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a b s t r a c t

With the development of Internet, social networks have become important platforms which allow users
to follow streams of posts generated by their friends and acquaintances. Through mining a collection of
nodes with similarities, community detection can make us understand the characteristics of complex
network deeply. Therefore, community detection has attracted increasing attention in recent years. Since

targeted at on-line social networks, we investigate how to exploit user's profile and topological structure
information in social circle discovery. Firstly, according to directionality of linkages, we put forward in-
link Salton metric and out-link Salton metric to measure user's topological structure. Then we propose an
improved density peaks-based clustering method and deploy it to discover social circles with overlap on
account of user's profile- and topological structure-based features. Experiments on real-world dataset
demonstrate the effectiveness of the proposed framework. Further experiments are conducted to
understand the importance of different parameters and different features in social circle discovery.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

With the advent of online social networks, social network
analysis has gradually become a hot issue in both academia and
industry. Since community structure, which often represents
specific organized groups of users with similar attributes, hobbies
or closer relationships [1], is a significant property of social net-
works, so community detection is one of the basic research pro-
blems in social network analysis. Detecting community is very
important for understanding the characteristics of complex net-
work, discovering latent topology, predicting network evolution
and so on [2]. Besides, identifying community structure can facil-
itate many tasks such as following/follower recommendation [3],
task allocation [4], proximity alignment [5], maximizing influence
[6], retweeting behavior prediction [7], mining cybercriminal
networks [8] and so forth. A novel function has been provided in
some major social networks: users can categorize their friends into
social circles which can be used to filter status updates posted by
distant acquaintances, hide personal information from coworkers
and share groups of users that others may wish to follow [9].
cience and Technology, Jilin
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Therefore, social circle discovery which can fall into the domain of
community detection has attracted increasing attention in recent
years. As stated, our work on social circle discovery is motivated by
its broad application prospect.

The purpose of community detection is to find a group of users
with similar ideas, beliefs, motivations or other common features
so as to better understand social networks. However, most of
existing community detection approaches which only considered
structural features (e.g., links) [10] may ignore much information
that associated with community, such as user's background
information and interaction information [11]. Besides, isolating
user's relationship with user's contents may result in finding
unreasonable community structure, while most community dis-
covery algorithms which considered both types of information
were usually complex. Hence, in this paper, we propose an
improved density peaks-based clustering method which incorpo-
rates both structural and attribute information of users for social
circle discovery in social networks (denoted as DPSCD), and our
main contributions are summarized next.

(1) Put forward in-link Salton metric and out-link Salton metric
according to directionality of linkages to achieve a better repre-
sentation on adjacent degree between users in directed social
networks;

(2) Improve a fast clustering method with novel density esti-
mator and extra social circle integration step in order to better
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adapt to large statistical errors, followed by employing it to detect
overlapping social circles in social networks; and

(3) Evaluate DPSCD on real-world dataset Facebook, Googleþ ,
Twitter and elaborate the importance of different parameters and
different features on social circle discovery.

The rest of paper is organized as follows: Section 2 describes
the related work; Section 3 defines the method we propose;
Details of the experimental results and dataset which is used in
this study are given in Section 4. Finally conclusion appears in
Section 5.
2. Related work

It has been pointed out that social circle discovery can be for-
mulated as a community detection problem on a user's ego net-
work (the network of friendships between his/her friends) [9–12].
A great deal of works have been done on community detection,
Newman and Girvan [13] first defined a community as a subgraph
containing nodes which were more densely linked to each other
within such subgraphs and sparse between them. Community
discovery provides an important means to understand the struc-
ture of complex networks deeply [14], therefore, the issue of
detecting community in social networks has received increasing
attention in recent years. Existing community detection algo-
rithms can be roughly categorized into three groups: relationship-
based method, content-based method and comprehensive method
where users' relationships and contents are merged with users'
attributes.

