and desired volumes is a hard
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combinatorial problem known as the lane bundling problem, where demand is grouped based on complementary character-
istics. This intractable problem requires the computation of several NP-hard sub problems. Thus, bidding advisory models
have been developed to study it in the context of TL CAs (Song and Regan, 2003, 2005; Wang and Xia, 2005; Lee et al.,
2007; Chang, 2009; Huang and Xu, 2013; Xu and Huang, 2013, 2014). The underlying concept behind lane bundling is
achieving economies of scope (Caplice, 1996; Jara-Diaz, 1983, 1981). Although recent bidding advisory models (Kuyzu
et al., 2015; Triki et al., 2014; Ergun et al., 2007) represent competitors using stochastic prices, none of these works consider
the uncertainty related to variations in freight flows and prices simultaneously.

Economies of scope are achieved by strategically positioning trucks such that follow-up loads are guaranteed and routing
costs are distributed among several shipments. Backhauls are basic examples of economies of scope (Fig. 1). If a truck deliv-
ers a shipment from i to j with price p1

ij, cost cij, and returns empty to i (cost cji), the expected profit will be

P1 ¼ p1
ij � ðcij þ cjiÞ. However, if there is a backhaul (loaded return) the profit is P2 ¼ p1

ij þ p2
ji � ðcij þ cjiÞ where any price

p2
ji increases profits (P1

6 P2).
Fig. 1. Example of economies of scope.
In this work, the lane bundling problem is addressed using a clustering approach where subsets of elements sharing sim-
ilar characteristics are grouped into clusters. In the last few years researchers and practitioners have used clustering meth-
ods to aggregate elements based on their proximity in multidimensional spaces, e.g., hierarchical, k-means, two-step, ad-hoc
clustering, among others. Several vehicle routing problems (Bodin and Golden, 1981; Dondo and Cerdá, 2007; Özdamar and
Demir, 2012; Schönberger, 2006; Simchi-Levi et al., 2005) take advantage of these methods by dividing the original network
into subsets of geographically-close nodes where finding optimal routes is less cumbersome. Additionally, freight logistics
problems have used clustering to understand the geographic distribution of demand and simplify logistics operations
(Cao and Glover, 2010; Sharman and Roorda, 2011; Singh et al., 2007; Qiong et al., 2011). However, there are three limita-
tions when proximity-based methods are used to cluster elements with an underlying network structure (Fortunato, 2010):
(1) clustering points in a network requires at least a similarity metric for each pair of nodes, so storage space grows expo-
nentially, (2) defining metric spaces to describe proximity in graphs is not trivial and significantly increases computational
complexity, and (3) numerical experiments show that clusters highly depend on the type of metric defined.

Community detection algorithms (CDAs), e.g., Girvan and Newman (2002), Blondel et al. (2008), overcome these
limitations. Refer to Fortunato (2010) for a comprehensive review on this topic. CDAs are developed to unmask highly
interconnected elements in a network. Although they have been used to analyze several complex networks (e.g., social
and biological networks, the World Wide Web, the international trade network), they are scarcely used in
transportation applications. Nejad et al. (2012) is one of the few examples of using CDAs to understand transportation prob-
lems. Their work describes traffic conditions in highway networks but does not consider logistics operations or
vehicle-routing. So, to the best of the authors’ knowledge, community detection has neither been used in trucking research
nor for the lane clustering problem. Nonetheless, CDAs are extremely important to consider network effects between lanes,
i.e., economies of scope.

Applying CDAs in this context requires defining the elements to cluster and their level of interconnectivity. In this work
these elements are lanes. For each pair of lanes the interconnectivity metric is defined as the utility of having them in the
same cluster, i.e., served by the same trip-chain. Fan et al. (2006) also propose using utility functions to determine the prox-
imity of clustered vehicles in vehicular ad-hoc networks (VANETS). They hypothesize utility functions based on available
information. However, in this research utility is not explicitly available in the original transportation network (TN).
Hence, a series of network transformations are required to construct an interconnectivity network (IN) suitable for commu-
nity detection.

Demand clustering in freight logistic networks is important for the businesses and operations of carriers. Clear examples
of such importance are the bidding advisor models developed to bundle services in TL combinatorial auctions. This review
shows that efficient methods that account for uncertainty on shipment volume and price are needed. Likewise, the under-
lying network structure of this problem makes it suitable for clustering frameworks like CDAs. Nonetheless, this requires a
proper definition of the network to cluster. These motivations encourage the development of an efficient and novel cluster-
ing framework that considers interdependencies between lanes and includes uncertainty related to lane volumes and prices.
The specific problem solved in this research is defined in the next section.
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3. Problem definition

This section describes the economic relationships in freight logistics networks served by TL carriers. Then the problem to
be solved is clearly defined.

In general, the clients of TL companies are known as Shippers. Let a lane be the volume of truckloads per unit of time
between an origin–destination (OD). Shippers are responsible for several lanes associated to their supply chains. They
require transportation because they do not own transportation assets or because they own fleets but require additional
capacity. TL carriers serve lanes of demand. A carrier can serve all or a subset of lanes for a specific shipper, and can
work for many of them at the same time. TL companies operate over transportation networks (TNs). Their profits are
determined by the right combination of prices and operational costs. Variable costs are related to loading/unloading
activities, loaded, and empty movements. Clearly, TL carriers are only paid for loaded movements. So, minimizing empty
trips by guaranteeing follow-up loads is vital for profitable operations. Deploying vehicles in places where little freight
originates is undesirable. Although fixed costs impact firm finances, Nagle et al. (2011) suggest that it is sufficient to
consider variable costs only when developing effective revenue management strategies. So, fixed costs are not considered
in the analysis. Carriers explore economies of scope by strategically serving demand with the right balance between vol-
ume and topology.

