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ABSTRACT

Context: Software has become an innovative solution nowadays for many applications and methods in
science and engineering. Ensuring the quality and correctness of software is challenging because each
program has different configurations and input domains. To ensure the quality of software, all possible
configurations and input combinations need to be evaluated against their expected outputs. However,
this exhaustive test is impractical because of time and resource constraints due to the large domain of
input and configurations. Thus, different sampling techniques have been used to sample these input
domains and configurations.
Objective: Combinatorial testing can be used to effectively detect faults in software-under-test. This tech-
nique uses combinatorial optimization concepts to systematically minimize the number of test cases by
considering the combinations of inputs. This paper proposes a new strategy to generate combinatorial
test suite by using Cuckoo Search concepts.
Method: Cuckoo Search is used in the design and implementation of a strategy to construct optimized
combinatorial sets. The strategy consists of different algorithms for construction. These algorithms are
combined to serve the Cuckoo Search.
Results: The efficiency and performance of the new technique were proven through different experiment
sets. The effectiveness of the strategy is assessed by applying the generated test suites on a real-world
case study for the purpose of functional testing.
Conclusion: Results show that the generated test suites can detect faults effectively. In addition, the strat-
egy also opens a new direction for the application of Cuckoo Search in the context of software
engineering.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

from the customer’s point of view. Structural testing is used to
detect logical errors in software [3]. The tester needs to gather

Testing is the process of evaluating the functionality of a system
to identify any gaps, errors, missing requirements, and other fea-
tures. This process ensures the sound operation of software [1].
In general, testing is mainly classified as either functional and
structural [2,3]. The former method is referred to as “black box
testing,” and the latter is called “white box testing” [2-4].

In functional testing, the tester ignores the internal structure of
the system-under-test and focuses only on the inputs and expected
outputs. The technique serves the overall functionality validation
of the system, thereby identifying both valid and invalid inputs
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information on the internal structure of the system-under-test
and to use information with regard to the data structures and algo-
rithms surrounded by the code [5].

Unlike in structural testing, creating a data set (i.e., test data
generation) is an important task in functional testing because of
the lack of information about the internal design. Previous studies
have reported many test data generation methods. In general,
these methods use the available information in software require-
ment specifications, which provide knowledge about input
requirements. The tester considers all possible input domains
when selecting test cases for the software-under-test. However,
considering all inputs is impossible in many practical applications
because of time and resource constraints. Hence, the role of test
design techniques is highly important.
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A test design technique is used to systematically select test
cases through a specific sampling mechanism. This procedure opti-
mizes the number of test cases to obtain an optimum test suite,
thereby eliminating the time and cost of the testing phase in soft-
ware development. Different studies proposed various functional
test design techniques, such as equivalence class partitioning,
boundary value analysis, and cause and effect analysis via decision
tables [3,6]. In general, the tester aims to use more than one testing
method because different faults may be detected when different
testing methods are used. However, with the vast growth and
development of software systems and their configurations, the
probability of the occurrence of faults has increased because of
the combinations of these configurations, particularly for highly
configurable software systems. Traditional test design techniques
are useful for fault discovery and prevention. However, such tech-
niques cannot detect faults that are caused by the combinations of
input components and configurations [7]. Considering all configu-
ration combinations leads to exhaustive testing, which is impossi-
ble because of time and resource constraints [2,8,9].

Strategies have been developed in the last 20 years to solve the
above problem. Among these strategies, combinatorial testing
strategies are the most effective in designing test cases for this
problem. These strategies facilitate search and generate a set of
tests, thereby forming a complete test suite that covers the
required combinations in accordance with the strength or degree
of combination. This degree starts from two (i.e., d = 2, where d is
the degree of combinations).