Since topological structure can influence individuals' behaviors
in the network [15], as a consequent, discovering communities
based on users' relationships is still a mainstream method. In
relationship-based algorithms, through utilizing properties of
relationships, communities with closer internal relationships are
detected. Li et al. [16] first proposed two new algorithms based on
evolutionary algorithm and clonal selection algorithm (denoted as
EA-SN and CSA-SN, respectively). Then, they integrated a hill
climbing (HC) strategy into EA-SN and CSA-SN to form two new
memetic algorithms (EAHC-SN and CSAHC-SN). The experimental
results not only showed the capability and high efficiency of
EAHC-SN and CSAHC-SN in successfully detecting communities
from signed networks, but also indicated that both the two
objective functions (improved modularity and improved mod-
ularity density) were efficient to some extent. Ma et al. [17] pre-
sented a seed insensitive method for local community detection
which estimated similarity among vertices by investigating ver-
tices' neighborhoods and revealed a local community by max-
imizing its internal similarity and minimizing its external simi-
larity simultaneously. Extensive experimental results on both
synthetic and real-world data sets verified the effectiveness of the
proposed algorithm. Cai et al. [18] proposed a novel discrete PSO
algorithm for identifying community structures in signed net-
works. In order to make PSO be proper for discrete scenarios, they
redesigned particles' status in a discrete form, followed by refor-
mulating particles' updating rules through making use of topolo-
gical structure of signed network. Extensive experiments demon-
strated that the proposed method was effective and promising. Li
et al. [19] first improved nonnegative matrix factorization method
with modeling network as a weighted directed graph and using
diagonally dominant matrix as constraint condition to obtain
community membership of each node as well as interactions
between communities. The results demonstrated that the pro-
posed method was useful and applicable both in weighted direc-
ted model and undirected model for community discovery over
other related matrix factorization methods. Rhouma et al. [20]
proposed an overlapping community detecting algorithm called
DOCNet (Detecting overlapping communities in Networks) which
was based on local optimization of a fitness function and a fuzzy
belonging degree of different nodes. The main strategy of this
algorithm was to find an initial core and add suitable nodes to
expand it until a stopping criterion was met. Experimental results
demonstrated that DOCNet was efficient and highly reliable for
detecting overlapping groups, compared with four newly known
proposals. However, DOCNet model cannot adapt to weighted and
directed networks. Qiu et al. [21] first generated a probability
transition matrix by applying random walk to a social network,
followed by training a Gaussian mixture model using the matrix.
And then, overlapping communities were derived by analyzing
mean vectors of the Gaussian mixture model. The experiments
conducted on synthetic and real dataset demonstrated the feasi-
bility and applicability of the proposed algorithm. Instead of using
eigenvectors in spectral clustering algorithms, Huang et al. [22]
put forward a regularized spectral clustering algorithm which
chose sample matrix of social network to construct a target
function that can partition social network naturally. The experi-
ments shown the proposed method achieved good results with
relatively smaller computational cost compared to spectral clus-
tering algorithm. Wu et al. [23] introduced a cosine-pattern-based
community extraction framework. It first extracted the so-called
asymptotically equivalent structures (AESs) from networks, from
which nodes were further partitioned into crisp communities
using any of existing methods. A novel cosine-pattern mining
algorithm based on the ordered anti monotone of cosine similarity
was thus proposed for the efficient extraction of AESs. Experi-
ments on various real-world social networks demonstrated the
advantage of extracting view of community detection.

However, Dang and Viennet [24] pointed out that in real-world
networks, in addition to topological structure (i.e., links), content
information was also available. Besides, considering network
structural information only may fail to detect interpretable over-
lapping communities since structural information of online social
networks is often sparse and weak. Sang and Xu [25] held the view
that the social links were well recognized forces that govern the
behaviors of involved users as well as the dynamics of social
networks. Additionally, through splitting all the Flickr user pairs
into two parts, i.e., with relations and without relations, respec-
tively and calculating the average of the common contact number,
common interested group number and tag-based similarity in the
respective user pairs, Yan et al. [26] pointed out that users gen-
erally had more common contacts and common interested groups
with their friends than other people. Besides, friends may also use
more similar tags in their uploaded images which may be influ-
enced by each other. So some scholars began to calculate distance/
similarity between users on their generated information.

Yin et al. [27] incorporated community discovery into topic
analysis in text-associated graphs and proposed a community-
based topic analysis framework called LCTA (Latent Community
Topic Analysis). The proposed framework handled both topic
modeling and community discovery to guarantee the topical
coherence in the communities so that users in the same commu-
nity were closely linked to each other and shared common latent
topics. They compared different methods and performed extensive
experiments on two real datasets. The results confirmed the
hypothesis that topics could help understand community struc-
ture, while community structure could help model topics. Taking
Flickr as one exemplary social media platform, Zhuang et al. [28]
found that the taste/interest of a user in photos can be implicitly
mined from the photos uploaded by the user and they proposed a
content-aware low-rank matrix recovery technique for community
discovery. First, they modeled the observed indicator matrix of the
Flickr community as a summation of a low-rank true matrix and a
sparse error matrix. And then, they formulated an optimization
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problem by regularizing the true matrix to coincide with the
available rich context and content (i.e., photos and their associated
tags). Finally, they conducted extensive experiments on a large-
scale real dataset from Flickr and presented insights about Flickr
community. However, Zhuang et al. mainly exploited the textual
and visual information, but in Flickr, there were still much other
heterogeneous metadata available other than the images and tags.