Uncertainty affects the operation of businesses because forecasted demand and prices are used to cluster demand
based on vehicle routing strategies. However, if the actual demand significantly differs from the forecasted one there
are economic losses and discontent from the carrier, who might compensate by reducing its level of service. This, in
turn, affects the regular operation of the shipper and its supply chain. A good understanding of demand uncertainty
helps the carrier developing proper clusters of demand. A highly competitive environment forces TL carriers to choose
market prices that are significantly interrelated to lane volumes. These elements are affected by common sources of
uncertainty.

The problem solved by this research is clearly stated below. Table 1 summarizes mathematical notation. This paper

considers a carrier serving a set of lanes bD and looking for the possibility of incorporating new lanes D n bD into its logistics
operation (D are all lanes considered in the problem). For each lane i 2 D historical observations of shipment prices Pi and
lane volumes Qi are available. They are organized in the o� jDj matrices P and Q respectively, where o is the number of
observations. The carrier operates over a TN GðN;AÞ, where, N are pickup/delivery nodes, and A are directed arcs connect-
ing these nodes. Arcs ðo; dÞ 2 A are associated to traversing costs cod, i.e., for loaded or empty truck movements, and nodes
o; d 2 N to pickup/delivery costs 1o; 1d. The carrier has a fleet of trucks of size v. Given these characteristics of the carrier
and TN, we are asked to find the clusters of demand D‘; ‘ ¼ 1; . . . ;L that represent increased expected profits for the
carrier.
Table 1
Mathematical notation.

Notation Definition

GðN;AÞ Transportation network (TN) composed by a set of nodes N connected by the set of traversing arcs A
cod Traversing cost associated to each arc ðo;dÞ 2 A
D Set of all lanes considered in the problembD Set of current lanes served by the carrier bD � D
L Total number of clusters found by the algorithm
D‘ ‘th cluster of lanes. D‘ � D; ‘ ¼ 1; . . . ;L
Fð�jl;rÞ Normal cumulative distribution function for mean l and standard deviation r
f ðo; dÞ Mapping from o;d 2 N to i 2 D. f : N2 ! D such that demand in lane i 2 D is picked–up at o 2 N and delivered at d 2 N
GðD;AÞ Demand super network composed by a set of demand nodes D connected by the set of traversing arcs A
gði; jÞ Mapping from i; j 2 D to d; o 2 N. g : D2 ! N2 such that d 2 N is the delivery node associated demand in lane i 2 D and o 2 N is the pickup

node associated to demand in lane j 2 D
hðiÞ Mapping from i 2 D to o;d 2 N. g : D! N2 such that demand in lane i 2 D is picked–up at o 2 N and delivered at d 2 N
M Number of samples selected for the Latin Hypercube Sampling process
o Numbers of historical observations of prices the corresponding shipment flows available to the carrier
P M � jDj matrix of samples for each shipment price associated to lane i 2 D
P o� jDj matrix of observations for each shipment price associated to lane i 2 D
�p Vector of mean prices. �p ¼meanðPÞT

Q M � jDj matrix of samples for each volume of shipments associated to lane i 2 D
Q o� jDj matrix of observations for each volume of shipments associated to lane volume i 2 D
�q Vector of mean volume of shipments. �q ¼ meanðQÞT

1i Loading / unloading cost associated to serving lane i 2 D
V Covariance matrix for the observations ½PQ�
v Number of available vehicles (fleet size)
WðD;xÞ Demand super network composed by a set of demand nodes D and a set of undirected weighted links x (interconnections)
xij Flow of trucks repositioned to serve demand j 2 D after serving demand i 2 D. ði; jÞ 2 A
vod Flow of trucks traversing arc ðo; dÞ 2 A
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4. Methodology

This section proposes an algorithmic approach to solve the problem formulated in Section 3, which is based on a series of
network transformations illustrated in Fig. 2. Table 2 summarizes the pseudo code for the main algorithm which is supported
by four modules.
Fig. 2. Conceptual representation of network transformations.
Intuitively, the TN is composed by a set of nodes (pickup or delivery according to the lane distribution). Directed arcs
between these nodes indicate traversing costs for loaded and empty trips (repositioned after delivering). Likewise, each ship-
ment in a lane is associated to a price and pickup/delivery costs. Historical observations of prices and demand are used to
design a number of scenarios according to their likelihood of occurrence and joint dependency. This is achieved using a
Latin hypercube sampling method that accounts for dependency among sampled variables, i.e., price and demand level.
Each sample determines an instance of prices and demand (truck volume) for the analyzed lanes. For each instance, a
demand super network (DSN) – where nodes are lanes and directed arcs represent the repositioned flow of trucks between
lanes – is constructed. A profit maximization linear program (LP) is used to find the optimal distribution of loaded and empty
trips in the DSN. Each lane can be part of a trip-chain that connects several lanes and provides economies of scope to the
carrier. However, there are two issues for proper demand clustering at this point: (1) flows are aggregated so it is not pos-
sible to differentiate trip-chain, and (2) – assuming trip-chains can be found – there is no evident connection between all
lanes in a trip-chain (only the downstream and upstream connections are known). So, a novel method is proposed to detect
and disaggregate trip-chains, i.e., tours composed by synergetic lanes in the DSN. The joint utility between every pair of
demand in these tours is computed and used to generate an interconnectivity network (IN) where each pair of lanes is
weighted using the bilateral utility of having them in the same tour. This network is updated after running each sampled
scenario. Then, when all scenarios are explored, a CDA is applied over the IN taking advantage of the rich information accu-
mulated by the sampling process and revealing the corresponding clusters of profitable demand.
Table 2
Main algorithm: Demand clustering in freight logistics networks.