Considering all combinations in a minimized test suite is a hard
computational optimization problem [2,10-12], because searching
for the optimal set is an NP-hard problem [2,11-15]. Hence,
searching for an optimum set of test cases can be a difficult task,
and finding a unified strategy that generates optimum results is
challenging. Three approaches, namely, computational algorithms,
mathematical construction, and nature-inspired metaheuristic
algorithms, can be used to solve this problem efficiently and find
a near-optimal solution [16].

Using nature-inspired metaheuristic algorithms can generate
more efficient results than other approaches [17,18]. This approach
is more flexible than others because it can construct combinatorial
sets with different input factors and levels. Hence, its outcome is
more applicable because most real-world systems have different
input factors and levels. Techniques that have been used to con-
struct combinatorial sets include simulated annealing (SA) [7],
tabu search (TS) [19], genetic algorithm (GA) [20], ant colony algo-
rithm (ACA) [20,21], and particle swarm optimization (PSO)
[22,23].

SA generates promising results in cases with small parameters
and values as well as a small combination degree. However, it
could not exceed certain parameters and values, and is unable to
obtain results for combination degrees greater than three [20,24].
PSO can compete with other strategies in most cases even when
the combination degree exceeds three [25,26]|. However, PSO suf-
fers from the effect of parameter tuning on its performance and
from problems with local minima. Recent studies have discovered
new nature-inspired metaheuristic algorithms that can produce
better results than the traditional PSO algorithm for different
applications.

Cuckoo Search (CS) [27] is one of the novel nature-inspired
algorithms that have been proposed recently to solve complex
optimization problems. CS can be used to efficiently solve global
optimization problems [28] as well as NP-hard problems that can-
not be solved by exact solution methods [29]. The most powerful
feature of CS is its use of Lévy flights to update the search space
for generating new candidate solutions. This mechanism allows
the candidate solutions to be modified by applying many small
changes during the iteration of the algorithm. This in turn makes

a compromised relationship between exploration and exploitation
which enhance the search capability [30]. To this end, recent stud-
ies proved that CS is potentially far more efficient than GA and PSO
[31]. Such feature have motivated the use of CS to solve different
kinds engineering problems such as scheduling problems [32], dis-
tribution networks [33], thermodynamics [34], and steel frame
design [35].

The current paper presents the design and implementation of a
strategy to construct optimized combinatorial sets using CS.
Besides the Lévy flights, another advantage of CS over other coun-
terpart nature-inspired algorithms such as PSO and GA, is that it
does not have many parameters for tuning. Evidences showed that
the generated results were independent of the value of the tuning
parameters [27,31].

The rest of the paper is organized as follows: Section 2 presents
the mathematical notations, definitions, and theories behind the
combinatorial testing. Section 3 illustrates a practical model of
the problem using a real-world case study. Section 4 summarizes
recent related works and reviews in the existing literature.
Section 5 discusses the methodology of the research and imple-
mentation. The section reviews CS in detail and discusses the
design and implementation of the strategy. In addition, it shows
how the combinations are generated and describes in detail the
algorithms that are used within the proposed strategy. Section 6
contains the evaluation results on the efficiency, performance,
and effectiveness of CS. Section 7 presents threats to validity for
the experiments and the case study. Finally, Section 8 concludes
the paper.

2. Covering array mathematical preliminaries and notations

One future move toward combinatorial testing involves the use
of a sampling strategy derived from a mathematical object called
covering array (CA) [36]. In combinatorial testing, CA can be simply
demonstrated by a table with rows and columns that contain the
designed test cases; each row is a test case, and each column is
an input factor for the software-under-test.

This mathematical object originates essentially from another
object called orthogonal array (OA) [12]. An orthogonal array
OA;(N; d, k, v) is an N x k array in which for every N xd
sub-array, each d-tuple occurs exactly / times, where 4= N/7/. In
this equation, d is the combination strength; k is the number of fac-
tors (k > d), and v is the number of symbols or levels associated
with each factor. To consider all combinations, each d-tuple must
occur at least once in the final test suite [37]. When each d-tuple
occurs exactly one time, then 42=1, and it can be excluded from
the mathematical notation, i.e., OA(N; d, k, v). As an example, the
orthogonal array OA(9; 2, 4, 3) that contains three levels of value
(v), with a combination degree (d) of two, and four factors (k)
can be generated by nine rows. Fig. 1(a) illustrates the arrange-
ment of this array.

