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h i g h l i g h t s

• A dynamic model describing the dynamics of signed social networks is provided.
• The dynamic model can be applied for partitioning signed social networks.
• A detailed algorithm is provided.
• The correctness and efficiency are verified on real-world and synthetic networks.
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a b s t r a c t

Inspired by the dynamics phenomenon occurred in social networks, the WJJLGS model
is modified to imitate the clustering dynamics of signed social networks. Analyses show
that the clustering dynamics of the model can be applied to partition signed social
networks. Traditionally, blockmodel is applied to partition signed networks. In this paper,
a detailed dynamics-based algorithm for signed social networks (DBAS) is presented.
Simulations on several typical real-world and illustrative networks that have been analyzed
by the blockmodel verify the correctness of the proposed algorithm. The efficiency of the
algorithm is verified on large scale synthetic networks.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Social relations/links between actors may be positive or negative, for example, friendship/hostility, attract/exclude,
like/dislike, and respect/disrespect between individuals [1,2]. The networks that include both positive and negative links
are called signed social networks in the field of social science, and the networks with only positive links are called positive
social networks [3,4]. Partitioning the signed social networks is quite different frompartitioning the positive social networks,
where the network is partitioned into several communities with dense links in each community and sparse links between
communities [5–7]. Bymaximizing one of several cautiously defined criterion functions [8–10], the positive social networks
can be properly partitioned via dedicatedly designed algorithms (known as community detection) [11–14]. On the other
hand, it is well known that the dynamics of a network is correlated with its structure [15–17]. The community structure of a
positive social network may be observed from the network dynamics [18–26] or cluster synchronization [27–30]. In cluster
synchronization, the nodes in the same cluster are synchronized but desynchronizedwith respect to different clusters. Strict
cluster synchronization usually requires a control scheme [27–30], thus it is difficult to be applied to community detection
directly. In Ref. [24], the WJJLGS model is proposed to imitate the clustering dynamics of positive networks and used for
community detection.
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Clusters (or communities) in signed networks have dense positive intra-cluster links and only sparse positive inter-
cluster links; in the same time they have dense negative inter-cluster links and only sparse negative intra-cluster links.
Partitioning signed networks is also called correlation clustering problem [31]. Usually the signed networks are transformed
to positive networks that can be treated with standard techniques by eliminating the negative links [32]. Of course,
eliminating negative links means to give up useful information on the relationships between nodes. In order to design
algorithms for signed networks, two modular functions were designed [33,34]. In Ref. [35], a Potts model was extended
to incorporate negative links, and was applied to a network of international alliances and disputes. In Ref. [4], an agent-
based heuristic algorithm named FEC was proposed for partitioning signed networks, and rigorous experiments were also
done to verify the effectiveness of FEC. Recently, Chen et al. proposed a novel approach named signed probabilistic mixture
(SPM) model, which provides soft memberships that can detect overlapping nodes of the communities [36]. In this paper,
the proposed algorithm is compared with FEC and SPM by experiments.

The dynamics of the signed social networks is quite different from that of the positive social networks due to the negative
links. A balanced signed network is defined that every closed loop is positive [37,38]. A closed loop in the network is said
to be positive if it has even number of negative links. A balanced signed network can be partitioned into two clusters
(communities) such that all the intra-cluster links are positive and all the inter-cluster links are negative (the first structure
theorem presented by Cartwright and Harary [37,38]). But human population with signed links can be often split into more
than two clusters. The concept of the balanced signed network is generalized by Davis [39]: a signed network is balanced
(clusterable in his terminology) if it contains no closed loop with exactly one negative link. With the generalization, a
balanced signed network can be partitioned into two or more communities such that all the intra-cluster links are positive
and all the inter-cluster links are negative (the second structure theorem presented by Davis [39]). For clarity in this paper,
a signed network is said to be clusterable if it is balanced in the generalized sense. In some references, the two concepts of
balanced network are unified by the term ‘‘k-balanced network’’, k > 2.

Butmany real-world or artificial signed networks are not k-balanced (Chapter 10 in Ref. [40]). Blockmodeling approaches
were developed to partition those un-balanced signed networks via minimizing a criterion (or measure) function across all
possible partitions [40]. The criterion function is based on the line index of imbalance [41]:

φ(C) = PL + NL,

where NL is the total number of negative intra-cluster links and PL is the total number of positive inter-cluster links.
Minimizing φ(C) is equivalent to approaching the k-balanced partition as possible. A more general criterion function can be

φ(C) = (1 − α)PL + αNL, 0 ≤ α ≤ 1. (1)

The positive inconsistencies aremore important when 0 ≤ α < 0.5. The negative inconsistencies aremore important when
0.5 < α ≤ 1. If α = 0.5, the two inconsistencies are equally weighted. Doreian and Mrvar provided a local optimization
algorithm to get a partition fromminimizingφ(C) [3]. But the partition fromminimizing the criterion function is problematic
sometimes [42], which does not reflect the real structure of the network. Detailed examples can be found in Ref. [42]. Thus
Doreian and Mrvar relaxed the structural balance blockmodel to accommodate more complex signed block structures. The
relaxed structural balance blockmodel does not restrict positive blocks on the main diagonal and negative blocks off the
main diagonal of the partitioned matrix. Recently, this approach was extended to large signed two-mode networks [43].