Nevertheless, it cannot make a comprehensive analysis on
overlapping communities based on specific types of information
only, consequently, some efforts have been made to integrate
users' structural, content and attribute information. The main idea
of comprehensive algorithm is to design a distance/similarity
measure for vertex pairs that combines structural, content and
attribute information of nodes. Based on this measure, standard
clustering algorithms such as k-medoids and spectral clustering
are then applied to cluster nodes [29]. To avoid presetting the
number and the size of communities, Xin et al. [30] presented a
clustering algorithm for community detection based on a link-
field-topic (LFT) model which separated community-topic detec-
tion into LDA sampling and semantic community detection.
Through experimental analysis, LFT model approached to the
optimum of all classical semantic community detection algo-
rithms. Hu and Yang [12] proposed an enhanced link clustering
method to identify social circles on ego networks. Through con-
structing an edge profile for each edge, they integrated node
profile and network structure. Experiments on several real data-
sets demonstrated that the proposed method was not only effec-
tive, but also more efficient in comparison with state-of-the-art
methods when taking edge similarity instead of node similarity to
discriminate nodes into different circles. Deitrick and Hu [31] used
sentiment classification to enhance community detection. Firstly,
community detection was performed on friend/follower networks
of the four Microsoft accounts using SLPA and Infomap algorithms.
Then, three types of additional features: replies, mentions, and
retweets; hashtags; and sentiment classifications were used to
iteratively increase edge weights in the four social networks, and
community detection was repeated on the networks using edge
weights updated with each day's data. The results revealed that
modularity values were increased for the community partitions
detected in three of the four networks studied by combining
community detection and sentiment analysis. Dang and Viennet
[24] studied the relationship between semantic similarity of users
and topology of social networks (homophily concept). They pro-
posed two structure-attribute clustering approaches (improved
Louvain algorithm and k-NN method) to extract communities on
several real-world datasets. Experimental results demonstrated
that their methods provided more meaningful communities than
conventional methods that considered relationship information
only. McAuley [9] first predicted hard assignment of a node to
multiple circles, which proved critical for good performance, fol-
lowed by proposing a parameterized definition of profile similarity
to learn the dimensions of similarity along which links emerged.
And then, an unsupervised algorithm was devised to jointly opti-
mize the latent variables and the profile similarity parameters so
as to best explain the observed network data.

To sum up, community detection in social networks is in the
stage of development, how to depict directionality of linkages,
how to fuse multidimensional features reasonably and how to
build model that could detect community efficiently can be very
challenging jobs. To this end, we present an improved density
peaks-based clustering method which is appropriate for over-
lapping social circle discovery in social networks.
3. Improved density peaks-based clustering method for over-
lapping social circle discovery

3.1. Problem formulation

In this paper, we formally define social circle discovery as:
given a set of ego-networks G¼ G1;G2;⋯;Gk;⋯;Gn

� �
where n

encodes the number of ego-networks, Gk ¼ Vk; Ekð Þ encodes user
k's ego-network (a network of relationships between k's friends)
where Vk and Ek encode the set of users and the set of edges in Gk

(user k is not included since creators of circles do not themselves
appear in their own circles [9]), additionally, each user is asso-
ciated with an attribute vector, we aim to predict a set of circles (a
circle represents a set of users) C kð Þ ¼ C1 kð Þ;C2 kð Þ;⋯;Cj kð Þ� �

(j
encodes the number of circles that user kmay create, Cj kð Þ encodes
users in the j-th circle that user k may create) for each ego-
network Gk via profile and topological structure information.

3.2. Social circle discovery features definition

Mislove et al. [32] found that nodes in one circle represented
transitionally similarity, but not necessary to be very similar to
each other or densely connected and each circle's members
usually shared common properties or traits. Consequently, merely
based on topological structure cannot make a comprehensive
analysis on social circles. Thus, in this paper, we synthesize profile
and topological structure information so as to achieve higher
accuracy in social circle discovery.

3.2.1. Profile-based features
Silva et al. [33] pointed out that rich information was encoded

in the content of networks such as node content. Thus, in this
paper, according to ground-truth data from three major social
networking sites: Facebook, Googleþ , and Twitter1 which will be
introduced in detail in Section 4.1, we name 26 categories,
including hometowns, birthdays, colleagues, political affiliations
and so forth as profile-based features in Facebook dataset, gender,
last name, job titles, institutions, universities, places lived as
profile-based features in Googleþ dataset, the set of hashtags and
mentions used by each user during two-weeks' worth of tweets as
profile-based features in Twitter dataset.

