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h i g h l i g h t s

• Rule I fit the similarity of same groups is stronger than that of different groups.
• Rule II fit the similarity of same groups is weaker than that of different groups.
• Fuzzy clustering adapts to vaguer community detection.
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a b s t r a c t

How to measure the similarity between nodes is of great importance for fuzzy clustering
when we use the approach to uncover communities in complex networks. In this paper,
we first measure the similarity between nodes in a network based on edge centralities and
model the network as a fuzzy relation. Then, two fuzzy transitive rules (Rule I and Rule II)
are applied on the relation respectively, by which the similarity information can be trans-
ferred from one node to another in the network until the relation reaches a stable state.
By choosing different thresholds, our method finally can partition the network into several
non-overlapping subgroups. We compare our method with some state of the art methods
on the LFR benchmark and real-world networks. We find that our method based on Rule I
can correctly identify communities when the similarity between nodes of same groups is
greater than that of different groups,while it is just opposite to Rule II. Ourmethod achieves
better results than the state of the art methods when the pre-planted communities of the
random networks are vaguer.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Many works showed that most complex networks characterize by groups of nodes, called communities, which have
more internal links between nodes of same communities and less external links of different communities [1–4]. Community
detection is very important for the understanding of complex systems, since it can uncover the organization features of
complex systems as well as the hidden correlations among the components [1–4]. Therefore, more and more scholars from
different fields pay more their attentions on community detection [1–4].

In the past several years, many approaches have been proposed for community detection [3,5–38]. Fortunato reviewed
in detail the community detection methods and classified them into several categories [3] such as optimization methods
[2,5–9], and divisive clustering algorithms [10–12,33,34]. Newman and Girvan [2,5,6] considered the problem of commu-
nity detection as an objective optimization problem [2,5,6] bymaximizingmodularity. However, themethod has a resolution
limit problem [13]. Li and Zhang [8] considered a quantitative function,modularity density and tried to alleviate this problem
by maximizing this function. The second important branch of approaches for community detection is divisive algorithms.
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Girvan and Newman (GN) [2,10] proposed a divisive algorithm based on edge betweenness. GN algorithm [2,10] identifies
communities by removing the edges with the maximum of edge betweenness in a network. By doing this process repeat-
edly, the network is broken into smaller and smaller subgroups [2,10]. Furthermore, edge information centrality [11] and
edge clustering coefficient [12] were proposed to replace the edge betweenness in the divisive algorithm [2,10] respectively
for community detection.

Overlapping communities provide a deep understanding of organizational units in complex networks, since one person
may belong tomultiple groups, in which they play different roles. Palla et al. [16] first proposed a clique percolationmethod
(CPM) to identify overlapping communities in social networks. Furthermore,manymethods that candetect both overlapping
and non-overlapping communities have been proposed such as the OSLOMmethod [36], and the Infomapmethod [37]. The
approach proposed by Ahn et al. [38] is different from the former. They reconstructed communities as groups of edges rather
than vertices and showed that this approach can identify overlapping communities. In recent years, fuzzy clustering provides
a fresh idea for the understanding of community detection [14,15]. For example, Sun et al. [15] used fuzzy clustering to detect
overlapping and non-overlapping communities in complex networks. They treated the network as a fuzzy relation. By fuzzy
transitive closure, finally each community is mapped as an equivalence class. They also extended their method to identify
overlapping communities. Nevertheless, how to measure the similarity to distinguish the nodes of same communities from
that of different communities is of great importance to define the fuzzy relation for a network and detect communities
for fuzzy clustering as well. Granovetter [30,31] indicated that weak and strong similarities between nodes play different
roles in real-world networks in that the weak similarity keeps the networks global integrated while the strong similarity
maintains the communities. Sun et al. [34] used the edge centralities to weight the links of networks and showed that edge
centralities indeed can distinguish the links of same groups from that of different groups.

In this paper, we try to distinguish the similarity between nodes of same communities from that of different communities
based on edge centralities such as edge betweenness (EBT ), edge information centrality (EIC) and edge clustering coefficient
(ECC) and construct a fuzzy relation for a network. Then, two fuzzy transitive rules (Rule I and Rule II) are applied on the
relation respectively, by which the similarity information can be transferred from one node to another in the network until
the relation reaches a stable state. By choosing different thresholds, ourmethod finally can partition the network into several
non-overlapping communities withmulti-resolutions. Of course, our method based on fuzzy transitive rules for community
detection can be easily extended to identify overlapping communities [15]. This paper mainly focuses on the similarity
between nodes and two fuzzy transitive rules and tries to elucidate how to assign the similarity between nodes for each of
two rules so that they can achieve better clustering results. We compare our method with some state of the art methods of
community detection on the Lancichinetti, Fortunato and Radicchi (LFR) benchmark [23] and real-world networks and also
discuss the choice of thresholds for community detection.