In this paper, the WJJLGS model is modified to imitate the clustering dynamics of signed social networks. Instead of
the structural balance blockmodel, it is shown that the signed social networks can be partitioned via their clustering
dynamics. In a social population, two individuals with positive interaction usually attract with each other in heart, and the
distance between them in emotion gets smaller and smaller. On the other hand, two individuals with negative interaction
usually exclude with each other in heart, and the distance between them in emotion gets longer and longer. A number of
individuals with positive interactions form a community gradually. Individuals with negative interactions fall into different
communities. In the modified WJJLGS model, individuals are represented by phase oscillators. The phases of two oscillators
(individuals) with positive links approach to each other gradually, and the phases of two oscillators with negative links
evolve far away from each other. Eventually, the phases of the oscillators are naturally split into several clusters. Thus a
dynamics-based algorithm for signed networks (DBAS) partitioning is proposed.

2. The dynamical evolutionary model

The adjacency matrix A = [aij] of a signed social network has three kinds of elements, aij = 1 (aij = −1) indicates a
positive (negative) link, otherwise aij = 0 indicates no link. The original WJJLGS model is to imitate the clustering dynamics
of positive networks [24], which is modified as follows to imitate the dynamics of signed social networks,

dθi
dt

=
Kp

N

N
j=1

aij (1 + aij)
2

sin(θj − θi) +
Kn

N

N
j=1

aij (1 − aij)
2

sin(θj − θi),

i = 1, . . . ,N, Kp > 0, Kn < 0, (2)

where N is the number of nodes (individuals) in the positive social network, and θi is the phase of oscillator (node) i. The
positive coupling strength Kp is to make the phases of two positively connected nodes (aij = 1) in the network evolve
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together; the negative coupling strength Kn is to make the phases of two negatively connected nodes (aij = −1) in the
network evolve far away. Themaximum phase difference of two nodes is π : max{|θi −θj|} = π, θi −θj ∈ [−π, π]. Suppose
a two-node network is positively linked and θ2(0) > θ1(0) at time t = 0, then from (2)

dθ1
dt

=
Kp

2
sin(θ2 − θ1) > 0,

θ1(t) evolve close to θ2(t). Similarly
dθ2
dt

=
Kp

2
sin(θ1 − θ2) < 0,

θ2(t) evolve close to θ1(t) until θ1(t) = θ2(t). That is, the phases of the two nodes evolve together. For a connected graph
consisting of three or more positively linked nodes, identical analysis shows that the phases also approach together.

On the other hand, the purpose of the negative coupling strength Kn is to make the phases of two negatively linked
oscillators (aij = −1) in the network evolve far away. Suppose a two-node network is negatively linked and θ2(0) > θ1(0)
at time t = 0, then from (3)

dθ1
dt

=
Kn

2
sin(θ2 − θ1) < 0,

θ1(t) evolve far away from θ2(t). Similarly
dθ2
dt

=
Kn

2
sin(θ1 − θ2) > 0,

θ2(t) evolve far away from θ1(t). For three or more negatively linked nodes, their phases evolve far away in [0, 2π ].
If there is no link between node i and j(aij = 0), then |aij| = 0, both Kp and Kn have no effect on the evolution of the

phases. In the simulations of this paper, the initial phases θi are randomly distributed in [0, 2π) and mod 2π is applied in
the computation.

3. Dynamics of the model

3.1. Dynamics of the balanced networks

Theorem 1. For a balanced signed network, after a period of evolution by (2), the phases of the nodes can be stabilized into two
constant values (θ1, θ2) corresponding to two communities (clusters), any two positively linked nodes are in the same community
and any two negatively linked nodes are in different communities. Furthermore, the two stable phases satisfy

θ1
− θ2

= ±π. (3)

Proof. A balanced network can be partitioned into two communities, so that all the positively linked nodes (plus-set in
term of Ref. [39]) are in the same community and any two negatively linked nodes are in different communities (see
Theorem1 in Ref. [42]). From (2), the phases of all the positively linked oscillators (nodes) can evolve together by the positive
coupling strength Kp until they reach a consensus. Thus the phases of the two communities reach two values (θ1(t), θ2(t))
respectively. From (2), the phases of any two negatively linked nodes evolve far away by the negative coupling strength Kn.
Thus the phases of the two communities (which are negatively linked) evolve far away gradually. Since the period of sine
function is 2π , that is, the phases of all the nodes be distributed in [0, 2π ], the farthest distance between θ1 and θ2 is π .
Thus Eq. (3) holds.

After the phases of the two communities (denoted as C1 and C2) reach consensus respectively, one has θi(t) − θj(t) = 0
if nodes i and j are in the same community, or θi(t) − θj(t) = ±π if nodes i and j are in different communities. For both
cases, from (2) one has dθi(t)/dt = 0 for i = 1, . . . ,N .

Example 1. Dynamics of a balanced network.

