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• Most community detection methods use network topology and edge density.
• These methods decompose nodes connected by high weights into different communities, even when they intuitively belong to a single

community.
• We propose a method of detecting overlapping and hierarchical communities in complex networks using interaction-based edge

clustering.
• We find that the community quality and the overlap quality for our method surpass the results of the other methods.

a r t i c l e i n f o

Article history:
Received 6 January 2014
Received in revised form 10 September
2014
Available online 20 September 2014

Keywords:
Community detection
Edge clustering
Overlapping communities
Hierarchical structure
Complex network

a b s t r a c t

Most community detection methods use network topology and edge density to identify
optimal communities. However, in these methods, several objects that are connected by
high weights may be decomposed into different communities, even when they intuitively
belong to a single community. In this case, it ismore effective to classify the objects into the
same community because they perform important roles in controlling and understanding
the network. To achieve this goal, in this paper, we propose a method of detecting optimal
community structures in a complex network using interaction-based edge clustering. Our
approach is to consider network topology as well as interaction density when identifying
overlapping and hierarchical communities. Additionally, we measure the differences be-
tween the quantity and quality of intra- and inter-community interactions to evaluate the
quality of the community structure. We test our method on several benchmark networks
with known community structures. Additionally, after applying ourmethod to several real-
world complex networks, we evaluate our method through comparison with other meth-
ods. We find that the community quality and the overlap quality for our method surpass
the results of the other methods.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Networks that describe complex systems or concepts can be decomposed into communities or groups. Communities are
usually subgraphs: the density of edgeswithin the community is greater than the density of edges between communities [1].
The detection of community structures can be easy to understand, and a network can often be analyzed efficiently by
dividing it into several groups [2]. Such communities often exist in social networks, biological networks and infrastructure
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networks. There aremanymethods available to detect communities in complex networks. However, becausemost methods
and algorithms identify communities based on the network topology, the community structure is strongly influenced by
the edge density. Specifically, the identification of real communities with different structures and edge densities is difficult.
Additionally, although most complex networks are directed and weighted graphs, because each member interacts with
other members, most conventional methods do not consider the edge direction and weight simultaneously [3]. Therefore,
we propose a community detectionmethod based on the interactions of themembers. Thismethod evaluates andmaximizes
the difference between the quantity and quality of intra- and inter-community interactions to identify optimal communities.
We refer to the communities identified by our method as interaction communities (IC).

Interaction communities are a specific type of community structure that maximizes the internal interaction within the
community and minimizes the external interaction between communities. This concept differs in several ways from the
conventional community definition. The candidate community structures identified using our method are different from
the structures identified usingmodularity or edge density. When the weights of the edges in a network differ, the difference
between interaction communities and the ideal community structure is greater. The primary reason for this difference is
that we use the interaction density instead of the network topology to determine the community structure. This means that
our quality function for evaluating the community structure in the clustering process returns a high value if the weights
of the intra-community edges are maximized. However, when the weights of all edges in the network are the same, our
method identifies a community structure that is consistent with a structure based on the edge density, such as modular-
ity. Additionally, because we determine the clustering order in terms of edge directions and weights, a structure based on
interaction communities is fundamentally different from the results of other clustering methods.

Various techniques, including hierarchical clustering, modularity optimization, detection of dense subgraphs, and statis-
tical inference, amongmany others, have been used to detect community structures. The Girvan–NewmanAlgorithm (GN) is
awell-knownmethod [4]. The GN algorithm,which is based on divisive hierarchical clustering, probes the community struc-
ture by removing high levels of space between edges. The optimal communities identified by this method consist of hierar-
chical structures selected by means of modularity measurements [5,6]. This method detects non-overlapping communities.