3.2.2. Topological structure-based feature
The linkage information between vertices plays a critical role to

evaluate vertices' similarities [17]. Common Neighbors metric
assumed that similarity between users was proportional to the
number of their common neighbors [34]. On the basis of Common
Neighbors metric, Salton metric introduced users' degree. Since
both Googleþand Twitter are directed social networks, in addi-
tion, non-reciprocal friendships, which may reflect moderately
valued friendship ties [35], are more important than reciprocal
friends, hence, we put forward in-link Salton metric and out-link
Salton metric to measure user's network topological structure in
directed social networks:

inSa i; vð Þ ¼ jΓin ið Þ \ Γin vð Þjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΓin ið Þj � jΓin vð Þj

q ð1Þ

outSa i; vð Þ ¼ jΓout ið Þ \ Γout vð Þjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΓout ið Þj � jΓout vð Þj

q ð2Þ

where inSa i; vð Þ and outSa i; vð Þ stand for in-link Salton metric and
out-link Salton metric between user i and user v respectively; Γin
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ið Þ and Γin vð Þ stand for in-link users set of user i and user v
respectively; Γout ið Þ and Γout vð Þ stand for out-link users set of user
i and user v respectively, where in-link and out-link are defined by
follower relationship; ∙jj stands for the number of elements in a
set. For undirected social networks, we employ traditional Salton
metric to measure user's network topological structure:

Sa i; vð Þ ¼ jΓ ið Þ \ Γ vð Þjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΓ ið Þj � jΓ vð Þj

p ð3Þ

where Sa i; vð Þ presents Salton metric between user i and user v; Γ ið Þ
and Γ vð Þ present neighbors set of user i and user v respectively,
where neighbors are defined by undirected edges between users.

3.3. Algorithm for discovering overlapping social circles

Clustering algorithms are often used in community detection.
Generally, an objective function is optimized iteratively in some
clustering algorithms which may lead to lower efficiency. Rodri-
guez and Laio [36] proposed a fast clustering method that per-
formed in a single step, which can recognize clusters regardless of
their shape and of the dimensionality of the space where they
were embedded. For its novel and concise idea, it provided a new
train of thought for the design of clustering algorithm. Hence, we
intend to investigate whether Rodriguez and Laio's method can be
an effective method in social circle discovery. However, social
circles are nested: small social circles build larger ones, which in
turn group together to form even larger ones [37], the method
Rodriguez and Laio put forward may fail to detect overlapping
social circles and the density estimator may be unavoidably
affected by large statistical errors for a small data set. Accordingly,
in this paper, we do some improvements on Rodriguez and Laio's
method so as to apply it in overlapping social circle discovery for
the first time: we adopt Gaussian kernel as density estimator to
avoid large statistical errors and detect overlapping social circles
according to the distances between users in different social circles.

Our proposed method for discovering overlapping social circles
consists of two stages: (1) stage of initial social circle clustering;
(2) stage of social circle integration. The detailed descriptions are
shown as follows.

3.3.1. Initial social circle clustering
In social networks, a few users master the whole net as core,

while the others have little influence on the net, so different roles
are played by users in community [19]. Hence, we first measure
local density for each user in an ego-network via Gaussian kernel.
User i's local density is calculated as follows:

ρi ¼
X

v
exp �‖di;v�dc‖2

2σ2

� �
ð4Þ

where σ represents a smoothing parameter, di;v�dck
�� represents

the Euclidean distance metric between di;v and dc , dc represents a
cutoff distance, di;v represents the distance between user i and
user v which is defined as:

di;v ¼
1

α� simP i; vð Þþ 1�αð Þ � simN i; vð Þ ð5Þ

where parameter α is introduced to control profile and topological
structure information's contribution in user's distance, simP i; vð Þ
and simN i; vð Þ denote profile similarity and topology structure
similarity between user i and user v respectively. Similarity
between users is inversely proportional to the distance between
them. The calculation of simP i; vð Þ is shown as:

simP i; vð Þ ¼
X

m
Pi mð ÞΔPv mð Þ ð6Þ

where Pi mð Þ and Pv mð Þ present the m-th profile-based feature's
value of user i and user v respectively, Δ presents an operator, if
Pi mð Þ ¼ Pv mð Þ, then Pi mð ÞΔPv mð Þ ¼ 1, and Pi mð ÞΔPv mð Þ ¼ 0 other-
wise. And the calculation of simN i; vð Þ in directed social networks
is shown as:

simN i; vð Þ ¼ inSa i; vð ÞþoutSa i; vð Þ ð7Þ
For undirected social networks, simN i; vð Þ ¼ Sa i; vð Þ.
Secondly, we calculate distance from points of higher density

for each user. User i's distance from points of higher density is
calculated as:

δi ¼
maxv di;v

� 	
if user i of the largest density

minv:ρv 4ρi
di;v
� 	

otherwise

(
ð8Þ

And then, on the basis of the assumptions that cluster centers
are surrounded by neighbors with lower local density and that
they are at a relatively large distance from any points with a higher
local density [36], from the decision graph in which x axis denotes
values of local density and y axis denotes values of distance from
points of higher density, only the users of high distance from
points of higher density and relatively high local density are
treated as cluster centers, while users who have a relatively high
distance from points of higher density and a low local density can
be considered as outliers.