Consider a balanced signed network with 10 nodes as shown in Fig. 1. The partitioned adjacency matrix of the network
is shown in Table 1. Obviously, the network can be partitioned into two communities C1 and C2. Because all the links among
the nodes in C1 are positive (see Table 1), from (2) the phases evolve together gradually. Identically, the phases of the nodes
in C2 also evolve together gradually. But the links between the nodes in different communities are negative (see Table 1),
thus the phases of the two communities evolve far away. Fig. 2 is the simulation result of (2) when Kp = 14 and Kn = −5.
As shown in Fig. 2, after about t = 2 s of dynamical evolution (t is not the run time of the program, but the t in (2)), the
phases of the nodes are stable and divided into two communities: C1 = {1, 2, 3, 4, 5} and C2 = {6, 7, 8, 9, 10}. The stable
phases of the two communities are θ1

= 1.7194 and θ2
= 4.8610 respectively, θ2

− θ1
= 3.1416.

For a balanced network, Theorem 1 indicates that it can be easily partitioned into two communities by setting Kp any
positive number and Kn any negative number, with only positive links in community and only negative links between the
two communities.
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Table 1
Partitioned matrix of the signed social network shown in Fig. 1.

1 2 3 4 5 6 7 8 9 10

1 0 1 0 0 1 0 0 0 0 −1
2 0 0 0 1 0 −1 −1 0 0 0
3 1 1 0 1 1 0 0 0 −1 0
4 0 0 1 0 1 0 0 −1 −1 0
5 1 1 0 0 0 0 0 −1 0 −1

6 0 −1 0 −1 0 0 0 1 1 0
7 0 0 0 0 −1 1 0 1 0 1
8 −1 0 −1 0 −1 0 1 0 1 1
9 0 0 −1 0 0 0 1 1 0 0

10 −1 0 −1 0 −1 0 1 1 1 0

Fig. 1. A balanced signed network with 10 nodes.

Fig. 2. Simulation results on the network shown in Fig. 1. The phases evolving with time when Kp = 14 and Kn = −5 are illustrated in Fig. 2; they are
stabilized into two values: θ1

= 1.7194 and θ2
= 4.8610. θ2

− θ1
= 3.1416.

3.2. Dynamics of the clusterable networks

Theorem 2. For a clusterable signed network, after a period of evolution by (2), the phases of the nodes can be stabilized into
k values (θ1, θ2, . . . , θ k) corresponding to k communities (clusters), k > 2. Any two positively linked nodes are in the same
community and any two negatively linked nodes are in different communities.

Proof. A clusterable network can be partitioned into k communities, k > 2, so that all the positively linked nodes are in the
same community and any two negatively linked nodes are in different communities (see Theorem 2 in Ref. [42]). From (2),
the phases of all the positively linked oscillators can evolve together by the positive coupling strength Kp until they reach
consensus. The phases of the k communities reach k values (θ1(t), θ2(t), . . . , θ k(t)) respectively. From (2), the phases of any
two negatively linked nodes evolve far away by the negative coupling strength Kn. Thus the phases of the k communities
(which are negatively linked) evolve far away gradually until balance is reached.

Example 2. Dynamics of a clusterable network.

Consider a clusterable signed network with 20 nodes as shown in Fig. 3. The partitioned adjacencymatrix of the network
is shown in Table 2. The network can be partitioned into four communities: C1, C2, C3, and C4. All the intra-community links
are positive and all the inter-community links are negative. Fig. 4 is the simulation result of (2) when Kp = 20 and Kn = −1.
As shown in Fig. 4, the phases of the nodes in each community gradually evolve together. The phases of the entire network
evolve into four different values corresponding to four communities: C1 = {1, 2, 3, 4, 5}, C2 = {6, 7, 8, 9, 10}, C3 =

{11, 12, 13, 14, 15, 16}, and C4 = {17, 18, 19, 20}.
Identical as that of Theorem 1, for a clusterable network, Theorem 2 indicates that it can be easily partitioned into two or

more communities by setting Kp any positive number and Kn any negative number, with only positive links in community
and only negative links between the communities. Theorems 1 and 2 indicate that the proposed methodology completely
coincides with the traditional structural balance theory.
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Table 2
Partitioned matrix of the signed social network shown in Fig. 3.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0 1 0 1 1 0 −1 −1 0 0 0 0 0 0 −1 0 0 0 0 0
2 1 0 1 0 1 0 −1 0 0 0 0 −1 0 0 0 0 0 0 0 0
3 1 1 0 1 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 1 1 0 0 −1 −1 0 0 0 0 0 −1 0 −1 0 0 1 −1 0
5 1 1 1 0 0 0 −1 0 0 0 −1 −1 −1 0 −1 0 0 0 0 0

6 0 0 −1 −1 0 0 1 1 1 1 0 0 −1 0 0 0 0 0 0 0
7 0 −1 0 −1 −1 1 0 0 1 1 0 −1 0 −1 0 0 0 0 0 0
8 −1 0 0 −1 0 1 1 0 1 1 −1 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 1 1 0 0 0 0 −1 0 −1 0 0 0 −1 −1 0

10 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 −1 0 0 −1 0 −1 0 1 1 0 0 1 0 0 −1 0
12 0 −1 0 0 −1 0 −1 0 −1 0 1 0 1 1 1 1 0 0 0 0
13 0 0 0 −1 −1 0 −1 0 0 0 1 1 0 1 1 0 −1 0 0 0
14 0 0 −1 0 0 0 −1 0 −1 0 0 1 1 0 1 1 0 0 0 0
15 −1 0 0 −1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
18 0 0 0 0 0 0 0 −1 −1 0 0 0 0 −1 0 0 1 0 0 1
19 0 −1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 1 1 0 1
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

Fig. 3. A clusterable signed network with 10 nodes.