Step Description

1 �p; �q;V  meanðPÞT ;meanðQÞT ; covð½PQ�Þ
2 ½P Q �  latinHypercubeSampleNormal

�p
�q

� �
;V ;M

� �
Module 1

3 x jDj � jDj matrix: xij ¼ 0
4 For m ¼ 1; . . . ;M
5 pT ; qT  m th row of P, mth row of Q
6 xm  demSupNetLPðcod; 1i;

bD; p; q; vÞ Module 2
7 x xþ updateInterconnectionsðxm; p; cod; 1iÞ Module 3
8 End
9 If (xij < 0)

10 xij  0
11 Else
12 xij  

xij

m
13 End
14 D1; . . . ;DL  clusteringðxÞ Module 4
15 Return D1; . . . ;DL
In general, problems that are affected by uncertainty are solved using stochastic programming, robust optimization, or
scenario analysis (e.g., Ma et al., 2010; Patil and Ukkusuri, 2007; Ukkusuri, 2005; Remli and Rekik, 2013). Although the solu-
tions of stochastic programs present the right balance between risks and benefits, the tractability of these methods is sig-
nificantly affected by the curse of dimensionality. Furthermore, the combinatorial nature of the clustering problem
aggravates this limitation. On the other hand, problems solved using robust optimization are more tractable. Nonetheless,
their low-risk solutions significantly underestimate benefits. This research follows a scenario analysis approach where
uncertainty is addressed by sequentially testing several interdependent scenarios generated from the sampling process.
As solutions are optimized for each DSN instance, the IN is updated with the bilateral utility of having two lanes in the same
trip-chain. If a demand duplet appears in the optimal solution for several scenarios, the strength of the corresponding utility
is reinforced. After testing all interdependent scenarios, the CDA uses information accumulated through this process to con-
struct the clusters. This balances the pros and cons of stochastic and robust optimization. It is computationally tractable and
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relaxes conservative solutions by fathoming several instances of the problem. Thus, the resulting clusters balance profitabil-
ity under different realizations of demand and price, which adds a desirable level of risk without sacrificing tractability.

Formally, the algorithm starts by computing the mean �p; �q and covariance V of historical observations P andQ to generate
M dependent samples from a Latin Hypercube sampling process, i.e., P 2 RM�jDj and Q 2 RM�jDj (Module 1). A sufficiently large
number of samples M is defined by the modeler. For each sample m 2 f1; . . . ;Mg an instance of DSN is generated and a profit
maximization network flow LP is solved to find the optimal distribution of trucks xm that maximizes carriers profits (Module
2). Then, each resulting trip-chain is fathomed to determine the utility between duplets of lanes xij and update the IN
(Module 3). After properly standardizing xij, a CDA is used to unmask the demand clusters D‘ (Module 4).
4.1. Module 1: Latin hypercube sampling with dependent variables

A sampling process is used to replicate stochastic demand and prices. Sampling is a common technique in experiment
design and scenario testing. The Monte Carlo method (Metropolis and Ulam, 1949) is a popular procedure but it is expected
to generate biased samples. The Latin hypercube sampling (McKay et al., 1979; Iman et al., 1981) overcomes this limitation
by evenly distributing the multidimensional space (Latin hypercube) and selecting samples from each subdivision. However,
this approach cannot capture flow and price dependency which is important as trucking volumes and prices are not inde-
pendent. For example, fluctuations in the flow of trucks delivering the final demand of a product proportionally affect the
movement of goods in the upstream supply chain. Similarly, economies of scope correlate prices and volumes, e.g., high vol-
ume of truckloads in one direction and low volume in the opposite one might result in lower prices for the backhauls. Stein
(1987) proposes a variation of the Latin hypercube sampling that considers dependency between variables. Therefore, that
method is used in this module.

Latin hypercube sampling with variable interdependency is a useful tool when limited data about volume and price fluc-
tuations are available. In the worst case, estimations of the mean and covariance are required. Although this work assumes
normal distributions to represent these variations, virtually any type of distribution can be assumed if it is properly sup-
ported. This is one of the benefits of developing a modular clustering framework.

Table 3 summarizes the pseudo code for this module. The vector of average values l ¼ �pT �qT
� �T and the corresponding

covariance matrix V are used to generate M samples from a multivariate normal distribution z 2 RM�jlj. These values are
ranked column-wise to divide the space into M independent subdivisions, which are standardized in the interval ½0;1�
and assigned to the middle of each range / 2 RM�jlj. Finally, the matrix of samples y ¼ ½P Q � 2 RM�jlj is populated using
the values yij for which the normal cumulative distribution function Fðyijjlj;

ffiffiffiffiffiffi
Vjj

p
Þ is equivalent to /ij.
Table 3
Module 1: Latin hypercube sampling with dependent variables.

Step Description

1.1 z M � jlj matrix where each row is a sample with multivariate normal distribution (l;V)
1.2 / M � jlj matrix where /ij correspond to the ranking of zij in the jth column of z
1.3 / ð/� 0:5Þ=M
1.4 y m� jlj matrix where yij corresponds to:

yij  yij : /ij ¼ F yijjlj;
ffiffiffiffiffiffi
Vjj

q	 

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

2pVjj

p Z yij

1
e
�ðt�lÞ2

2Vjj dt

1.5 Return y
4.2. Module 2: Demand super network linear program

This module constructs the DSN first and then solves a network-flow LP to find the flow of trucks that maximizes profits
in this network.