However, an important property of communities in the real world is that a node can belong to several communities [7].
Methods for detecting overlapping communities have been the subject of extensive study. These methods attempt to allow
a node to be shared among several groups. The cluster-overlap Newman–Girvan algorithm (CONGA), which has been used
to extend the GN algorithm, is a divisive hierarchical algorithm that clusters undirected and unweighted networks [8,9].
In this method, an overlapping node is divided into several nodes, and the overlapping communities are evaluated using
Nicosia’s modularity [10]. The clique percolation method (CPM) is a popular method of detecting overlapping communities,
but it has a non-hierarchical structure [11,12]. CPM combines two communities that share k − 1 nodes after identifying
themaximal k-cliques in the network. Agglomerative hierarchical clustering based onmaximal cliques (EAGLE) can identify
both overlapping communities and hierarchical structures [13]. In this algorithm, overlapping communities are evaluated
using a quality function that extends Girvan–Newman modularity. A link-community detection method (LC) based on
agglomerative hierarchical clustering has been proposed. This method identifies overlapping communities and hierarchical
structures by grouping two links that share one node [14].

Edges in complex networks can have directions and weights because the members interact directly with a measurable
frequency and duration. Additionally, collaboration or communication events between the same members in a social net-
work can be repeated, and a higher frequency of collaboration or communication usually indicates a closer relationship [12].
In this context, CPMd (CPM with directions) and CPMw (CPM with weights) can account for the directions and weights of
edges, respectively, in the detection of overlapping communities [15,16]. CPMdw (CPMwith directions and weights) mixes
CPMd and CPMw and can detect communities in a weighted and directed network. Likewise, LC can be extended to LCd (LC
with directions), LCw (LC with weights) and LCdw (LC with directions and weights). These methods can detect only dense
communities while accounting for edge directions and weights.

To find communities in real-world complex networks, it is important to consider several approaches to community de-
tection. These approaches include the detection of overlapping communities and hierarchical structure as well as consid-
eration for directed and weighted edges. However, most methods for community detection do not use these approaches
simultaneously. Moreover, most methods decompose nodes connected by high weights into different communities, even
when they intuitively belong to a single community. The primary reason for this behavior is that these methods treat the
edges connecting nodes as inter-community edges if they are bridges. In this case, it is more effective to classify the objects
into the same community because they perform important roles in controlling and understanding the network. Therefore,
in this paper, we consider network topology as well as interaction density in determining edgeweights for the identification
of overlapping and hierarchical communities. To achieve this goal, we propose a method of detecting optimal community
structures in a complex network using interaction-based edge clustering. This method is based on single-linkage hierarchi-
cal clustering and searches for overlapping community structures in a weighted and directed network. Fig. 1 illustrates the
differences between our method and previously proposed methods.

2. Methods

Our objective is to identify optimal communities while minimizing the influence of edge density and maximizing the
quantity and quality of internal interactions. Consequently, we propose a method consisting of two processes. First, we
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Fig. 1. Differences between our method and other methods. Given a network such as (a), (b)–(d) illustrate various derived community structures. In (b),
existing methods are depicted that can detect an overlapping community but do not detect overlapping nodes. Methods based on LC, as demonstrated in
(c), can identify community structures with high edge density values, although these evaluations include both edge directions and weights.

identify community structures using edge clustering based on single-linkage hierarchical clustering. Second, we evaluate
the quality of the community structure using a quality function (Q ). Finally, we select the optimal community structurewith
the highest Q .

We assume that the target network is a directed and weighted graph (G = {N, E}), where N is the set of members in the
network and E is the set of directed and weighted edges. Each edge eij is a connection between nodes i and j. If eij ∈ E and
eij ≠ eji, then nodes i and j are the sender and the recipient, respectively. Additionally, each edge has an interaction weight
(wij) that describes the quality or frequency of the interaction between nodes i and j. This weight falls within the range
0 ≤ wij ≤ 1. Graph G can consist of a set of communities (C = {C0, . . . , CK }). Each community (Ck = {Nk, Ek}) contains a
set of nodes (Nk) and a set of edges


Ek =


eij | i, j ∈ Nk, wij ≠ 0


. The sets of nodes and edges in graph G can be rewritten

as N =


k Nk and E =


k Ek, respectively.