Finally, we assign each remaining user to the same cluster as its
nearest neighbor of higher density to achieve initial social circle
clustering.

3.3.2. Social circle integration
A user may belong to multiple circles simultaneously [38], as a

consequence, in order to detect overlapping social circles, con-
solidation has to happen within the initial clustered social circles.
Furthermore, McAuley and Leskovec [9] found that ‘stronger’ cir-
cles will form within ‘weaker’ ones, e.g. a circle of friends from the
same degree program may form within a circle from the same
university, thus, in this phase, each user in the social circles where
cluster centers of smaller values of local density will be modeled
memberships to the social circles where cluster centers of larger
values of local density. The social circle integration can be defined
as Algorithm 1.

Algorithm 1 social circle integration
Input: user k's set of initial social circles C

0
kð Þ ¼ C1

0
kð Þ;

n
C2

0
kð Þ;⋯;Cj

0
kð Þ
o
(C1

0
kð Þ;C2

0
kð Þ;⋯;Cj

0
kð Þ are sorted in ascending

order according to value of local density of each social circle's
cluster center)

Output: user k's set of final social circles
(1) For l from 1 to j�1 Do
(2) For each user iACl

0
kð Þ Do

(3) For each user i
0
AClþ1

0
kð Þ Do

(4) If di;CCðlþ1Þrdi0 ;CCðlþ1Þ Then
%CCðlþ1Þ denotes cluster center of ðlþ1Þ-th circle that user k

may create
(5) Clþ1

0
kð Þ’i

(6) Break
(7) End if
(8) End for
(9) End for
(10) End for
(11) Return C

0
kð Þ

3.4. Time complexity

Assume that the average number of users in an ego-network is
Ne, the account of social circles is Nc and the average number of
users in a social circle is Ncu. The complexity of DPSCD is analyzed
as follows. In the stage of initial social circle clustering, calculating
distance between users will take O Ne Ne �1ð Þ

2


 �
time; calculating
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local density for users in the ego-network takes O Ne Ne�1ð Þð Þ time;
it is taking O Ne Ne �1ð Þ

2 log 2
Ne Ne �1ð Þ

2


 �
time for sorting the set of dis-

tance between users and O Nelog 2Ne
� 	

time for sorting the value
set of local density; calculating distance from points of higher
density for users in the ego-network will take O Neð Þ time in the
best case and O Ne

2 Ne �1ð Þ
2


 �
time in the worst case, then finding

initial social circle for each user is taking O Neð Þ time. So the best
overall complexity of the first stage is O 3Ne Ne �1ð Þ

2


 �
and the worst

overall complexity of the first stage is O Ne
2 Ne �1ð Þ

2


 �
. In the stage of

social circle integration, the best computation time of membership
modeling process takes O NcuNc Nc �1ð Þ

2


 �
time and the worst com-

putation time of membership modeling process takes O
Ncu

2Nc Nc �1ð Þ
2


 �
time. Assume that the total number of ego-networks

is Nt . Since NecNc and Ne4Ncu, hence, the best overall com-
plexity of our proposed method is O Nt

3Ne Ne �1ð Þ
2


 �
 �
and the worst

overall complexity of our proposed method is O Nt
Ne

2 Ne �1ð Þ
2


 �
 �
.

4. Experimental evaluation

In this section, we conduct experiments to assess the effec-
tiveness of the proposed framework DPSCD. Through the experi-
ments, we aim to answer the following two questions:

(1) How effective is the proposed framework, DPSCD, compared
with other methods of social circle discovery?

(2) What are the effects of different parameters and different
features on the performance of DPSCD?

4.1. Dataset

To study the problem of social circle discovery, we leverage a
dataset of 1143 ego-networks and 5636 hand-labeled ground-
truth circles from Facebook (undirected), Googleþ (directed), and
Twitter (directed) [9] to evaluate validity of the proposed method.
Facebook data is collected through conducting a survey of ten
users, who are asked to manually identify all the circles to which
their friends belong. Examples of such circles include students of
common universities, sports teams, relatives, and so forth. Face-
book data is fully labeled, in the sense that every circle that a user
considers to be a cohesive community is obtained. Googleþ and
Twitter data are collected from users who have shared at least two
circles, and whose network information are publicly accessible, so
Googleþ and Twitter data are only partially labeled. Statistics of
the dataset are shown in Table 1.
4.2. Evaluation metrics

In this paper, we utilize Balanced Error Rate (BER) and F1-score
which are used in [9] and [12] as metrics so as to compare our
work to the works in [9] and [12]. In details, the BER between
Table 1
Statistics of the dataset.