Fig. 4. The phases of the nodes shown in Fig. 3 evolving with time by (2) when Kp = 20 and Kn = −1; they are stabilized into four lines.

The dynamics of the proposed model on balanced and clusterable networks are really cluster synchronization [29,30],
where the phases in the same cluster are synchronized and the phases in different clusters are not. Cluster synchronization
in networks is usually achieved by using a control scheme [27–30].

3.3. Dynamics of general networks

For a general signed social network in the sense that it is neither balanced nor clusterable, it may have two types of
inconsistent links: negative intra-community links and positive inter-community links when it is partitioned. The negative
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Table 3
Partitioned matrix of the signed social network shown in Fig. 5.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0 1 1 0 0 1 0 0 −1 0 0 0 0 0
2 0 0 1 1 0 1 −1 0 0 −1 0 0 0 0

3 1 1 0 1 1 0 −1 −1 −1 0 0 0 0

4 0 0 1 0 0 1 −1 −1 0 −1 0 0 0

5 1 1 0 0 0 1 0 0 −1 −1 0 0 0

6 0 1 0 1 0 0 0 −1 0 −1 0 0 0

7 −1 −1 −1 0 0 0 0 1 1 1 0 0
8 0 0 −1 −1 0 −1 1 0 0 1 0 0 0 0

9 −1 −1 0 −1 −1 0 1 1 0 1 0 0 0

10 0 0 0 −1 −1 −1 1 0 1 0 0 0 0

11 0 0 0 0 0 0 0 0 0 1 1 0

12 0 0 0 0 0 0 0 0 0 1 0 1 1

13 0 0 0 0 0 0 0 1 1 0 1

14 0 0 0 0 0 0 0 0 1 1 1 0

Fig. 5. A general signed network with 14 nodes.

Fig. 6. Simulation results of the network shown in Fig. 5. (a) The phases of the nodes evolving by (2). (b) Distribution of the stable phases in [0, 2π ].

intra-community links make it hard for the phases of the community to reach consensus. The positive inter-community
links make it hard for the phases of the two communities to reach consensus respectively.

Example 3. Dynamics of a general network.

As shown in Fig. 5, consider a network consisting of 14 nodes that is partitioned into three communities: C1 =

{1, 2, 3, 4, 5, 6}, C2 = {7, 8, 9, 10}, and C3 = {11, 12, 13, 14}. The partitioned adjacency matrix of the network is shown
in Table 3, wherein the 16 inconsistent links are boxed. It is seen that community C3 is positively linked with C1 and C2.
The nodes of C3 are viewed as potential mediators. The phases of the nodes evolving by (2) are shown in Fig. 6(a) when
Kp = 2 and Kn = −25, which shows that the phases of each community are no longer equal but close to each other, and the
phases in different communities are far away relatively. By dividing [0, 2π ] into 20 equal subintervals and calculating the
number of nodeswhose stable phases fall into the subintervals, the distribution curve is shown in Fig. 6(b). A peak in Fig. 6(b)
corresponds to a community, and the signed network can be easily partitioned into three communities from Fig. 6(b).

It is seen from Fig. 6 that the structure of a general signed social network is also revealed by the dynamics. The phases of
the nodes are split into several clusters corresponding to a partition of the network, though the phases in each cluster are
not strictly equal.
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Fig. 7. The flow chart of the algorithm.

In summary: (i) for a balanced network, the phases of the nodes can be split into two clusters. The phases in each cluster
are strictly equal and (3) holds. (ii) For a clusterable network, the phases of the nodes can be split into two or more clusters.
The phases in each cluster are strictly equal. (iii) For a general network that has inconsistent links, the phases of the nodes
can be split into two or more clusters. The phases in each cluster may not be strictly equal but are close to each other,
whereas the phases in different clusters are far away. Thus, a signed network can be partitioned via its dynamics. Detailed
algorithm is presented in the next section.

4. The procedure of DBAS

Fig. 7 is the flow chart of the algorithm for partitioning via dynamics.
Step 1: Generate the adjacency matrix of the signed network.

If node i is positively linked with node j, then aij = 1 in the adjacency matrix [aij]; if node i is negatively linked with node
j, then aij = −1; otherwise aij = 0. For a weighted (valued) signed network, aij is not limited to 1 and −1.
Step 2: Initialize the phase of the nodes.

Randomly generate an initial phase in [0, 2π ] for each of the nodes.
Step 3: Update the phases of the nodes by Eq. (2).