0A (9;2,4,3) CA (9;2,4,3) MCA (9; 2, 4, 3°2%)
Kk k ks ke ki k» ki kg ki ko ks kg
11 11 1 3 3 3 2 1 1 2
2 2 2 1 32 3 1 2 2 2 1
33 3 1 11 2 1 33 2 2
1 2 3 2 12 1 2 13 1 1
2 3 1 2 31 1 3 11 2 1
31 2 2 2 1 3 2 12 1 2
1 3 2 3 33 2 2 302 1 1
2 1 3 3 2 3 1 1 31 1 1
3 2 1 3 2 2 2 3 2 3 1 2

(a) (b) (c)

Fig. 1. Examples illustrating OA, CA, and MCA.
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However, the application of OA is limited by its requirement for
uniform factors and levels; thus, this array is suitable for small test
suites only [38,39]. To address this limitation, the CA has been
introduced to complement OA.

CA is another mathematical notation that is more flexible for
representing large test suites with different parameters and values.
In general, CA uses the mathematical expression CA;(N; d, k, v) [1].
A covering array CA,(N; d, k, v) is an N x k array over {0, ..., v— 1}

such that every B € < ({10’ k=13 d) is 2-covered such that every

N x d sub-array contains all ordered subsets from » values of size d
at least 2 times [40]. To consider all combinations, d-tuples must
occur at least once. As such, we consider the value of 4 =1, which
is often omitted. Hence, the notation becomes CA(N; d, k, v) [41].
We say that the array has size N, combination degree d, k factors,
v levels, and index A. Given d, k, », and 4, we denote the smallest
N for which a CA,(N; t, k, v) exists as CAN,(d, k, g). A CA,(N; d, k,
v) with N=CAN,(d, k, v) is optimal as shown in Eq. (1) [42].
Fig. 1(b) shows a CAwith N=9, k=4, v=3,and d = 2.

CAN(d., k, v) = min{N :> CA(N.d, k, v)} (1)

CA is suitable when the number of levels v is the same for each
factor in the array. When factors have different numbers of levels,
mixed covering array (MCA) is used. MCA is notated as MCA
(N,d, k, (v1, 15, 13, ..., ¥)). MCA is an N x k array on v levels and k
factors, where the rows of each N x d sub-array cover all d-tuples
of values from the d columns at least once [8]. For additional
flexibility in the notation, the array can be presented by MCA
(N; d, /) and can be used for a fixed-level CA, such as CA
(N; d, /%) [14]. Fig. 1(c) shows an MCA with size 9 that has four
factors; two of these factors each have three levels, and the other
two factors each have two levels, and each of these levels have
two values.

3. Real-world problem model

Mozilla Firefox is a practical example that illustrates and mod-
els the concepts of combinatorial testing. Mozilla Firefox is a
well-known Web browser that has many options and configura-
tions that the user can control without difficulty because of its
graphical user interface (GUI). Fig. 2 shows a subset configuration
of Mozilla Firefox, when many options of the scheme are combined

to create a specific configuration. Configurations exist under vari-
ous forms that enable them to be controlled in different ways, such
as by clicking on the box or checking or unchecking an option.
Users can change the configurations by clicking commands while
operating Mozilla Firefox. Fig. 2 shows a dialog box that contains
six different configurations (i.e., warning when closing multiple
tabs and warning when opening these tabs makes the browser
operates lowly), with each configuration having two possible val-
ues (i.e., check and uncheck).The user can change the configuration
based on the requirements.