The rest of the paper is organized as follows. In Section 2, we give an introduction on edge centralities and use them to
measure the similarity between nodes. In Section 3, we discuss our method for community detection. Section 4 presents the
results on both random networks and real-world networks. The conclusion is provided in Section 5.

2. Measuring similarity between nodes based on edge centrality

Here, we discuss the edge centralities such as edge betweenness (EBT ) [2,10], edge information centrality (EIC) [11] and
edge clustering coefficient (ECC) [12] and try to use them to distinguish the similarity between nodes of same communities
from that of different communities so that we can model a network as a fuzzy similar relation.

2.1. Edge betweenness

Girvan and Newman [2,10] defined edge betweenness centrality based on the work of Freeman [24,25] as the number of
shortest paths between vertices that contain the edge, since the shortest paths should go along one of the edges between
different communities. Girvan and Newman [2,10] indicated that the edges between communities are always with higher
edge betweenness values.

2.2. Edge information centrality

Fortunato et al. [11] defined edge information centrality based on the work of Latora and Marchiori [26,27]. The infor-
mation centrality, EIC e for an edge e, is defined as the drop of network efficiency caused by removing the edge in a network.

EIC e =
∆NE
NE

=
NE(G) − NE(Gē)

NE(G)
(1)

NE(G) =
1

n(n − 1)


vi≠vj∈G

1
dvivj

(2)

where Gē, a graph is obtained by removing e from G. NE(G), the network efficiency of G. dvivj , the length of the shortest path
between vi and vj. Fortunato et al. [11] showed that the edges connecting different communities are those with higher edge
information centrality values.
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2.3. Edge clustering coefficient

Radicchi et al. [12] defined edge clustering coefficient based on the work of Watts and Strogatz [28], since the edges
within same communities will have a higher likelihood to form cycles, while the edges between different communities will
hardly to form cycles. Radicchi et al. [12] showed that the edges between different communities have the greater values of
edge clustering coefficient. This measure is defined as follows [12].

ECC (g)
vivj

= (z(g)
vivj

+ 1)/s(g)
vivj

(3)

where z(g)
vivj

, the number of cyclic structures of g on the edge (vi, vj), s(g)vivj
= min(dvi − 1, dvj − 1). dvi and dvj , the degree of

vi and vjrespectively. The edge clustering coefficient is defined based on triangles when g = 3.
Here, we use xvivj to denote the similarity between node vi and node vj, and xvivj equals the edge centrality value, if

(vi, vj) ∈ E, otherwise xvivj = 0. In this paper, xvivj is normalized between 0 and 1 by x′
vivj

= xvivj/Max{xvivj}. Here, if x
′
vivj

denotes the similarity between node vi and node vj based on EBT (edge betweenness), then EBT can be denoted by 1− x′
vivj

.

Of course, the above is also applicable to EIC (edge information centrality) and EIC aswell as ECC (edge clustering coefficient)
and ECC .

We know that nodes connecting different communities are endowed with the greater values by both edge betweenness
and edge information centrality, while it is just opposite to the edge clustering coefficient. Therefore, EBT , EIC and ECC
maintain the nodes within same groups with greater similarity values, while it is just opposite to EBT , EIC and ECC .

3. Fuzzy clustering

In this section, we first describe some concepts of fuzzy relation [9,15,29], and then two fuzzy transitive rules. Finally,
we discuss our method based on the two rules for community detection.

3.1. Fuzzy relation

Given an unweighted and undirected graph, G(V , E), where V is the set of nodes, and E is the set of links. The graph, G
can be denoted by a binary fuzzy relation, R in V , where R ∈ F(V ×V ), F(V ×V ) is the set of all the fuzzy relations of V ×V .
∀(vi, vj) ∈ V × V , R(vi, vj) is seen as the membership grade of the pair (vi, vj) in R [29].

Definition 1 (Reflexive Relation). R is reflexive, if ∀vi ∈ V , R(vi, vi) = 1, where R ∈ F(V × V ). Otherwise, R is irreflexive, if
∀vi ∈ V , R(vi, vi) = 0 [29].