Set two values for the two parameters Kp and Kn, and update the phases of nodes by (2) until the phases are stable.
Identical as the parameter α in (1), Kp and Kn control the weights of the two inconsistencies. Mod 2π is applied in the
calculation to ensure that each phase keeps in [0, 2π ]. The following criterion is used to determine whether the phases are
stable: θi (t) − θi (t − τ) < ε, where ε is a small positive value and τ is a time delay. For example, ε = 0.001 and τ = 3 are
usually used in the simulations of this paper, representing that the phase difference of node i is less than 0.001 in the three
seconds.
Step 4: Obtain the distribution curve of the stable phases (see Fig. 6(b) as an example).

Divide [0, 2π ] into l sub-intervals with equal length 2π/l and calculate the number of nodes whose stable phases fall
into each sub-interval. The value of l is related with the number of communities in the network, more communities in the
network require a larger value of l usually. In the experiments of this paper, l = 40.
Step 5: Partition the signed social network according to the distribution of the stable phases.

Merge the nodes in adjacent sub-intervals into a group if the number of nodes in each sub-interval is not zero. Two groups
are separated by one (or more) sub-interval whose number of nodes is zero (see Fig. 6(b) as an example). To be specific, all
the points of zero vertical ordinate in the distribution curve of the stable phases separate the nodes into several groups (in
Fig. 6(b), it is separated into three groups). Calculate the number of nodes (N_group) in each group. Usually, some groups
have only one or two nodes, which are not regarded as communities in general. The parameter Nth is given as a threshold to
judge whether a group have enough nodes to be a community. If N_group > Nth, then the group is a community; Otherwise,
these nodes are overlapping (mediating) nodes and assigned into other communities according to the ratio of the number
of positive links to that of negative links.
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Table 4
Partitioned matrix of the Gahuku-Gama subtribes network.

1 2 15 16 5 9 10 13 14 3 4 6 7 8 11 12

1 GAVEV 0 1 1 1 −1 0 0 0 0 −1 −1 −1 0 0 0 −1
2 KOTUN 1 0 1 1 −1 −1 −1 0 0 −1 0 −1 0 0 0 0
15 NAGAD 1 1 0 1 −1 −1 −1 −1 0 0 0 0 0 0 −1 −1
16 GAMA 1 1 1 0 −1 0 0 −1 −1 0 0 −1 0 0 −1 −1

5 NAGAM −1 −1 −1 −1 0 1 0 0 1 0 0 0 0 0 0
9 NOTOH 0 −1 −1 0 1 0 1 1 0 0 0 −1 0 0 −1 0
10 KOHIK 0 −1 −1 0 0 1 0 1 0 0 0 0 0 0 −1 0

13 UHETO 0 0 −1 −1 0 1 1 0 1 0 0 −1 0 −1 0
14 SEUVE 0 0 0 −1 1 0 0 1 0 0 0 0 0 −1 0 −1

3 OVE −1 −1 0 0 0 0 0 0 0 0 1 1 1 1 0 0
4 ALIKA −1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
6 GAHUK −1 −1 0 −1 0 −1 0 −1 0 1 0 0 1 1 1 1

7 MASIL 0 0 0 0 0 0 0 1 0 1 0 1 1 1
8 UKUDZ 0 0 0 0 0 0 0 0 −1 1 1 1 1 0 1 1
11 GEHAM 0 0 −1 −1 0 −1 −1 −1 0 0 0 1 1 1 0 1
12 ASARO −1 0 −1 −1 0 0 0 0 −1 0 0 1 1 1 1 0

Fig. 8. The Gahuku-Gama subtribes network. The names of the subtribes can be seen in Table 4.

The most computational time of the proposed DBAS is costed in the evolution of (2), which is increased in a quadratic
relation with the network scale N . The computational time of one node evolution by (2) can be estimated as βd, where d
is the degree of the node and β is a coefficient. Then the computational time of the N nodes is about βd̄N , where d̄ is the
average degree of the network. In the worst case, d̄ = N , thus the time complexity is O(N2).

5. Simulations

5.1. Simulations on real-world and illustrative networks

Simulation 1. The Gahuku-Gama subtribes network. The real-world network comes from the research about the cultures
of New Guinea Highland [44], which describes the political alliances and oppositions among 16 Gahuku-Gama subtribes. As
shown in Fig. 8, the political relationships among the subtribes may be positive or negative.

The adjacency matrix of the network is shown in Table 4. Fig. 9 is the simulation results by (2) when Kp = 20 and Kn =

−10. The network is partitioned into three communities with the dynamics algorithm (Nth = 3): C1 = {NAGAD,GAMA,
GAVEV,KOTUN}, C2 = {NAGAM,UHETO,KOHIK,NOTOH, SEUVE}, and C3 = {ASARO,GEHAM,OVE,UKUDZ,GAHUK,
MASIL,ALIKA}. The partition result is identical to the analysis result given by Doreian and Mrvar [3].

Simulation 2. The Slovene parliamentary parties network.