Testing the program by applying a set of designed test cases
may reveal a set of different faults. However, evidence shows that
applying the same set of test cases but with different configura-
tions may lead to different faults [43,44], which in turn leads us
to consider different configurations for the same
software-under-test. In addition, evidence shows that considering
the interaction between the configurations (i.e., combination of
configurations) will also detect new faults [26].

We need to consider that all the configurations must contain all
possible combinations to test the software shown in Fig. 2. Thus,
the software has 2° configurations, that is, 64 test cases. Xiao Qu
called this collection of all possible combinations of configurations
configuration definition layer (CDL) [43]. Thus, a specific system that
contains different configurations must be tested against its CDL,
which leads to a configuration-aware testing process. Fig. 3 shows
this process.

Ideally, each test case must be run against each configuration of
the system. However, for large configurable software systems, con-
sidering all configurations is practically impossible because of time
and resource constraints. For example, the command language
interpreter of the Linux operating system (Bash) has approximately
76 x 10% possible configurations [44]. Reducing these configura-
tions will dramatically minimize the time and cost of the testing
process.

A sampling technique is needed to minimize these configura-
tions systematically. Different sampling techniques are proposed
in the literature (see [18,45]). Among those techniques, combinato-
rial optimization effectively minimizes the number of configura-
tions to be considered based on the combination degree.
Combinatorial optimization can also be used to minimize the num-
ber of test cases. The final test suite can be represented mathemat-
ically by CA notation. The example in Fig. 2 has six factors, each of
which has two configurations. Considering combination degree

[File Edit View History Bookmarks Tools Help 0
' @ Mozilla Firefox Start Page % < + — 1009

7 N —
— Options E Pl A=
= < [a) = X
—— £} A
J Sl T‘ 4 =) Q w

General Tabs Content  Applications  Privacy  Security Sync Advanced

[¥] Open new windows in a new tab instead

[7] Warn me when closing multiple tabs

[¥] Warn me when opening multiple tabs might slow down Firefox

[¥] Don't load tabs until selected

[] WhenIopen a link in a new tab, switch to it immediately

[T] Show tab previews in the Windows taskbar

[ oK 1 [ Gancel ] [ Help ]

Fig. 2. Subset configuration of Mozilla Firefox.
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Configuration Configuration Configuration
1 2 3

Test Case
1 \ 1 1

Test Case Test Case

R Y

—..--.—..—.” n

Configuration Configuration Definition Layer
m
(CDL)
g o Test Cases

Fig. 3. Relationship between test cases and configurations in configuration-aware testing.

d = 2, the configuration set can be minimized to six configurations,
that is, CA(6;2,6,2), by covering all the combinations of two
configurations. However, CA(13;3,6,2), CA(26;4,6,2), and
CA(33;5,6,2) represent configuration sets for combination
degrees of 3, 4, and 5, respectively. Thus, instead of selecting all
the combinations exhaustively, equivalence sets could lead to
improved results with minimized time and cost.

4. Review of the literature and related works

As mentioned previously, generating a CA is an NP-hard prob-
lem .Thus, better methods have been sought. From the literature
and other evidence, the generation methods have been confined
to four main directions, namely, random method, mathematic
method, greedy algorithm, and heuristic search algorithm [18].

Random methods are akin to ad hoc generation methods. In
most cases, random methods work through a mechanism of ran-
dom selection of a row of CA and by verifying whether it covers
most of the combinations. The method continues to iterate until
all the combinations are covered. This method is often used to
show the effectiveness of other generation algorithms or to com-
pare its fault detection abilities with other proposed methods
[46,47]. Although it obtains better results in some cases, random
generation methods usually fail to achieve substantial results [48].