Facebook Googleþ Twitter

# of nodes 4039 107,614 81,306
# of edges 88,234 13,673,453 1,768,149
# of ego-networks 10 133 1000
# of ground-truth circles 193 479 4869
predicted circle C and ground-truth circle C can be formulated as:

BER C;C

 �

¼ 1
2

jC∕C j
jC j þ jC∕C j

jC j

 !
ð9Þ

where ∕ denotes a difference-set operator. Since false positives and
false negatives are equally important in BER, thus, trivial or ran-
dom predictions will incur extremely low errors (an error of
0.5 average). And the F1-score is calculated as:

F1 C;C

 �

¼
2� p C;C


 �
� r C;C

 �

p C;C

 �

þr C;C

 � ð10Þ

where p C;C

 �

represents precision of C to C which is defined as:

p C;C

 �

¼ jC \ C j
jC j ð11Þ

and r C;C

 �

represents recall of C to C which is defined as:

r C;C

 �

¼ jC \ C j
jC j ð12Þ

In this paper, we evaluate the performance of the proposed
framework via the optimal matches of BER and F1-score for that
we are short on the knowledge about the correspondence between
C and C . The optimal matches of BER and F1-score are defined as:

max
f :C-C

1
j f j

X
CAdom fð Þ

1�BER C; f Cð Þð Þ�  ð13Þ

max
f :C-C

1
j f j

X
CAdom fð Þ

F1 C; f Cð Þð Þ ð14Þ

where f denotes a correspondence between C and C . The higher
the value of Eq. (13) is, the better does C align to ground-truth
circle C in terms of BER metric, and the same holds F1-score
metric.

4.3. Performance evaluation with different algorithms in literature

Since social circle identifying on ego networks can fall into the
domain of community detection [12], hence, in order to answer
the first question, we compare the proposed framework DPSCD
with following well-known community detection methods which
are all open source on our proposed features to answer the first
question.

(1) COPRA [39]. Based on the label propagation technique of
Raghavan et al. [40], COPRA extends the label and propagation
step to include information about more than one community (each
vertex can now belong to up to v communities, where v is a
parameter which controls the potential degree of overlap between
communities) so as to detect overlapping communities in
networks.

(2) CONCLUDE [41]. CONCLUDE (COmplex Network CLUster
DEtection) is a fast community detection algorithm which consists
of three steps: first, (re)weight edges by using a particular random
walker; secondly, calculate the distance between each pair of
connected nodes; thirdly, partition the network into communities
so to optimize the weighted network modularity.

(3) DCM [42]. DCM is an effective algorithm which is able to
build well-described cohesive communities starting from any
given description or seed set of nodes. It alternates between two
phases: a hill-climbing phase producing (possibly overlapping)
communities, and a description induction phase which uses
techniques from supervised pattern set mining. However, DCM
only considers undirected graphs.

(4) CLUTO [43]. CLUTO is a novel clustering framework for
multi-topic documents that works as follows: first, each document
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Fig. 1. Performance of different open source community detection methods. (a) Facebook. (b) Googleþ . (c) Twitter.
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Fig. 2. Execution time, in seconds, of different open source community detection
methods. (a) Facebook. (b) Googleþ . (c) Twitter.
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in the collection is modeled with a set of segment-sets, which are
identified according to the underlying multiple topics of the
document; secondly, the segment-sets from all documents are
clustered using a document clustering algorithm; thirdly, a pos-
sibly “soft” (overlapping) classification of the original documents is
induced from the segment-set clustering. Additionally, CLUTO is
well-suited for clustering data sets arising in many diverse appli-
cation areas including information retrieval, customer purchasing
transactions, web, GIS, science, and biology.

The BER and F1-score of the methods above are reported in
Fig. 1.

It can be observed from Fig. 1(a), (b) and (c), our framework
gives better BER and F1-score than other approaches for all data-
sets. Moreover, results seem to show an enhancement tendency
for all approaches when experiment on Facebook. This phenom-
enon might be explained that Facebook is a network which is
constructed based on relationships between acquaintances, so
there will be more interactions between users, while in Twitter,
users can pay more attention to strangers no matter how many
times they interact with each other.

Besides, we further evaluate execution time of different
methods along with our method. Fig. 2 shows the execution time,
in seconds, used by each method for social circle discovery.