Definition 2 (Symmetric Relation). R is symmetric, if ∀(vi, vj) ∈ V × V , R(vi, vj) = R(vj, vi), where R ∈ F(V × V ) [29].

Definition 3 (Inclusion Relation). R ⊆ R′, if ∀(vi, vj) ∈ V × V , R(vi, vj) ≤ R′(vi, vj), where R, R′
∈ F(V × V ) [29].

3.2. Fuzzy transitive rules

Here, we discuss the two fuzzy transitive rules to fulfill the similarity information transfer from one node to another in
a network [9,15,29].
Rule I: Rt

= Rt−1
◦ R

(Rt−1
◦ R)(vi, vj) = ∨vk∈V (Rt−1(vi, vk) ∧ R(vk, vj)), (vi, vj) ∈ V × V . If Rt−1 is reflexive and symmetric, then Rk−1

⊆ Rt ,
and R ⊆ R2

⊆ · · · ⊆ Rt
⊆ · · ·. If Rt

⊇ Rt+1, then the information transfer is accomplished in the network by
the rule, and R∗

max = Rt is the maximal stable state of R based on the rule. ‘‘◦’’ = (∨, ∧) is called (Max,Min) rule.
Rt−1(vi, vk) ∧ R(vk, vj) = Min


Rt−1(vi, vk), R(vk, vj)


, Rt−1(vi, vk) ∨ R(vk, vj) = Max


Rt−1(vi, vk), R(vk, vj)


[9,15,29].

Rule II : Rt
= Rt−1

◦̃R
(Rt−1

◦̃R)(vi, vj) = ∧vk∈V (Rt−1(vi, vk) ∨ R(vk, vj)), (vi, vj) ∈ V × V . If Rt−1 is irreflexive and symmetric, then Rt
⊆ Rt−1, and

R ⊇ R2
⊇ · · · ⊇ Rt

⊇ · · ·. If Rt
⊆ Rt+1, then the information transfer is accomplished in the network by the rule, and

R∗

min = Rt is the minimal stable state of R based on the rule. ‘‘◦̃’’ = (∧, ∨) is called (Min, Max) rule [9,15,29].
Based on the two fuzzy transitive rules, this process, R ⇒ R2

⇒ · · · ⇒ Rt
⇒ · · · can be used to describe the process of

community emergence in a network.

3.3. Fuzzy transitive method

Just as we have discussed above, R∗
max and R∗

min indicate that the information transfer is accomplished. Therefore, our
fuzzy transitive method can be described as follows:
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(1) A ⇒ R, transform the adjacency matrix of a graph into a fuzzy relation. Here, R is reflexive and symmetric based on
Rule I, or irreflexive and symmetric based on Rule II respectively. Let A = (aij)n×n, R = (rij)n×n, if aij = 0, then rij = 0 based
on Rule I, while if aij = 0, then rij = 1 based on Rule II. rij indicates the similarity between node vi and node vj (R(vi, vj) = rij),
i, j = 1, 2, . . . , n, which can be determined by the edge centralities that we have discussed in Section 2.

A =

 0 . . . a1n
...

. . .
...

an1 · · · 0

 ⇒ R =



 1 . . . r1n
...

. . .
...

rn1 · · · 1

 , Rule I

 0 . . . r1n
...

. . .
...

rn1 · · · 0

 , Rule II

(4)

(2) R ⇒ R∗
max and R ⇒ R∗

min based on the two transitive rules respectively.

R =



 1 . . . r1n
...

. . .
...

rn1 · · · 1


 0 . . . r1n

...
. . .

...
rn1 · · · 0


⇒

R∗

max =

 1 . . . r ′

1n
...

. . .
...

r ′

n1 · · · 1

 , Rule I

R∗

min =

 0 . . . r ′′

1n
...

. . .
...

r ′′

n1 · · · 0

 , Rule II

(5)

(3) R∗
max ⇒ B(R∗

max) and R∗

min ⇒ B(R∗

min), transform R∗
max and R∗

min into Boolean relations, B(R∗
max) and B(R∗

min) based on the

following clustering regulations respectively. Let R∗
max = (r ′

ij)n×n, B(R∗
max) = (R∗

max)λ, r
′

ij(λ) =


1, r ′ij ≥ λ

0, r ′ij < λ
. Let R∗

min = (r ′′

ij )n×n,

B(R∗

min) = (R∗

min)λ, then r ′′

ij (λ) =


1, r ′′ij ≤ λ

0, r ′′ij > λ
, where λ ∈ [0, 1].