2.1. Interaction-based edge clustering

We detect a set of optimal communities (C) via edge clustering based on single-linkage hierarchical clustering in a
directed and weighted graph G. The algorithm is as follows:
1. Generate the set of edge pairs


P =


eik, ekj


, . . .


.

2. Calculate the similarity

S

eik, ekj


and distance


d

eik, ekj


for all pairs of edges.

3. Initialize a community Ck =

Nk = {i, j} , Ek =


eij


using each edge eij. Afterward, generate the initial set of commu-

nities C =

C0, . . . , C|E|


.

4. For the pair of edges

eik, ekj


with the smallest distance, merge two communities Cv and Cu when eik belongs to Cu and

ekj belongs to Cv . Afterward, remove

eik, ekj


from P .

5. Evaluate the set of communities C using a quality function Q .
6. Repeat steps 4 through 5 until |P| = 0.

The condition required to establish a pair of edges eik and ekj is that node k should be a neighbor of nodes i and j. Therefore,
two edges share a node (k) simultaneously, as depicted in Fig. 2. The type of edge pair varies depending on the directions of
nodes i and j. In Fig. 2(a), node i is an out-neighbor of node k. However, in Fig. 2(c), node i is an in-neighbor of node k. In the
directed graph, if the 3-clique is fully connected, there are 12 edge pairs. The similarity of a pair of edges


eik, ekj


is used to

compare the directions and weights of the edges related to nodes i and j. To assess the similarity between all possible edge
pairs in a target network, we assume that the network is in a weighted space and that all edges in the network are vector
components. Additionally, we represent node i by a weighting vector


a+

i =


Ãi0, . . . , Ãi|N|


or a−

i =


Ã0i, . . . , Ã|N|i


, as

shown in Fig. 2(d) and (e) [14]. In Fig. 2(b), node i can be represented by a+

i because node k is an out-neighbor of node i. How-
ever, in a situation similar to that illustrated in Fig. 2(c), node i can be represented by a−

i because node k is an in-neighbor

of node i. Each weighting vector a+

i includes a set of vector components

Ãij


, where {j} is the set of out-neighbors of node

i. The vector component Ãij is

Ãij =
1

|nout (i)|


i′∈nout(i)

wii′δij + wij (1)
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where wij is the weight on edge eij, nout (i) =

j | wij > 0


is the set of out-neighbors for node i, δij = 1 if i = j and is

zero otherwise, and Ãij ∈

0, wij,


i′∈nout(i) wij/

nout (i)
. Similarly, a−

i includes a set of vector components Ãji from the in-
neighbors of node i, where Ãji =


i′∈nin(i) wi′iδji+wji/

nin (i)
 and nin (i) is the set of in-neighbors of node i. Therefore,we can

calculate the similarity S between edges eik and ekj based on the Tanimoto coefficient [17]. The similarity is calculated using

S

eik, ekj


=

a+

i · a−

ja+

i

2 +
a−

j

2 − a+

i · a−

j

. (2)

If theweights of all edges are equal to 1, this equation is equivalent to the Jaccard coefficient. Because ourmethod is based
on single-linkage hierarchical clustering,we calculate the distance for all pairs of edges using S. The distance dbetween edges
eik and ekj is

d

eik, ejk


= 1 − S


eik, ekj


. (3)

When |P| = 0 in step 6, the number of communities is 1 if a path from one node to all other nodes exists. If |P| = 0
and C > 0, then the network contains several components. Fig. 4 illustrates the entire process of interaction-based edge
clustering through a dendrogram.

2.2. Quality function

The best-community structure in ourmethodmaximizes the inter-interaction of C andminimizes the intra-interaction of
C . Each community should concurrentlyminimize the influence of the edge density. To satisfy this requirement, we propose
the use of a quality function to evaluate the quality of the community structure using the interaction cohesion λk and the
density Dk. When all weights lie in the range 0 ≤ wij ≤ 1, the quality function is defined as