The DSN is described as follows. Let GðD;AÞ be the DSN where the set of super nodes corresponds to the set of lanes D.
Nodes in D are connected by a set of directed arcsA, where ði; jÞ 2 A represents the trucks repositioned to serve demand j 2 D
after serving demand i 2 D. The following network transformations are illustrated in Fig. 3. Each arc is associated with a
repositioning utility defined as uij ¼ pj � cgði;jÞ � chðjÞ � 1j, where pj is the current sampled price and 1j is the loading/unloading
costs for lane j 2 D, cgði;jÞ ¼ cdioj

is the traversing cost of a truck repositioned from di 2 N (Node where demand i 2 D is deliv-
ered) to oj 2 N (Node where demand j 2 D is picked up), and chðjÞ ¼ cojdj

is the traversing cost of a truck serving the



Fig. 3. Arc representation in the DSN and its relationship with the TN.
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downstream demand j 2 D picked up at oj 2 N and delivered at dj 2 N. The mapping functions gði; jÞ ¼ ðdi; ojÞ 2 A and
hðjÞ ¼ ðoj; djÞ 2 A are conveniently defined to make transformations between GðD;AÞ and GðN;AÞ.

Subsequently, the LP (1)–(6) is solved. Here, the variables xij represent the flow of repositioned trucks. The Objective
Function (1) maximizes the utility associated to the deployment of x over GðD;AÞ such that Constraints (2)–(6) are satisfied.
Constraint (2) indicates flow conservation for the trucks serving each lane j 2 D. Constraint (3) states that demand in the set

of lanes currently served by the carrier bD most be served. On the other hand, Constraint (4) specifies that lanes in the set of

potential demand to be included in the carrier network D n bD are optionally served. Constraint (5) designates that there is a
limited availability of trucks v to serve the network. Finally, Constraint (6) stipulates the non-negativity nature of xij. Notice
that this LP can efficiently be solved by regular commercial software, e.g., CPLEX.
max
X
ði;jÞ2A

uijxij ð1Þ
s.t.
X
i2D

xij ¼
X
i2D

xji; 8j 2 D ð2Þ
X
i2D

xij ¼ qj; 8j 2 bD ð3Þ
X
i2D

xij 6 qj; 8j 2 D n bD ð4Þ
X
i2D

xij 6 v; 8j 2 D ð5Þ
xij P 0; 8ði; jÞ 2 A ð6Þ
4.3. Module 3: Update interconnections

This module finds each tour in the network and relates each duplet of demand i; j 2 D with a weight xij in the IN. The
pseudo code presented in Table 4 describes this process. First each flow xij in the DSN is associated with the correspond-
ing flows in the TN, i.e. vgði;jÞ ¼ vdioj

and vhðiÞ ¼ voidi
. Then arcs A in the TN are locally modified to consider only arcs with

flow. The main loop searches trip-chains in the network. At each iteration, the arc ðs; rÞ 2 A with less flow vsr is selected
and removed from A. Then, the shortest path T from r to s is computed. Its cost is cðTÞ. Each flow vij associated to arcs in
T, and arc ðs; rÞ itself is reduced by vsr . Subsequently a set of lanes T is generated to hold the demand elements asso-
ciated to T [ fðs; rÞg. Notice that the mapping function f ðoi; diÞ ¼ i 2 D is used to map elements from GðN;AÞ to GðD;AÞ.
Then, the average cost associated to each element in T is computed and the interconnectivity between elements in each
tour is updated by adding the fractional income associated to the demand objects i and j minus the corresponding aver-
age cost.



Table 4
Module 3: Update interconnections.

Step Description

3.1 v jNj � jNj matrix
3.2 vgði;jÞ  vgði;jÞ þ xij8ði; jÞ 2 A
3.3 vhðiÞ  vhðiÞ þ xij8ði; jÞ 2 A
3.4 A £

3.5 A A [ fðo; dÞ;8o;d 2 N : xod > 0g
3.6 x jDj � jDj matrix: xij ¼ 0
3.7 While ðmaxðxÞ > 0Þ
3.8 ðs; rÞ  argminðvod : ðo; dÞ 2 AÞ
3.9 A A n fðs; rÞg
3.10 T; cðTÞ  compute shortest path from r 2 N to s 2 N over GðN;AÞ using cost matrix c. Return path T � A and its corresponding cost cðTÞ
3.11 vod  vod � vsr ;8ðo;dÞ 2 T [ fðs; rÞg
3.12 T  £

3.13 T  T [ ff ðo;dÞ 2 D;8ðo; dÞ 2 T [ fðs; rÞgg
3.14 �cðT Þ  vsr

cðTÞþcsr
jT j

3.15 If ðjT j ¼ 1Þ
3.16 8i 2 T : vsrðpi � 1iÞ � �cðT Þ > 0

xii  xii þ vsrðpi � 1iÞ � �cðT Þ
3.17 Else
3.18 8i; j 2 T : i < j;vsr

ðpiþpjÞ�ð1iþ1jÞ
jT j�1 � �cðT Þ > 0

xij  xij þ vsr
ðpiþpjÞ�ð1iþ1jÞ

jT j�1 � �cðT Þ
3.19 End
3.20 End
3.21 Return x
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4.4. Module 4: Clustering

Module 4 (described by the pseudo code in Table 5) applies the community detection algorithm presented in Blondel et al.
(2008). This algorithm is based on modularity maximization. Modularity ‘‘measures the density of links inside communities as
compared to links between communities’’ (Blondel et al., 2008). This method has been successfully and efficiently used to
detect network clusters in several applications. Fortunato’s (2010) review highlights the multiple advantages of this algorithm.
It can be used to analyze weighted directed networks, which is not the case for several efficient algorithms in literature, e.g.,
Girvan and Newman, 2002. Numerical experiments show that the algorithm is extremely fast and tractable for graphs with
up to 109 edges, the modularity maxima found by the method are better than other greedy techniques, e.g., Clauset et al.
(2004), and computational times outperform other modularity-based methods. Some limitations of this algorithm include
the possibility of finding spurious partitions and variability in the clusters based on the order in which nodes are considered.
Table 5
Module 4: Clustering.