(4) B(R∗
max) → R, B(R∗

min) → R, map the Boolean relations, B(R∗
max) and B(R∗

min) into R by R(vi, vj) = rij = r ′

ij(λ), or
R(vi, vj) = rij = r ′′

ij (λ) respectively and induce equivalence classes. Each corresponds to a community in the network. The
equivalence class of vi is the subset of elements in V that are equivalent to vi : [vi]R = {vj ∈ V |R(vi, vj)} [29].

4. Results and discussion

In this section, we first compare our method with some state of the art methods of community detection such as the
Louvain method [35], the OSLOM method [36] and the Infomap method [37] on the LFR benchmark [23], and then on real-
world networks such as the Zachary club network [32], the college football network [2,16], the Dolphins network [39] and
the co-appearance network of characters in the novel Les Miserables [40]. In addition, we give a detailed discussion on the
choice of the parameter λ for community detection.

4.1. Testing on the LFR benchmark

Here, we test our method on the LFR benchmark [23] and produce random networks with N = 200, k = 15, max k = 50,
min c = 20, max c = 50. N denotes number of nodes in the networks, k indicates the average node degree, and max k is
the maximum of node degree. mu is the mixing parameter that each vertex shares 1 − mu links with the other vertices of
its community and mu with the rest nodes in the networks. min c is the minimum of community sizes, and max c is the
maximum of community sizes [23].

We employ the normalizedmutual information (NMI) [22] which can be described by the following equation to evaluate
difference between the communities detected by our approach and the real communities in the networks.

NMI(A, B) =

2
cA
i=1

cB
j=1

Nij log(
Ni.N.j
NijN

)

cA
i=1

Ni. log(
Ni.
N ) +

cB
j=1

N.j log(
N.j
N )

(6)

where the real communities are in the rows, and the detected communities are in the columns. The number of vertices
shared by the real community i and the detected community j is Nij. cA and cB are the numbers of real communities and
detected communities respectively, Ni. and N.j are the sums over row i and column j of matrix Nij respectively [22].
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Fig. 1. Testing on the LFR benchmark for community detection. Each point is on average as a function of mu. (a) and (b) the results of our method and
some state of the art methods for community detection. (c) and (d) show the results of our method based on Rule I and Rule II respectively.

Fig. 1 shows the results on the LFR benchmark for community detection. We find that our method based on Rule I gains
better performance when the similarity between nodes of same groups is greater than that of different groups, while it is
just opposite to Rule II. The results also show that our method outperforms the state of the art methods such as the Louvain
method [35], the OSLOMmethod [36] and the Infomap method [37] when the mixing parameter of the LFR benchmark,mu
is close to 0.8, and achieves bad performance when mu ≤ 0.5. In addition, ECC outperforms other edge centralities such as
EBT and EIC on measuring the similarity between nodes for community detection based on fuzzy transitive methods.

Figs. 2 and 3 show the results for the choice of the parameter λ for community detection based on Rule I and Rule II
respectively. In Fig. 2, for EBT and EIC , if mu → 0, we obtain better results when λ → 1, while for ECC, if mu → 0, we
achieve better performance when λ → 0. In Fig. 3, for EBT and EIC, if mu → 0, better results are obtained when λ → 0,
while for ECC , if mu → 0, better performance is achieved when λ → 1.

For the choice of the parameter, λ, we take Rule I as an example, when λ → 0, the whole network is a community, and
when λ → 1, each node is a community, while it is just opposite to the Rule II. Just aswe have discussed in the section above,
Rule I can correctly identify communities when the similarity between nodes of same communities is endowedwith greater
values than different communities, while it is just opposite to the Rule II. Granovetter [30,31] indicated that weak and strong
similarities between nodes play different roles in real-world networks in that the weak similarity keeps the networks global
integrated while the strong similarity maintains the communities. We can see that Rule I is consistent with the results of
Granovetter [30,31]. In addition, no criterion can be given to estimate its value for the optimal partition of a network in
general, since the choice of the parameter depends on the structure of networks strongly.

4.2. The Zachary club network

Zachary [32] considered 34 members of a karate club over two years. In his experiment, a split is observed between the
administrator of the club (vertex 1) and the club’s instructor (vertex 33), since the instructor started a new club and took a
half of the members of the club with him. Zachary built a network between members for the club.