Q =


k

F in
k

T
λkDk (4)

where F in
k is the internal interaction of Ck, T is


k F

in
k , and Fk = T if the number of communities is one. When measuring

the quantity and quality of the interactions, Q is the average of Dkλk weighted by F in
k . Therefore, a community Ck exerts a

strong influence on the community structure if it has a high F in
k value. Q lies in the range 0 ≤ Q ≤ 1; higher Q values

indicate stronger interaction-based community structures. The internal interaction (F in
k ) is the sum of the weights for inter-

interaction among members within the same community, as shown in Fig. 3(a). This interaction is defined as

F in
k =


i,j∈Nk

wij =


i∈Nk


j∈µin

k (i)

wij (5)

where µin
k (i) = {j | j ∈ n (i) , j ∈ Nk} is the set of neighbors of node i that belong to the same community Ck and n (i) is the

set of all neighbors of node i. Ifmk is the number of edges in Ck and all edge weights are 1, then F in
k is equal tomk.

In contrast, the external interaction (F out
k ) is the sum of the intra-interactions for community Ck, as illustrated in Fig. 3(b).

This interaction is defined as

F out
k =


i∈Nk


j∈µout

k (i)

wij (6)

where µout
k (i) = {j | j ∈ n (i) , j ∉ Nk} is the set of neighbors of node i that are not members of Ck. We calculate the in-

teraction cohesion (λk) for each community Ck using F in
k and F out

k . This value is the ratio between the amount of internal
interaction and the amount of internal and external interactions:

λk =
F in
k

F in
k + F out

k
. (7)

The interaction cohesion lies in the range 0 ≤ λk ≤ 1. If a community Ck has a high λk value, then the members of Ck
are connected through highly weighted edges. However, a community only with a high λk value is not necessarily a good
community. We also measure the interaction density Dk to evaluate the structure of the weighted edges for each Ck; Dk
reflects the interaction weights in the edge density. We define Dk as

Dk =
F in
k − Wmin

k

Wmax
k − Wmin

k
=

F in
k (nk − 1)

n2
k (nk − 1) − F in

k
(8)

where Dk represents the normalization of F in
k with respect to the minimum and maximumweights of Ck. When the weights

range from0 to 1,we define themaximumweightWmax
k as nk (nk − 1) and theminimumweightWmin

k as F in
k (nk − 1) /Wmax

k ,
where nk is the number of nodes in Ck, nk−1 is theminimumnumber of edges in a directed graph, and nk(nk−1) is themax-
imum number of edges. A good community structure for the purposes of ourmethodmaximizes the interaction density, but
the structure is influenced by the edge density becauseWmax

k andWmin
k are based on the number of edges in the community.
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(a) (eik, ejk). (b) (eik, ekj). (c) (eki, ekj).

(d) a+

i . (e) a−

i .

Fig. 2. Edge pairs (a)–(c) and weighting vectors (d) and (e). To be an edge pair, two edges must share a node k. Depending on the in-neighbors and out-
neighbors of node k, the method for calculating the similarity of the edge pair is different. If node i is an in-neighbor of node k, weighting vector (d) is
selected; otherwise, (e) is selected.

Fig. 3. An example of an internal interaction F in
k and an external interaction F out

k . Given a community such as Ck , (a) depicts the F in
k of community Ck . In

this case, F in
k is the sum of the weights of the edges within Ck . In (b), F out

k is the amount of interaction between the members and non-members of Ck .

If all edges in the network have the same weight, then the community structure is similar to the ideal community structure
because the interaction density is approximately equal to the edge density. Finally, when using λk and Dk, the function Q
for evaluating the quality of the community structure is

Q =
1
T


k

F in3
k (nk − 1)

F in
k + F out

k

 
n2
k (nk − 1) − F in

k

 . (9)

Essentially, Q measures the quality of the potential optimal communities whenever two edges are merged in step 4 of
the algorithm, as demonstrated in Fig. 4.

3. Experimental results

We test our method on several benchmark networks to compare the results of our method with known community
structures. We then apply our method to several complex networks in the real world and identify the optimal interaction
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Fig. 4. Edge clustering in the Friendship, NetScience, and Contextphone networks. The dendrogram demonstrates that the proposed method merges
the edges with the shortest length (d) among the edge pairs. Whenever a pair of edges is merged, we evaluate the community structure using a quality
function (Q ).

communities. Additionally, we compare the quality and coverage of the community structure identified by ourmethodwith
those of the structures identified using other methods.