As the name indicates, the data of the network come from the elected members of the Slovene National Parliament [45].
The network presents the relations of 10 parties of the Slovene Parliament in 1994, which was established by a group of
experts on Parliament activities. Fig. 10 shows the graph of the network. The adjacency matrix is shown in Table 5.

The phases of the nodes evolving with time are shown in Fig. 11 when Kp = 16 and Kn = −10. The stable phases of the
nodes are divided into two clusters. Applying the algorithmwith Nth = 3, the network is partitioned into two communities:
C1 = {SLS, SPS − SNS, SKD, ZS, SDSS} and C2 = {LDS,DS, ZS − ESS, ZLSD, SNS}. The partition result is identical to the
analysis result given by Kropivnik and Mrvar [46].
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Fig. 9. Simulation results of the Gahuku-Gama subtribes network. (a) The phases of the nodes evolving by (2). (b) Distribution of the stable phases in
[0, 2π ].

Fig. 10. The Slovene parliamentary parties network. The names of the parties can be seen in Table 5.

Fig. 11. Simulation results of the Slovene parliamentary parties network. (a) The phases of the nodes evolving by (3). (b) Distribution of the stable phases
in [0, 2π ].

Table 5
Partitioned matrix of the Slovene parliamentary parties network.

1 3 6 8 9 2 4 5 7 10

1 SKD 0 114 94 176 117 −215 −89 −77 −170 −210
3 SDSS 114 0 138 117 180 −217 −203 −80 −109 −174
6 ZS 94 138 0 140 116 −150 −142 −188 −97 −106
8 SLS 176 177 140 0 235 −253 −241 −120 −184 −132
9 SPS-SNS 117 180 116 235 0 −230 −254 −160 −191 −164

2 ZLSD −215 −217 −150 −253 −230 0 134 77 57 49
4 LDS −89 −203 −142 −241 −254 134 0 157 173 23
5 ZS-ESS −77 −80 −188 −120 −160 77 157 0 170
7 DS −170 −109 −97 −184 −191 57 173 170 0
10 SNS −210 −174 −106 −132 −164 49 23 0

Simulation 3. Two illustrative signed networks.

The two illustrative signed networks are depicted in Fig. 12(a) and (b) respectively, which come from Ref. [4].
The network in Fig. 12(a) is clusterable, which can be partitioned into three communities without inconsistent links:
C1 = {6, 7, 22, 23, 24, 25, 13, 14, 15, 16, 4, 5}, C2 = {20, 21, 10, 11, 12, 1, 2, 3, 19, 28}, and C3 = {8, 9, 26, 27, 17, 18}.
The network is also balanced because it can be partitioned into two communities without inconsistent links: C1 =

{6, 7, 22, 23, 24, 25, 13, 14, 15, 16, 4, 5} and C2 + C3 = {8, 9, 26, 27, 17, 18, 20, 21, 10, 11, 12, 1, 2, 3, 19, 28} [4].
Applying the dynamics algorithm, the network is also partitioned into two or three communities depending on the value of
Kp and Kn. In a wide range of Kp, if Kn < −0.15, the network is partitioned into two communities. Fig. 13(a) is a simulation
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Fig. 12. Two illustrative networks. (a) The network is both balanced and clusterable. (b) The network is clusterable; however, it is not balanced.

Fig. 13. Simulation results of the two illustrative networks. (a) The phases of the network shown in Fig. 12(a) evolving with time when Kp = 20 and
Kn = −0.2. (b) The phases of the network shown in Fig. 12(a) evolving with time when Kp = 20 and Kn = −0.01. (c) The phases of the network shown in
Fig. 12(b) evolving with time when Kp = 60 and Kn = −1.8.

result when Kp = 20 and Kn = −0.2. If Kn > −0.05, then it is partitioned into three communities. Fig. 13(b) is a simulation
result when Kp = 20 and Kn = −0.01. Though there is no link between C2 and C3, both of them are negatively linked with
C1. Larger value of Kn makes them evolve far away from C1 and eventually merge together. Smaller value of Kn makes them
evolve far away from C1 but is not sufficient to merge together. For this network, resulting in two or three communities also
has relation with the initial phases of the nodes. For example, let Kp = 20 and Kn = −0.13. We run the algorithm 1000
times with randomly generated initial phases; in 583 times the network is partitioned into two communities and in 417
times it is partitioned into three communities.

The network shown in Fig. 12(b) is clusterable but not balanced, which is modified from Fig. 12(a) by adding 7 negative
links between C2 and C3. Applying the dynamics algorithm, the network is always partitioned into three communities.
Fig. 13(b) is a simulation result when Kp = 60 and Kn = −1.8.

Simulation 4. The US Supreme Court network.

TheUS SupremeCourt network is shown in Fig. 14,which is taken from the voting behavior of the nine justices formaking
decisions on the US Supreme Court for the 2006–2007 term [42]. The adjacency matrix of the network is shown in Table 6.
The elements in the main diagonal of the matrix are the number of votes made by the justices in these decisions. The off
diagonal elements are net counts of the number of times justices vote for each other (if positive), or the number of times
justices vote against each other (if negative).