From Figs. 1 and 2, DCM costs the most running time in all
cases, while COPRA obtains unsatisfactory results with the smal-
lest computational cost. It can be found that the proposed
approach shows the best results with a shorter execution time.
Additionally, on the basis of the same original dataset, by
employing an improved density peaks-based clustering method to
discover social circles with overlap in social networks, we can
obtain a significant improvement on performance (þ8% in terms
of average BER, þ15.4% in terms of average F1-score) compared
with [9] and achieve better results (þ7% in terms of average BER,
þ2.4% in terms of average F1-score) compared with [12]. The
results of aforementioned studies and our proposed method are
depicted in Table 2.

In summary, DPSCD can achieve better results even in a small
data set with large statistical errors, such as Facebook data set.
Additionally, compared with other methods, DPSCD can fast detect
overlapping social circles accurately through conducting integra-
tion on social circles which are clustered via Rodriguez and Laio's
method. It follows that all improvement is significant, the pro-
posed framework, DPSCD, outperforms other methods, which
answers the first question.

4.4. Analysis on effects of different parameters and different features

4.4.1. Impact of different cutoff distances for social circle discovery
In this section, we use σ ¼ 0:25, α¼ 0:3 for Facebook and α¼

0:4 for Googleþ and Twitter in all experiments. Firstly, we
investigate how much impact that different cutoff distances have



Table 2
The comparison on other social circle discovery works.

Related Works Facebook Googleþ Twitter Average

BER F1-score BER F1-score BER F1-score BER F1-score

McAuley [9] 0.84 0.59 0.72 0.38 0.7 0.34 0.753 0.437
Hu and Yang [12] NA NA NA NA NA NA 0.763 0.567
DPSCD 0.914 0.705 0.809 0.553 0.776 0.516 0.833 0.591

0.01 0.03 0.1 0.3 0.4
Facebook 0.908 0.911 0.914 0.912 0.91
Google+ 0.801 0.803 0.806 0.809 0.807
Twitter 0.768 0.77 0.772 0.776 0.774
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Fig. 3. The impact of cutoff distance dc in the proposed framework DPSCD. (a) BER. (b) F1-score.
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on the performance of our method by varying dc as 0:01;0:03;0:1;f
0:3;0:4g, BER and F1-score of different values of dc are reported in
Fig. 3.

We draw following observation: being in accord with the
foundation in [36], the algorithm is not sensitive to the relative
magnitude of dc in different points which implies that the results
are robust with respect to the choice of dc .

4.4.2. Impact of α for social circle discovery
In this section, we also use σ ¼ 0:25, dc ¼ 0:1 for Facebook and

dc ¼ 0:3 for Googleþ and Twitter in all experiments. By changing
the parameter α, we explore how different features affect the
performance of our method in terms of BER and F1 score. In this
paper, α is varied as 0;0:1;0:3;0:4;0:7;1f g and the results are
shown in Fig. 4.

It can be observed from Fig. 4, it is difficult to discover social
circles with its specific types of features only. Setting very large
importance to topological structure-based features and very small
importance to profile-based features may result in the worst
results. It can be explained that content information encoded in
nodes or edges is the essential motivation to attract users to form
communities in content-based social networks [44]. In addition,
DPSCD achieves the best results with α¼ 0:3 in Facebook and α¼
0:4 in Googleþ and Twitter from which we find that topological
structure plays a more important role in Facebook than that in
Googleþ and Twitter.

The results in Sections 4.4.1 and 4.4.2 further demonstrate the
effects of different parameters in DPSCD, which correspondingly
answers the second question.

4.5. Analysis on effects of different features

In this section, we carry on “leave-one-feature-out” experi-
ments on our proposed features to explore the effects that dif-
ferent features have on DPSCD. Due to space restrictions, only
average F1-scores are reported in Table 3.

Where hometowns, birthdays, colleagues, political affilia-
tions, education_classes, education_concentration, educa-
tion_degree, education_school, education_type, education_with,
education_year, first_name, gender, languages, last_name, locale,
location, work_employer, work_end_date, work_ location,
work_position, work_start_date, work_with, work_projects and
middle_name are profile-based features in Facebook dataset,
gender, last_name, job titles, institutions, universities and places
lived are profile-based features in Googleþdataset, the set of
hashtags and mentions are profile-based features in Twitter
dataset.

We draw following observation from Table 3: removing first_name,
middle_name, last_name or gender feature lowers the model's pre-
diction abilities, although prediction quality remains relatively high.
While removing education-, location-, work- or interests-related



Table 3
Average F1-scores when leaving out different features.

Features F1-score Features F1-score

hometowns 0.570 work_employer 0.581
birthdays 0.590 work_end_date 0.589
colleagues 0.571 work_ location 0.586
political affiliations 0.565 work_position 0.582
education_classes 0.578 work_start_date 0.584
education_concentration 0.573 work_with 0.565
education_degree 0.579 work_projects 0.564
education_school 0.583 middle_name 0.591
education_type 0.588 job titles 0.583
education_with 0.586 institutions 0.584
education_year 0.581 universities 0.588
first_name 0.587 places lived 0.585
gender 0.591 the set of hashtags 0.570
languages 0.567 the set of mentions 0.555
last_name 0.589
locale 0.588
location 0.589

Table 4
BERs and F1-scores of different topological structure-based features.