Step Description

4.1 x xþxT

4.2 Di  fig;8i 2 D
4.3 s 0
4.4 Hs  0
4.5 Hsþ1;D

‘  computeModularity (x;Di) Sub-module 5
4.6 While (Hsþ1 > Hs)
4.7 s sþ 1
4.8 D fi : Di – £g
4.9 x jDj � jDj matrix. xij ¼ 0
4.10 xij  Weight of links between Di and D j

4.11 Di  fig;8i 2 D
4.12 Hsþ1;D

‘  computeModularityðx;DiÞ Sub-module 5
4.13 End
4.14 Return D1; . . . ;D‘; . . .
The main input for this algorithm is the interconnectivity matrix x, which is first added to its transpose to standardize

directed weights to the undirected case. The algorithm starts assigning each demand i to a cluster Di. Then, initial clusters are
recomputed based on modularity maximization sub-module (Sub-module 5). Next, the main while loop runs and sequen-
tially aggregates clusters up to finding the configuration with the maximum modularity.

Since carriers are interested in detecting new clusters inside previously found clusters, for every cluster D‘ Module 4 is recur-
sively applied. Thus, the initial clusters are defined as mega-clusters (MC). Each MC is composed by several interior sub clusters
(SC). Consecutively, interior SCs are composed by smaller SCs and so on. This hierarchical clustering groups lanes in several
strata.



44 R. Mesa-Arango, S.V. Ukkusuri / Transportation Research Part E 81 (2015) 36–51
4.4.1. Sub-module 5: Compute modularity
This sub-module (Table 6), which is also described in Blondel et al. (2008), iteratively swaps nodes between clusters. When

there is increment in modularity DH0 by adding a node i to a cluster Dk this action is performed. The process stops when mod-
ularity cannot be increased. Although this is a greedy approach, it has shown to be very efficient in practical settings.
Table 6
Sub-module 5: Compute modularity.

Step Description

5.1 g  1
5.2 While (g ¼ 1)
5.3 g ¼ 0
5.4 For i ¼ 1; . . . ; jDj
5.5 DH 0
5.6 k fk 2 D : i 2 Dkg
5.7 For j ¼ 1; . . . ; jDj : xij > 0; j 2 D‘;D‘ \ fig ¼ ;
5.8 _krs  

P
r;s2D‘ ðxrsÞ

5.9 k
^

is  
P

s2D‘ ðxisÞ
5.10 K  1=2

P
r;s;2DðxrsÞ

krs  
P

r2D
P

s2D‘ ðxrsÞ

5.11 k̂ri  
P

r2DðxriÞ

5.12 DH0  _krsþ2k
^

is
2K þ ksþk̂i

2K

	 
2
� �

� _krs
2K �

ks
2K

	 
2
� k̂i

2K

	 
2
� �

5.13 If (DH < DH0)
5.14 DH DH0

5.15 k ‘

5.16 g ¼ 1
5.17 End
5.18 End
5.19 End
5.20 End
5.21 Hsþ1  1

2K

P
i;j2D xij �

k̂ri k̂rj

2K

� �
dði; jÞ; dði; jÞ ¼ 1; if i; j 2 D‘

0 otherwise

�
5.22 Return Hsþ1;D

‘

In summary, clusters of lanes are found using interdependent historical information for volume and price on every lane.
Latin-hypercube is used to sample dependent volume/price scenarios. The optimal distribution of flow between lanes is
determined for each sample solving a profit maximization LP. Synergetic lanes are interconnected based on their bilateral
utility generating an interconnectivity network that is updated iteratively. Finally, community detection is used to cluster
the network that emerges and finding profitable demand collections. An important benefit of this method is its flexibility
to be implemented in well-known programming platforms like Matlab, Python, C++, Java, among other. Furthermore, each
module can be either developed or borrowed from available open sources or commercial software. For example, Latin hyper-
cube sampling is available in platforms like Matlab, R, Python, SAS/JMP, etc. Linear programing can be solved using commer-
cial software, e.g., AMPL/CPLEX, ILOG CPLEX, Gurobi, Lindo, Gams, Matlab, etc. Source code for community detection
algorithms is available for Matlab, C++, Python, among other, and implemented in several network analysis software, e.g.,
NetworkC and Gephi.
5. Numerical results

This section presents 2 theoretical numerical examples to illustrate the methodological framework. The first small exam-
ple is used to visualize the performance of the method. Since the simplicity of this example cannot show the full potential of
the method, a larger example is presented. Afterwards, a numerical experiment is performed to test the scalability of the
proposed demand clustering methodology. The suite of algorithms is coded in Matlab and run in an average desktop with
Inter � Core 2 Duo Processor Processor (E8400) at 3.00 GHz and 4.00 GB of RAM. The open source code developed by
Scherrer and Blondel (2014) is used for community detection.

The first numerical example is based on the TN in Fig. 4. Two lanes are included in the set of lanes considered for new

businesses, i.e., D n bD ¼ fðe; f Þ; ðc; dÞg ¼ f1;2g. Likewise, the carrier is currently serving one lane, i.e., bD ¼ fða; bÞg ¼ f3g.
Sufficiently large truck capacity is assumed. The total costs related to each lane (traversing plus loading/unloading) are pre-
sented in Table 7. Likewise, this table shows the corresponding repositioning costs after delivering. It is less expensive to
reposition trucks after delivering in the new Lane 1 to the pickup demand at the current Lane 3 and vice versa.
Repositioning from these two lanes to the new Lane 2 is more expensive.



Table 7
Example 1: Costs in the TN.