In the previous literature, the network was partitioned into three communities or two communities [42]. The three-
community partition divides the court into a liberal wing (Stevens, Ginsburg, Souter, Breyer) and a conservative wing (Alito,
Roberts, Scalia, Thomas)with Justice Kennedy (represented by node 5) aligned between them. The two-community partition
divides Justice Kennedy into the conservative wing of the court, which is consistent with the fact. Fig. 15 is the simulation
results of the dynamics algorithm when Kp = 17 and Kn = −1.2. The network is partitioned into two communities when
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Fig. 14. The US Supreme Court network, each node represents a justice in the Supreme Court. The names of the justices can be seen in Table 6.

Fig. 15. Simulation results of the US Supreme Court network when Kp = 17 and Kn = −1.2. (a) The phases of the nodes evolving by (2). (b) Distribution
of the stable phases in [0, 2π ].

Table 6
Partitioned matrix of the US Supreme Court network.

1 2 3 4 5 6 7 8 9

1 Stevens 46 30 16 21 −7 −18 −17 −26 −31
2 Ginsburg 30 46 28 29 1 −10 −11 −18 −21
3 Souter 16 28 46 29 7 −4 −1 −16 −19
4 Breyer 21 29 29 45 10 −5 −6 −21 −24

5 Kennedy −7 1 7 10 45 29 24 9 8

6 Alito −18 −10 −4 −5 29 46 33 22 19
7 Roberts −17 −11 −1 −6 24 33 45 29 24
8 Scalia −26 −18 −16 −21 9 22 29 46 37
9 Thomas −31 −21 −19 −24 8 19 24 37 45

4 > Nth > 2. If Nth = 1 (one node can be a community), the network is partitioned into three communities. From Table 6,
Justice Kennedy has positive links with all the justices of the conservative wing, has three positive links and a negative link
with the liberal wing. In fact, Justice Kennedy bridges the two communities as a mediator, which can be observed in Fig. 15.

5.2. Simulations on synthetic networks

Generate synthetic networks. Identical as the method to generate synthetic signed networks introduced by Wu
et al. [46], synthetic networks are generated to test the dynamics algorithm. First, generate k communities of the network.
Each of the communities is generated by thewell-knownBarabási and Albert (BA) scale-freemodel [47]. Scale-free networks
are widely observed in social and biological networks. The BA model generates random scale-free networks using a
preferential attachmentmechanism. Commencingwith an initial positively linked network ofm0 nodes, a newnode is added
to the network at each time until the community size is satisfied. Each new node is positively linked to m existing nodes
(m 6 m0) with a probability that is proportional to the number of links that the existing nodes already possess. Second, the k
communities are connected by negative links. Define p as the ratio of the number of inter-community negative links to that
of the intra-community positive links. If p = 0 there is no inter-community negative links. If p = 1, the inter-community
negative links and intra-community positive links possess the same size. Eventually, a k-balanced network is generated.
Third, randomly flip the signs of the existing links with probability q. If q ≠ 0, an un-balanced signed network is generated.

Simulation 5. Six synthetic networks.

In this simulation, m0 = 5 and m = 4, four networks are generated with N = 1000 and two with N = 3000. The values
of the rest parameters are given in the caption of Fig. 16. Fig. 16 shows the distribution of the stable phases in [0, 2π ]. The
term ‘‘C1 = 110’’ in the caption presents that community C1 has 110 nodes. The six networks are correctly partitioned with
the dynamics algorithm.
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Fig. 16. Distribution of the stable phases in [0, 2π ] for the synthetic 1000-node and 3000-node networks. (a) N = 1000, C1 = 110, C2 = 180, C3 = 210,
C4 = 210, C5 = 290, p = 0.6, q = 0, Kp = 15, and Kn = −0.9. (b) N = 1000, C1 = 270, C2 = 350, C3 = 380, p = 0.6, q = 0.1, Kp = 10, and Kn = −1.
(c) N = 1000, C1 = 270, C2 = 350, C3 = 380, p = 0.6, q = 0.15, Kp = 11, and Kn = −1.1. (d) N = 1000, C1 = 300, C2 = 330, C3 = 370, p = 0.2, q = 0.2,
Kp = 10, and Kn = −1.1. (e) N = 3000, C1 = 330, C2 = 540, C3 = 630, C4 = 630, C5 = 870, p = 0.6, q = 0, Kp = 15, Kn = −1.5. (f) N = 3000, C1 = 900,
C2 = 990, C3 = 1110, p = 0.2, q = 0.2, Kp = 15, Kn = −1.5.

Table 7
Run time of the four 3000-nodes networks in Simulation 5.

(Kp , Kn) (3,
−0.3)

(15,
−1.5)

(75,
−7.5)

(150, −15)

Run time (s) 246 1204 6454 13297

We test the run time of the proposed DBAS on four 3000-node networks with different values of Kp and Kn (include the
two networks whose simulation results are shown in Fig. 16(e) and (f)). The partition results are almost the same, but the
run times are different as shown in Table 7. If we further change the values of (Kp, Kn) to (1, −0.1) the run time is very long
and the memory is overflow in a 6G memory computer. DBAS works well in a very wide range of Kp and Kn, smaller values
of Kp and |Kn| result in faster speed usually, but too small of Kp and |Kn| will make the differential equation difficult to reach
convergence.