3.1. Benchmarks

We test ourmethod on several LFR benchmark networks [18]. The LFR benchmark introduces heterogeneity in the degree
and community-size distributions of a network. These distributions are governed by power laws with exponents of τ1 and
τ2, respectively. For the generation of overlapping communities, the fraction of overlapping nodes On is specified, and each
node has a number of community memberships Om. LFR also provides a rich set of parameters through which to control the
network topology, including the network size N , the mixing parameters µt for the network topology and µw for the edge
weights, the average degree ⟨k⟩, the maximum degree kmax, and the range of the community size. We focus on directed and
weighted LFR benchmark networks [19] because the input for ourmethod is a directed andweighted graph.Wemeasure the
relative performance of ourmethod on the LFR benchmarkwith directed andweighted edges and overlapping communities.
As a measure of similarity between the planted partitions, representing a known community structure, and the interaction
communities identified by our method, we calculate the normalized mutual information (NMI) [20] to compare the two
community structures. For all tests on artificial networks, each data point represents an average over 100 sample networks.

Fig. 5 presents the NMI between the planted partition of the benchmark and the interaction community identified by our
method as a function of themixing parameterµw . In all plots, the proposedmethod demonstrates good performance at low
values of µw . However, as µw approaches 1, the difference between the interaction communities and the known network
structure increases. The reason for this difference is that the nodes in the network possess more inter-community edges as
µw is increased. In other words, the proposedmethod fails to identify the known community structure because the external
interaction density is greater than the internal interaction density. Overall, the performance for N = 5000 is better than for
N = 1000. Additionally, when N = 1000, the results are influenced by the network size, whereas the results for N = 5000
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Fig. 5. Tests on directed and weighted LFR benchmark networks. The parameters of the networks are as follows: average degree ⟨k⟩, mixing parameters
µt = µw , maximum degree kmax = 50, fraction of overlapping nodes On = 10%, node membership Om = 2, and power-law exponents τ1 = 2 for degree
and τ2 = 1 for community size. The notation S or B indicates that the community sizes are in the range [10, 50] or [20, 100], respectively. We consider
two network sizes: N = 1000 (top) and N = 5000 (bottom).

are unaffected by the network size. The variation in the results as ⟨k⟩ is varied is slight, but the results for ⟨k⟩ = 15 and
⟨k⟩ = 20 are somewhat better than the other results.

We also test our method on directed and weighted LFR benchmark networks with overlapping communities. The left-
hand side plot in Fig. 6 illustrates how the performance of our method decays with an increasing fraction of overlapping
nodes, for several different choices of mixing parameters and different community sizes. Overall, the proposed method re-
tains its performance in detecting the known community structure until the fraction of overlapping nodes On reaches 50%.
We also observe differences between the planted partitions and the interaction communities as On is increased. The struc-
ture of the interaction communities is similar to the planted partitions for community size range S and µw = 0.1 because
the internal interaction density of the interaction communities is always greater than the external interaction density, as
in the ideal community structure. In the right-hand side plot, we present a test on networks whose nodes are all shared
among communities. As we increase the number of community memberships of the nodes, we detect interaction commu-
nities that are increasingly different from the known community structure. In particular, the proposed method retains good
performance for ⟨k⟩ = 20, but the results are considerably different in the other cases.

As demonstrated in several tests, differences exist between the known community structures of the benchmark networks
and the structures of the interaction communities. In particular, the difference is greater when the fraction of intra-
community edges in the known community structure is higher. The primary reason for this difference is that the community
structure of an LFRbenchmarknetwork is generated based on the internal edge density. In otherwords, the proposedmethod
minimizes the influence of the edge density when choosing a community structure if the internal interaction density of the
communities is high.