Here, wewant to uncover the factions in the club by ourmethod. The results show that the twowell-known communities
in Fig. 4 are detected and divided by dashed black lines, which are centered with the administrator of the club (vertex 1), and
the club’s instructor (vertex 33). Furthermore, the two primary groups can be subdivided into smaller subgroups, which are
separated by dashed red lines. Fig. 4(a)–(c) shows the communities detected by our method with ECC (g = 3) based on
Rule I on the Karate club network by choosing different λ. Just as we have discussed in the section above, for Rule I, when
λ → 0, the whole network is a community, and when λ → 1, each node is a community, i.e. we can extract more detailed
subdivisions for a network when λ → 1 based on Rule I, while it is just opposite to the Rule II. Fig. 5(a) and (b) shows the
results of the choice of the parameter λ on the Karate club network for community detection.
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Fig. 2. Results of the choice of the parameter λ on the LFR benchmark for community detection based on Rule I.

Fig. 3. Results of the choice of the parameter λ on the LFR benchmark for community detection based on Rule II.
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Fig. 4. Testing on the Karate club network and the college football network. (a)–(c) The communities detected by our method on the Karate club network
based on Rule I and ECC (g = 3) with the different choice of λ. (d) The communities detected by our method on the college football network with ECC
(g = 4) based on Rule I. The primary groups can be subdivided into smaller subgroups, which are separated by dashed red lines.

Fig. 5. Results of the choice of the parameter λ on the Karate club network and the college football network for community detection. (a) and (b) show
the results on the Karate club network based on Rule I and Rule II respectively. (c) and (d) show the results on the college football network based on Rule I
and Rule II respectively.

4.3. The college football network

Here, our approach tries to divide the college football network that represents the game of US college football league
[2,16]. The nodes in the network are the 115 teams, and the links denote 616 games in the year. The teams are divided into
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Fig. 6. Results on the Dolphins network and the co-appearance network of characters in the novel Les Miserables. (a) The communities detected by the
Infomap method on the Dolphins network. (b) and (c) The communities detected by our method on the Dolphins network with the different choice of λ.
(d) The communities detected by the Infomap method on the novel network. (e) and (f) The communities detected by our method on the novel network
with the different choice of λ. The primary groups can be subdivided into smaller subgroups, which are separated by dashed red lines.

8–12 conferences and the games are generally more frequent betweenmembers of the same conference than different con-
ferences. Fig. 4(d) shows the primary communities detected by our method with ECC (g = 4) based on Rule I on the college
football network. Fig. 5(c) and (d) shows the results of the choice of the parameter λ on the college football network for
community detection. The primary communities are separated by dashed black lines, which can be subdivided and denoted
by dashed red lines.

4.4. The Dolphins network

In this subsection, we discuss the Dolphins network that contains 62 nodes with 159 links, which was studied by the
biologist, David Lusseau [39]. TheDolphins form two subgroups, andDavid Lusseau found that theDolphins in each subgroup
share a similar age. Here, we use our approach to recover the subdivision of the Dolphins. Fig. 6(a) shows the communities
identified by the Infomapmethod, and Fig. 6(b) and (c) shows the results detected by our approachwith the different choice
of λ. The two subgroups uncovered by bothmethods approximately agree with the findings observed by David Lusseau. Just
as we have discussed on the Karate club network, our method obtains multi-resolutions for a network by choosing different
λ, therefore, we can reveal more detailed subdivisions for the Dolphins network when λ → 1 based on Rule I.

4.5. The novel network

Here, we also test our approach on the co-appearance network of characters in the novel Les Miserables [40]. In the
network, a vertex corresponds to a character, and a link connects two characters if they co-appear in the novel. This network
includes 77 nodes and 254 links. Fig. 6 displays the communities detected in the network. The identified subgroups reveal
the underlying relationships of characters in the novel. Fig. 6(d) shows the results identified by the Infomap method, and
Fig. 6(e) and (f) shows the results detected by our approach with the different choice of λ. The main subgroups revealed
by both methods approximately agree with that of in the novel. Just as we have discussed on the Karate club network and
Dolphins network, we also can extract different partitions for the novel network by choosing different λ.

5. Conclusions

In this paper, we use fuzzy transitive rules to reveal community structure in complex networks. By choosing different
thresholds, our method finally can partition the network into several communities withmulti-resolutions. The results show
that ourmethod based on Rule I gains better performancewhen the similarity between nodes of same groups is greater than
that of different groups, while it is just opposite to Rule II. Ourmethod achieves better performance than some state of the art
methods whenmu is close to 0.8. We think our results will provide a new insight for the understanding of network partition
and community detection. In the future work, we will focus on the distortion problem of fuzzy clustering for community
detection.
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