From To Total Cost Type

c d 4 New Lane 1
e f 4 New Lane 2
a b 4 Current Lane 3
b a 4 Repositioning Arc
b c 1 Repositioning Arc
b e 3 Repositioning Arc
d a 1 Repositioning Arc
d c 4 Repositioning Arc
d e 8 Repositioning Arc
f a 3 Repositioning Arc
f c 8 Repositioning Arc
f e 4 Repositioning Arc

Fig. 4. Numerical example 1: Transportation Network (TN).
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Mean values for prices �p and levels of demand �q are available in Table 8. The corresponding covariance matrix V within
and between price and demand level for each pair of lanes is available in Table 9, where negative values indicate opposite
behavior between the observations. These are the main inputs to collects samples from Module 1. Mean prices for the new
Lane 2 are in average higher than those from Lanes 1 and 3. Likewise, the levels of demand are in average higher for Lane 2
and lower for Lane 1. The covariance matrix shows that demand and prices have higher variability for Lane 2. In general,
demand and prices have opposite trends, i.e., the more the demand the lower the price. Finally, demand and prices in
Lane 2 have opposite trends to the values for Lanes 1 and 3.
Table 8
Example 1: Mean levels of demand and prices for each lane.

Lanes D Mean level of demand �q Mean price �p

1 80 10
2 200 30
3 100 10

Table 9
Example 1: Covariance for levels of demand and prices between lanes.

V Demand Price

1 2 3 1 2 3

Demand 1 400 �2000 400 �20 300 �40
2 �2000 10,000 �2000 100 �1500 200
3 400 �2000 400 �20 300 �40

Price 1 �20 100 �20 1 �15 2
2 300 �1500 300 �15 225 �30
3 �40 200 �40 2 �30 4
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Three samples (i; ii; iii), i.e., M ¼ 3, are used to illustrate the application of the model. The sampled values of price P and
demand Q are presented in Table 10. These samples are collected from the Latin Hypercube Sampling technique presented in
Module 1 based on the values for �p; �q, and V . They follow the trends observed on the dataset and discussed before.

Sampled prices P and levels of demand Q are used to construct instances of the optimization problem in Module 2. For
each of these instances, Table 11 presents the utilities uij between lanes. Although high prices on Lane 2 increase the related
marginal utilities for earlier instances, these values tend to decrease and utilities for other lanes increase.

Each instance is optimized and Table 12 shows the corresponding optimal values for the objective function. Instance ii pre-
sents the best system profits followed by i and iii. Notice that this variation is related to the uncertainty addressed in this paper.

Furthermore, Table 13 shows truck flows xij related to each optimized instance. Lanes 1 and 3 tend to complement each
other. On the other hand, Lane 2 seems to perform better by serving itself (backhaul). In optimal conditions, a small amount
of flow is repositioned between the current Lane 3 and the new Lane 2. In optimal conditions it would be profitable serving
the 3 lanes together. However this is not always possible when carriers are asked to prioritize (cluster) subsets that would be
more desirable.

Therefore, interconnections between lanes xij are estimated (Module 3) and updated after solving each instance of the
optimization problem. Then, the corresponding matrix is standardized as described on the Main Algorithm. The correspond-
ing interconnectivity matrices are presented in Table 14. These results reinforce the importance of serving Lane 2 using back-
hauls and also the strong synergy that exists between Lanes 1 and 3.
Table 11
Example 1: Utility between lanes related to each sample.

Instance i Instance ii Instance iii

Lanes 1 2 3 1 2 3 1 2 3

1 1 33 3 2 18 5 3 3 7
2 �3 37 1 �2 22 3 �1 7 5
3 4 38 0 5 23 2 6 8 4

Table 12
Example 1: Objective function values for each sample.

Instance i ii iii

Objective function 4440 5280 3000

Table 13
Example 1: Truck flow repositioned between lanes for each sample.

Instance i Instance ii Instance iii

Lanes 1 2 3 1 2 3 1 2 3

1 0 0 100 0 0 80 0 0 60
2 0 80 20 0 180 20 0 280 20
3 100 20 0 80 20 0 60 20 0

Table 10
Example 1: Latin Hypercube Sampling.

Lanes D

Samples 1 2 3

Demand Q i 100 100 120
ii 80 200 100
iii 60 300 80

Price P i 9 45 8
ii 10 30 10
iii 11 15 12

Table 14
Example 1: Intermediate and standardized temporal interconnectivities.

Instance i Instance ii Instance iii Standardized

Lanes 1 2 3 1 2 3 1 2 3 1 2 3

1 0 0 200 0 0 600 0 0 1080 0 0 360
2 0 2640 660 0 5880 1060 0 6720 1200 0 2240 400
3 200 660 0 600 1060 0 1080 1200 0 360 400 0
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Finally, the standardized interconnections are used to construct the demand clusters DL as described in Module 4. These
results are presented in Table 15 which shows that, if the carrier is asked to cluster complimentary lanes, it is better to group
Lanes 1 and 3 (D1) and Lane 2 performs well served with backhauls (D2).
Table 15
Example 1: Demand clusters.

Cluster 1 (D1) Cluster 2 (D2) Modularity

{1,3} {2} 0.21
In an ideal situation the carrier can configure its network such that all demand is served optimally. However, there are
cases when it has to cluster or prioritize subsets of demand to be served conjointly under uncertain prices and levels of
demand, e.g., combinatorial auctions, new business opportunities, among others. This method provides good quality clusters
that enhance the profits related to synergetic lanes served together. Thus, Table 16 compares the profits expected from each
cluster with respect to the system optimal, which gives a sense of its quality. Clearly, the sum of profits for independent clus-
ters is very similar to the system optimal (gap below 1.3%).
Table 16
Example 1: Profit comparison.