3.2. Interaction communities

For the application of our method to complex networks, we select several directed and weighted networks. These net-
works consist of social, biological and infrastructure networks. Importantly, the members of these networks interact with
one another. The weights of the networks are measured in terms of both the quality and quantity of interaction. Table 1
summarizes several properties and statistics of the selected networks. Contextphone [21] and Nodobo [22] are mobile
phone networks that are weighted by call frequency. Friendship [23] is a collaboration network, and NetScience [24] is
a co-authorship network. OClinks [25] and Twitter [26] are online social networks. The weight of each edge in OClinks rep-
resents the number of personal messages, and the weight of each edge in Twitter is the number of mentions and retweets.
C. elegans [27] is a directed and weighted network that represents the neural network of Caenorhabditis elegans. USAir-
port [28] is an infrastructure network that is weighted by the number of flights.
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Fig. 6. Tests on directed and weighted LFR benchmark networks with overlapping communities. The common parameters of the networks are as follows:
network size N = 1000, average degree ⟨k⟩ = 20, maximum degree kmax = 50, and power-law exponents of τ1 = 2 for degree and τ2 = 1 for
community size. The notation S or B indicates that the community sizes are in the range [10, 50] or [20, 100], respectively. The left-hand side plot presents
the normalized mutual information between the planted partitions and the community structure identified by our method as a function of the fraction of
overlapping nodes. The four curves correspond to different values of the mixing parameter µw and different community size ranges. The right-hand side
plot presents test results from networks whose nodes are all shared among communities. Each curve corresponds to a given value of the average degree.
The specific parameters are as follows: N = 2000, µw = µt = 0.2, and fraction of overlapping nodes On = 10%.

Table 1
Application of the proposed method to several complex networks. |N| and |E| are the number of nodes and edges in each network, respectively; the
clustering threshold is the cutting point of the dendrogram with the highest Q ; |C | is the number of communities based on the clustering threshold; and
Mavr is the average number of members in community C .

Network |N| |E| Average degree Clustering threshold |C | (|Nk| ≥ 3) Mavr

Contextphone 9573 14416 3.0118 0.6080 320 11.6125
Nodobo 710 1150 3.2394 0.5394 35 3.8571
Friendship 81 817 20.1728 0.6266 38 6.2368
NetScience 1589 2742 3.4512 0.5524 163 4.0552
OClinks 1899 20296 21.3754 0.5462 389 3.4936
Twitter 3656 185809 101.6460 0.6190 2928 4.4283
C. elegans 297 2345 15.7912 0.3578 194 3.7371
USAirport 500 5960 23.8400 0.3886 192 5.6458

We detect interaction communities in the selected complex networks using the proposed method. In each network,
we evaluate the quality of the community structure using the quality function Q while performing interaction-based edge
clustering. Afterward, we select one of the community structures as an interaction community. Fig. 7 presents the value
of the quality function Q , the number of communities |C |, and the average number of community memberships Mavr of a
node as functions of the clustering threshold in each network. In this figure, the red line represents the highest quality for
a community structure at the given clustering threshold d


eik, ejk


. If the threshold is 0, then the number of communities

is equal to the number of edges, and if the threshold is 1, then the number of communities is the number of components
that are not connected to one another. If all nodes in the network are connected, then the number of components is 1. In
most networks, the average numbers of memberships and communities are relatively small when Q is the maximum value.
Therefore, the community quality is always low when communities have many members. However, the NetScience and
Twitter networks have a high Q value when the number of communities is large because the average number of members
in most communities is small but the intra-interaction density of the communities is high. The results for the Contextphone
and Nodobo networks are relatively similar because they exhibit similar structures, such as star topologies. In this case, the
central nodes of the star topologies represent the participants who provided call data.