Facebook Googleþ Twitter

BER F1-score BER F1-score BER F1-score

Salton metric 0.914 0.705 0.809 0.553 0.776 0.516
Jaccard metric 0.806 0.623 0.711 0.498 0.635 0.427
Preferential Attachment
metric

0.754 0.518 0.670 0.432 0.589 0.343
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features creates a bigger drop in performance. It can be interpreted
that education-, location-, work- and interests-related features are all
closely related to user's social life, so they play more important roles in
social circle discovery than first_name, middle_name, last_name or
gender feature. In conclusion, different features play different roles in
social circles discovery, removing either feature may degrade model's
performance, our proposed framework that fuse multidimensional
features to discover social circles improves the accuracy of social circle
discovery algorithm effectively.

In addition, we adopt Salton metric, Jaccard metric and Pre-
ferential Attachment metric as topological structure-based feature
respectively to evaluate the effect of Salton metric in DPSCD. Jac-
card metric supposed that similarity between users was propor-
tional to the ratio of the number of their common neighbors and
the number of all their neighbors. In order to measure user's
network topological structure in directed social networks, we
propose in-link Jaccard metric and out-link Jaccard metric which
are shown as follows:

inJa i; vð Þ ¼ jΓin ið Þ \ Γin vð Þj
jΓin ið Þ [ Γin vð Þj

ð15Þ

outJa i; vð Þ ¼ jΓout ið Þ \ Γout vð Þj
jΓout ið Þ [ Γout vð Þj

ð16Þ

where inJa i; vð Þ and outJa i; vð Þ stand for in-link Jaccard metric and
out-link Jaccard metric between user i and user v respectively. For
undirected social networks, we employ traditional Jaccard metric
to measure user's network topological structure:

Ja i; vð Þ ¼ jΓ ið Þ \ Γ vð Þj
jΓ ið Þ [ Γ vð Þj ð17Þ

where Ja i; vð Þ presents Jaccard metric between user i and user v.
Preferential Attachment metric made an assumption that the

greater degree user had, the greater possibility user had to
establish links with other users. Similarly, we also propose in-link
Preferential Attachment metric and out-link Preferential Attach-
ment metric which are shown as follows:

inPa i; vð Þ ¼ jΓin ið Þj � jΓin vð Þj ð18Þ

outPa i; vð Þ ¼ jΓout ið Þj � jΓout vð Þj ð19Þ
where inPa i; vð Þ and outPa i; vð Þ stand for in-link Preferential
Attachment metric and out-link Preferential Attachment metric
between user i and user v respectively. For undirected social net-
works, we employ traditional Preferential Attachment metric to
measure user's network topological structure:
Pa i; vð Þ ¼Γ ið Þ � Γ vð Þ ð20Þ

where Pa i; vð Þ presents Preferential Attachment metric between
user i and user v.

The BERs and F1-scores of different topological structure-based
features are shown in Table 4.

From Table 4, Jaccard metric only takes user's neighbors' set
into consideration, Preferential Attachment metric only focuses on
the number of user's neighbors, while Salton metric considers
both of them, therefore, Salton metric can achieve better results
than Jaccard metric and Preferential Attachment metric in all
cases. Besides, employing in-link Salton metric and out-link Salton
metric instead of traditional Salton metric to measure user's net-
work topological structure in directed social networks can obtain a
significant improvement on performance (þ23.7% in terms of
average BER on Googleþ and Twitter, þ18.5% in terms of average
F1-score on Googleþ and Twitter).

The results in Section 4.5 further demonstrate the effects of our
proposed features in DPSCD, which correspondingly answers the
second question.
5. Conclusion

In this paper, we explored the problem of finding the possible
variations and discovering social circles with overlap in social
networks. Firstly, in-link Salton metric and out-link Salton metric
were presented to measure user's topological structure in directed
social networks. And then, given both users' structural and attri-
bute information, an improved density peaks-based clustering
method was designed for overlapping social circle discovery.
Finally, we ran a set of experiments on three real-world datasets to
investigate the performance of our model, and reported system
performances in terms of Balanced Error Rate and F1-score. In
general, DPSCD approached to the optimum of other social circle
discovery algorithms.

In future work, we will speculate on what directions can be
undertaken to fuse the information in heterogeneous networks
more reasonably. Furthermore, we will employ distributed tech-
nologies, such as MapReduce to improve the performance of our
method, as well as increase its online application scope.
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