The problem of CA generation has also been solved with exten-
sions of OA construction that involve mathematical functions,
regardless of the functions used for construction. Other mathemat-
ical methods use a recursive construction approach by building lar-
ger CAs from smaller CAs [41,49]. Specifically, different tools use
mathematical methods for construction, such as Combinatorial
Test Services [50] and TConfig [51]. Although mathematical meth-
ods can effectively generate small-sized CAs, they fail to generate
CAs for large parameters and values, particularly when the values
are unequal among the parameters (i.e., MCA). These drawbacks
limit its application for different cases of CA construction.
However, the mathematical approach has the advantage of light-
weight computation, which means it has a relatively fast genera-
tion time. In addition, the mathematical approach can produce
optimal CAs for some special cases [40,52,53].

In addition to the aforementioned approaches, greedy algo-
rithms and mathematical search methods solve the problem of
CA generation computationally. Greedy algorithms are used to
cover many uncovered combinations in each row of the CA. In this
study, the CA rows are generated by using either of two methods,
namely, one-row-at-a-time or one-parameter-at-a-time [18]. In
the one-row-at-a-time method, the CA is constructed row by

row. When a row is added, this row should essentially cover all
d-tuples as much as possible. The construction process will stop
when all d-tuples are covered successfully. The automatic efficient
test generator (AETG) [54] is probably the first strategy that adopts
this method of generation. The AETG strategy selects greedily one
test case among several candidate test cases for each cycle. This
algorithm serves as a base for a number of variations that have
been developed later for AETG such as mAETG_SAT [7] and
mAETG [24]. In addition to AETG, more work has been conducted
on developing different algorithms and tools, such as the algorithm
used for pairwise generation in the CATS tool [55], the greedy algo-
rithms used in the Pairwise Independent Combinatorial Testing
(PICT) tool [56], and the density-based greedy algorithm [57].
Most recently, pseudo-Boolean optimization is used with an
AETG-like algorithm to generate efficient test suites [58]. Here,
the strategy tries to do not reach maximum coverage of the
d-tuples by the test cases. Instead, it tries to reach a balance point
for the coverage ratio between [0.8, 0.9].

The one-parameter-at-a-time method attempts to construct
rows of the generated CA by adding one parameter to each row
each time and verifying the coverage of d-tuples periodically.
Based on the coverage, parameters are added to the rows horizon-
tally and vertically using heuristics until the CA is completed. The
in-parameter-order (IPO) algorithm [ 10] was the pioneering imple-
mentation of this method. This strategy was further developed to
produce variations of the IPO algorithm, such as IPOG [59],
IPOG-D [14], IPOG-F [60], and IPO-s [61].

Heuristic search and artificial intelligence (Al)-based techniques
have been applied effectively for CA construction. In general, these
techniques start with a random set of solutions. Then, a transfor-
mation mechanism is applied to this set such that it is transferred
to a new set in which its solutions are more efficient for d-tuple
coverage. For each iteration, the transformation equations essen-
tially create a more efficient set. Despite detailed variations in
the heuristic search techniques, they essentially differ in transfor-
mation functions and mechanisms. Here, techniques, such as SA
[7],TS[19], GA[20], ACA [20,21], and PSO [22,23], were used effec-
tively for CA construction.

From a practical point of view, most of the time, the input fac-
tors of the real world applications suffer from the intertwined
dependencies among each other which can potentially lead to
problem in executing the test cases and may lead to failure due
to improper execution [62]. Here, some of the parameters combi-
nations are considered as impossible combination. Hence, they
are considered as constraints in which they must be part of the
final test suite. To this end, some of the recent strategies and tools
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start to support this issue such as mAETG, mAETG_SAT, IPOG,
IPOG-D, SA, PICT, and TVG. However, strategies like GA, ACA, and
PSO) generally do not show any evidence to support constraints.
Recently, Garvin, B., et al. improve the SA algorithm to support con-
strained interaction testing [63]. To add the support for con-
straints, it is required to remove those combinations from the
d-tuples list and add them directly to the final test suite.