3.3. Evaluation

The goal of community detection is to identify an appropriate community structure for network analysis. Similarly,
the goal of the proposed method is to identify a specific community structure that maximizes the difference between the
amount of interaction among the members within the same community and the amount of interaction among members of
different communities. This structure should concurrently cover as many nodes as possible. Additionally, the overlapping
nodes should be more active than the other nodes. Based on these requirements, we evaluate our method and compare its
performancewith various othermethods. The evaluation criteria include the community quality and coverage as well as the
overlap quality and coverage [14]. First, we evaluate the community quality by calculating the average interaction weight
of C:

Community Quality =
F in
k / |Nk|

|C |
(10)
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Fig. 7. The variation in the quality function (Q ), |C |, andMavr as functions of the clustering threshold during the performance of edge clustering to detect
interaction communities in several complex networks. |C | is the number of communities, and Mavr is the average number of members of a community.
The red line indicates the highest value of Q and the cutting point of the dendrogram. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

where C = {Ck | |Nk| > 3} is the set of communities. This equation indicates thatmembers of the same community aremore
active if the community quality is high [29]. The community coverage is the ratio between the number of nodes that belong
to at least one community and the total number of nodes:


k Nk

 / |N|. This value indicates how much of the network is
analyzed.

Most networks in the real world are composed of overlapping communities. The overlapping nodes that connect several
communities are a type of hub. These hubs fulfill various roles and exchange a large amount of information. Therefore, we
evaluate the overlap quality by calculating the ratio between the interactionweights of the overlapping nodes and the inter-
actionweights of all nodes. Finally,we calculate the overlap coverage using the average number of communitymemberships.
This quantity represents how much information is extracted from the portion of the network that a method can analyze.

We identify optimal communities using diverse community-detection methods, including the proposed method, and
measure the quality and coverage of the communities and overlap. We then renormalize all community and overlap quality
values such that the maximum value is 1 for the best-performing method. The community and overlap coverage are also



P. Kim, S. Kim / Physica A 417 (2015) 46–56 55

Fig. 8. Comparison of the composite performance of the proposed method (IC) and other methods. Each column shows all the evaluation criteria: the
community quality and coverage and the overlap quality and coverage. These criteria measure the accuracy and sensitivity of the community and overlap
structure determined by each method. It is evident that the proposed method (IC) yields the best performance in most networks.

renormalized; however, there is typically one algorithm that yields complete coverage, so that these values are already in
the range [0, 1].

Fig. 8 presents a comparison of the investigatedmethods according to their composite performance. Themethods evalu-
ated for comparison are EAGLE [13], CPM [11], CPMd [15], CPMw [16], CPMdw, LC [14], LCd, LCw, LCdw, and ourmethod (IC).
For community detection, the inputs to EAGLE, CPM, and LC are undirected and unweighted networks. The inputs to CPMd
and LCd are directed networks, and the inputs to CPMw and LCw are weighted networks. CPMdw, LCdw, and IC are tested
using a directed and weighted network. Although the input to each method is different, the evaluations of the quality and
coverage for allmethods are performed using the original network. The proposedmethod outperforms the othermethods on
most networks. Therefore, the proposed method can efficiently analyze the interactions among members of the networks.
In principle, the performance of a method that considers edge directions or weights should be better than the performance
of a method that does not. If a method considers both directions and weights, its performance should be higher than that of
a method that considers only the directions or only the weights of the edges. The methods based on EAGLE and CPM yield
high values of community quality, but their community coverage is low because these algorithms detect only a few core
groups. In contrast, our proposed method can achieve good coverage for many of the nodes in a network while retaining
community quality. In particular, the overlap quality of the proposed method is better than any of the other methods; the
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overlapping community structure is stronger for the proposed method than for the other methods because the overlapping
nodes are more active than in the other methods.

4. Conclusions

In this paper, we propose amethod for the detection of interaction communities in complex networks. Our approach uses
the edge directions and weights determined based on the interactions of the members to identify overlapping communities
and hierarchical structures.We evaluate the differences between the quantity and quality of the intra- and inter-community
interactions to evaluate the quality of the community structure. We apply our method to several complex networks to
identify the optimal interaction communities. To compare the identified interaction-community structures with known
community structures, we test our method on several LFR benchmark networks. We then evaluate the quality and coverage
of our method and demonstrate that the composite performance of our method is better than other methods. Moreover, we
observe that our method can efficiently analyze the community structures of complex networks consisting of weighted and
directed edges.
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