Instance Optimal profit Gap

D1 D2 D1 þ D2 D

i 720 3700 4420 4440 0.5%
ii 840 4400 5240 5280 0.8%
iii 860 2100 2960 3000 1.3%
Given the simplicity of the previous example, a larger theoretical problem is presented to illustrate the value of this
method. The second numerical example is based on the TN in Fig. 5(a). Each arc in the grid network has unitary cost.
Without loss of generality, it is assumed that the cost for each lane (traversing plus loading/unloading) is equivalent to
the sum of unitary costs for covered arcs. Repositioning costs correspond to the shortest path between lanes in the grid net-

work. Currently, the carrier serves jbDj ¼ 21 lanes and is considering other 21 lanes for new businesses. In total, this analysis
considers jDj ¼ 42 lanes. A number of o ¼ 100 contemporaneous observations for price P and shipment volume Q are avail-
able for each lane. The mean ½�p; �q� and covariance V for these values are illustrated in Fig. 5(b).

The carrier selects M ¼ 100 samples to undertake the analysis (Module 1). For each sample, the linear program in Module
2 is solved and the IN populated (Module 3). Fig. 6 presents the resulting IN and shows that several lanes present synergies
when operated together. However, these synergies are stronger for groups of them. For example, the new lane 7 is strongly
related to the current lane 22, which is intuitive by the directionality of the flows in Fig. 5. Furthermore, current lanes 30 and
32 complement these movements by reducing empties. Notice that the geographic position of 30 and 32 results in no direct
interconnection between them but they have strong common allies, i.e., 7 and 22. Similarly, the new lane 15 forms a strong
Fig. 5. Numerical example 2: (a) TN and demand (left), (b) mean and covariance for price and truck volumes (right).



Fig. 6. Numerical example 2: Interconnectivity Network (IN).
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triplet with lanes 23 and 25 giving continuity to the current traffic flows. On the other hand, there are isolated lanes with
scarce interconnections but strong connectivity to themselves, i.e., new lane 19 and current lanes 29, 35, 41. These lanes
are characterized by backhaul movements and this can happen for several reasons, e.g., they are isolated or peripheral in
the network, the topological characteristics of lanes in their neighborhoods are not suitable for follow-up loads, neighbor
lanes have stronger synergy with other lanes in the system. Interestingly, lane 29 has no interconnections but its
self-strength is extremely high, i.e., it has no synergy but is very valuable for the carrier. This is because it is a profitable
but peripheral lane. Other groups of lanes hidden in the IN are mined using community detection (Module 4).

The clustering algorithm reveals seven MCs (Fig. 7(a)). Community detection reinforces the intuition presented above by
unmasking synergies not distinguishable by observation. 22 MCs are observed, i.e., 7 aggregating more than two lanes and 15
are singletons. MC 1 is composed by lanes 7, 22, 30, 32 as noticed above. Synergies are complemented by the new lanes 4, 8,
3 and current lanes 26, 39. MC 2 is composed by lanes 15, 23, 25 -noticed before- and complemented with the current lane
37. Other clusters are MC 3 composed by new lanes 18, 9, 6, current lane 34, MC 4 by new lanes 11, 13, 16 only, MC 5 by new
lanes 5, 2, current lane 27, by new lanes 1, 17 only, MC 7 by new lane 20, current lane 24. Each of the remaining lanes is a
cluster itself. Lanes 19, 29, 35, 41, mentioned above, are in this category. Interestingly, many current lanes are benefited by
adding new lanes. On the other hand, clusters composed only by new lanes represent new business opportunities for the
carrier.

The hierarchical structure of the clusters is obtained by fathoming MCs. Fig. 7(b) shows the composition of the MCs and
their corresponding SCs. MC 1 is divided in two SCs: SC 1.1 with strong interconnected lanes and SC 1.2 with other intercon-
nected lanes that have less strength, MC 2 segregates lane 37 and creates SC 2.1 with the strong triad 15, 23, 25. Furthermore,
lanes 18 and 5 are separated from M3 and M5 creating new SCs. MCs 4, 6, 7 are strong by themselves and no disaggregation
is needed. This example shows that analysing the freight demand clustering problem is considerably complex even for small
instances. The proposed methodology reduces this complexity and is a viable alternative for carriers that face large instances
of this problem in their regular operations.
Fig. 7. Numerical Example 2: (a) MCs of demand (notation: [MC ID, lane ID]) (left), (b) hierarchical clustering (right).
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The scalability of the method is tested with a numerical experiment. The number of samples in the experiment is set to
M = 100. The geography of the transportation network is randomly generated with traversing cost equal to the Euclidean dis-
tance between nodes. Likewise, the set of lanes D and the corresponding sets of observation P and Q are synthetically gen-
erated following appropriate ranges avoiding inconsistencies. Table 17 summarizes the experiment where demand varies
from 25 to 500 lanes and the corresponding pickup/delivery nodes go from 50 to 1000.

Table 17 shows that the method is suitable for sufficiently large instances. The modules that are spending the most com-
putational time are the one related to the solution of the LP (Module 2) and the one where trip-chains are searched to update
the IN (Module3). Likewise, modularity and number of clusters increases as the number of demand objects increases. In gen-
eral, the number of MCs (computed before starting the recursive process described in Module 4) represents a large propor-
tion of the total clusters found.
Table 17
Scalability experiments.