Simulation 6. Comparative experiments.

In this simulation,we comparatively test the performance of the proposed algorithmonnetworks ofN = 65 andN = 300
with different values of q (see Fig. 17). The other parameters of the networks are m0 = 4 and m = 3, and p = 0.6. The
performance of the algorithms are evaluated by the error rate defined in Ref. [4] and the criterion function φ(C) defined by
(1). The smaller the value of error rate and φ(C), the better the quality of the partition. Each point of Fig. 17 is an average
tested on 10 networks.

Besides FEC and SPM, the dynamics-based algorithm for positive networks (DBAP) proposed in Ref. [24] is also tested in
the experiments by ignoring the negative links; the values of Kp and Kn are always equal to that of DBAS.
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Fig. 17. Comparison of the proposed DBAS with FEC, SPM, and DBAP on networks of N = 65 and N = 300. For networks of N = 65, the parameters are
C1 = 12, C2 = 15, C3 = 16, C4 = 22, Nth = 3, Kp = 5, and Kn = −2.5. For networks of N = 300, the parameters are C1 = 60, C2 = 70, C3 = 80,
C4 = 90, p = 0.6, Nth = 3, Kp = 10, and Kn = −1. (a) Error rate on networks of N = 65. (b) Error rate on networks of N = 300. (c) φ(C) on networks of
N = 65 (α = 0.5). (b) φ(C) on networks N = 300 (α = 0.5). (e) Run time on networks of N = 65. (f) Run time on networks of N = 300.

Fig. 17(a) and (b) are the error rates of the networks of N = 65 and N = 300, respectively. The error rate increases as
the increasing of q, which indicates that the difficulty to partition is increasing. DBAS always yields lower value of error rate
than that of DBSP, indicating that the performance is improved by exploring the information of negative links. Fig. 17(c) and
(d) are the φ(C) of the networks of N = 65 and N = 300, respectively. The results coincide with that of Fig. 17(a) and (b).
Fig. 17(e) and (f) are the run times of the networks of N = 65 and N = 300, respectively. The run times of SPM on N = 65
and N = 300 networks are about 1500 and 10000 s respectively, which are far more than that of the rest three algorithms,
and thus are not shown in Fig. 17(e) and (f). It is seen that the run time of the proposed DBAS increases as the increasing of q.

Simulation 7. Parameters sensitivity experiments.

In this simulation, the 20 networks with q = 0.1 and N = 300 in Fig. 6(b) of Simulation 6 are used to test the sensitivity
of DBAS on the parameters Kp and Kn. To test the sensitivity, we do not reassign the overlapping nodes in the small groups
by letting Nth = 0 (see Step 5 in the method section). Firstly, fixing Kn = −2 and varying the value of Kp from 10, 15, 20, 25,
and 30, the error rates of the 20 networks are obtained. Fig. 18(a) shows the average value of the 20 networks, which show
that the error rate is small when Kp = 20. Secondly, fixing Kp = 20 and varying the value of Kn from −0.5, −2, −10, −13,
and −15, Fig. 18(b) shows the average error rate of the 20 networks. For a given value of Kp (e.g. Kp = 20), there is a most
appropriate value for Kn (Kn = −2 for Kp = 20), and vice versa. The observed relation for the appropriate values of Kp and
Kn is

Kp

|Kn|
≈ q. (4)

We check relation (4)with (Kp, Kn) = (10, −1), (20, −2), (30, −3), (40, −4), . . . , (2000, −200) on the 20 networks, DBAS
works well. The differences are the converging speeds of the phases; (Kp, Kn) = (10, −1) is much faster than that of
(Kp, Kn) = (2000, −200).

Relation (4) is helpful for choosing appropriate values of Kp and Kn. But in some real world applications, the value of qmay
not be available. Relation (4) is not strictly required; in a wide range around q, the two parameters work. In this simulation
Nth = 0. If Nth ≠ 0, the overlapping nodes with N_group < Nth will be reassigned (see Step 5 in the method section), and
the sensitivity will be further reduced.
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Fig. 18. Parameters sensitivity experiments on networks with N = 300, C1 = 60, C2 = 70, C3 = 80, C4 = 90, p = 0.6, Nth = 0, and q = 0.1. (a) Kn = −2
and Kp varying from 10, 15, 20, 25, and 30. (b) Kp = 20 and Kn varying from −0.5, −2, −10, −13, and −15.

6. Conclusion

The WJJLGS model is modified to imitate the evolutionary dynamics of signed social networks. Positive links make the
phases of the corresponding individuals evolve together; negative links make the phases of the corresponding individuals
evolve far away. As a result, the phases of the signed network evolve into several clusters corresponding to a reasonable
partition of the network. Detailed algorithm (DBAS) is also provided. The run time of the algorithm is closely related with
the iteration of the differential equation. If the differential equation can be replaced by difference equation, the algorithm
could further speed up, which needs further researches.
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