Demand Nodes MCs Modularity Total clusters CPU Time (s)

Inputs Module 1 Module 2 Module 3 Module 4 Total

25 50 6 0.71 12 0.00 0.00 2.76 1.56 1.08 5.40
50 100 21 0.83 32 0.11 0.02 8.44 7.46 1.19 17.21

100 200 30 0.83 47 0.03 0.05 30.09 40.06 5.51 75.74
200 400 108 0.83 135 0.47 0.31 189.17 233.03 19.00 441.98
500 1000 284 0.90 340 1.22 4.06 2836.70 3212.40 28.83 6083.20
There are several key insights from these results. Network effects must be considered when clustering freight demand.
Although geographic proximity highly impacts clustering, it is not the only and most important attribute. Bilateral utility
between lanes determines their actual proximity, which is a function of the trip-chains encompassing them. Thus, topology
(geography and directionality), shared profits (volumes, costs, and prices), and contemporaneity, are key elements for
demand clustering in freight logistics networks affected by uncertainty. High bilateral utility is a key trait for clustering
demand but it is not sufficient. The strength and degree of interconnectivities between lanes determine their actual close-
ness, in social networks jargon: ‘‘the friend of your friend is likely also to be your friend’’ (Newman, 2003). Furthermore,
lanes complement at different levels. Those with higher synergies remain together over several sub-clusters. Lanes with less
strength either disconnect leaving the stronger elements clustered, or agglomerate into new sub clusters with other syner-
getic lanes. Not all lanes are synergetic in the system. Some of them are not suitable to be clustered and they operate better
alone. This happens because they are distant, i.e., geographically far, with opposite directionalities, or not competitive with
respect to other lanes already clustered. Finally, the method is suitable for real world applications where large number of
lanes need to be analyzed.
6. Conclusions

This research considers the problem of clustering lanes of demand in freight logistics networks. This is motivated by the
economies of scope achieved by important logistics clusters implemented over the world. Demand clustering is relevant for
flexible transporters that need to identify groups of synergetic lanes. These lanes should be profitable under uncertain vol-
umes and prices. Empty-trip reduction is critical to achieve this goal because it considerably decreases operational costs.
Furthermore, this phenomenon mitigates negative externalities to society. The clustering problem is approached from a
truckload (TL) perspective. TL is the most popular and flexible type of operation for freight transportation.

Demand clustering in logistics networks is important for several reasons. First, it facilitates the analysis and prioriti-
zation of demand for TL carriers, which is essential to detect new business opportunities that can be included into their
current networks efficiently. Thus, clusters have to be carefully built in order to add synergies that reduce empties and
increase profits. Furthermore, optimizing routing and scheduling over the complete network covered by large carriers is
computationally demanding. An appropriate clustering approach is vital to detect sub-networks that can be optimized
efficiently. Finally, knowledge about lanes that perform well when served together is important to develop pricing
and revenue management strategies that add value to the business of their clients, i.e., shippers. For example, two lanes
from two separate shippers served in isolation would be individually expensive. However, if economies of scope are
achieved and they are part of the same cluster, the carrier can price them lower without monetary loses. This makes
the current service competitive (low price), and reduces transportation expenses for the shippers.

This paper proposes a novel algorithmic approach to cluster lanes of demand, which is based on dependent sampling over
historical data and a series of network transformations. Briefly, Samples for price and volume are collected using the
Latin-hypercube technique. A profit maximization linear program is solved to find the optimal distribution of trucks associ-
ated to each sample. Based on these flows, trip-chains are mined to determine the bilateral utility of synergetic lanes. Finally,
these utilities are used to populate an interconnectivity network, which is explored with a community detection algorithm to
cluster demand lanes.
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The contributions of this paper to the literature are (1) proposing a novel clustering framework to consider interdepen-
dencies between lanes, (2) incorporating market prices in a revenue management fashion, (3) considering the interrelation
and variability of lane volumes and prices, (4) developing an algorithmic approach that is computationally efficient.

Numerical experiments show the importance of the method. Geographic nearness is not the only attribute to consider
when clustering demand in logistics networks. The contemporaneous bilateral utility determined by the profit of serving
lanes in the same trip-chain is an accurate metric of proximity that takes into account the different dimensions of this com-
plex problem. Additionally, this paper shows that lanes present synergies at different levels, i.e., in a hierarchical fashion.
Thus, carriers can analyze the opportunities of serving combinations of lanes with different priorities, which is important
for decision making in complex networks. Consequently, in some cases, it is better not to consider some lanes that are in
the vicinity of others but do not contribute to their local synergy. The model is scalable for real world applications.

Research hereby can be extended in several directions. First, this work demonstrates that community detection algo-
rithms can be used in logistics problem -specifically demand clustering- using an appropriate definition of the network to
cluster. Although the model focusses on the TL market, further research can be developed accounting for modes that not only
benefit from economies of scope/frequency but also scale/density. This is the case of consolidated operations, e.g.,
less-than-truckload (LTL). Accounting for such economies requires the development of appropriate methods to determine
bilateral utilities so that community detection is applied in the proper network. Second, although the proposed linear pro-
gram (LP) is sufficient to capture synergies between lanes, the model can be improved adding other operational constraints
in Module 2 if this is required. Practically, any possibility can be explored and complexity will change as a function of the
complexity of the implemented approach. Numerical results show that this module roughly contributes to 46% of compu-
tational time. So improvements can considerably increase the performance of the overall algorithm. Third, there are consid-
erable similarities between the current LP and the well-known minimum-cost flow (MCF) problem. Framing the LP as a MCF
problem will improve performance significantly as several efficient solution algorithms exist for it, e.g., network simplex
(Ahuja et al., 1993). Forth, algorithmic efficiency can be improved by developing new efficient approaches in Module 3 to
find tours and update interconnections. Currently, this module contributes to roughly 53% of overall computational time.
The fundamental properties of efficient algorithms that explore cycles in networks can be approached with this purpose.
For example, the efficient Tarjan’s algorithm (Tarjan, 1972) finds strongly connected components in directed networks. It
determines groups of nodes that are reachable from each other base on arc topology. This concept is similar to the
trip-chains analyzed in Module 3. Fifth, the proposed model is static. Therefore, time compatibility, i.e., consideration of time
windows, is not approached. Future research can approach the dynamic characteristics of this problem. Finally, this initial
framework can be extended to include a pricing management module that considers willingness to pay of the shippers
and a cost management module that proposes efficient vehicle routing algorithms with different operational constraints,
e.g. in-vehicle consolidation.
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