Evidence showed that the computational methods (i.e., greedy
and heuristic search algorithms) generate better results in terms
of size. However, the computational methods may require more
computational time than mathematical and random methods. In
addition, the computational approach is more flexible than the
other approaches as it can construct CAs with different parameters
and values. Thus, the outcome of computational methods is more
applicable because most real-world systems have different param-
eters and values rather than equal parameter values. Nonetheless,
mathematical methods are useful for generating the optimal con-
struction of CA in cases with few parameters and values, and a
low degree of combination. As a result, computational methods
are more applicable and more realistic, although they may not con-
sistently produce the optimal CA.

As mentioned previously, different metaheuristic and Al-based
strategies are proposed in the literature. Given an NP-hard prob-
lem, deriving a strategy that can generate optimal test cases for
all parameters and values is practically impossible. To this end,
researchers have attempted to construct better CAs in terms of size
for most cases and to overcome the drawbacks of each method. In
the case of small parameters and values, as well as a small combi-
nation degree d, SA usually generates promising results most of the
time. However, SA is less effective when d > 3. GA, ACA, and TS
have also been applied in previous studies for generation [19,20].
By contrast, PSO can compete with other strategies when d >3
[25,26]. However, PSO suffers from problems, such as parameter
tuning, sticking in the local minima, and premature convergence
of swarm problems which affect its optimization capability.

Particularly, these strategies suffer from heavy computation
and inaccurate results for combinatorial test suite generation. For
example, GA suffers from the crossover and mutation processes,
which lead to heavy computation, ACA suffers from different prob-
lems when the number of ants increases, and TS suffers from the
update mechanism of the tabu list sets. In addition, these strategies
often impose a trade-off between reliability and speed of computa-
tion [34]. Today, no metaheuristic strategy can generate optimized

results for all configurations, thereby implying that the investiga-
tion of new and efficient strategies with the help of metaheuristics
is still an active research topic.

Cuckoo Search (CS) has recently been found to be effective in
solving engineering and optimization applications, with promising
results. The convergence characteristics and results of CS are better
than those of other metaheuristic optimization methods [28,64]. In
the literature, no studies have applied this promising method to
generate combinatorial test suites. Thus, in this paper, we attempt
to modify and apply the relative strengths of CS to this important
part of software testing.

5. Cuckoo Search for combinatorial testing

Generating effective test cases and configurations is the most
challenging task. As mentioned previously, testing the application
exhaustively (i.e., test every possible event) is impossible most of
the time because of time and resource constrains. Thus, an opti-
mization strategy is needed to optimize and generate an optimized
test suite that has the effectiveness of exhaustive testing. In this
study, we use CS to search for test cases that cover all possible
combinations at least once.

In this section, we provide the necessary details for the devel-
oped strategy. Section 5.1 presents the necessary background and
illustrates the essential details of CS and its mechanism.
Section 5.2 presents the details of the “all-combination-list gener-
ation” algorithm. Then, Section 5.3 presents the CS used for combi-
natorial testing and its optimization process and implementation.

5.1. Cuckoo Search (CS)

CS is a new metaheuristic search algorithm that was developed
by Yang and Deb [27]. CS is inspired by the behavior of a fascinat-
ing bird called the cuckoo. The aggressive reproduction strategy of
this bird inspired the researchers to study and investigate the
opportunity to use its behavior within an optimization mechanism.
Cuckoos lay their eggs in communal nests, although they may
remove the eggs of another bird to increase the hatching probabil-
ity of their own eggs. If the host bird discovers the eggs of the
cuckoo, then it may throw the eggs away from the nest or may
completely abandon the nest. The physiology and behavior of the
cuckoo have the capability to mimic the appearance of the egg of
the host.

Algorithm 1: Cuckoo Search

1 Initialize a population of n host nests z; ,i=1,2, ... , n
2 for all z; do
3 | Calculate fitness F; = f(x;)
4 end
5 while (Number of iterations <Maxz Number of iterations)
6 or (Stopping criteria satisfied) do
7 Generate a cuckoo egg (z;) by taking a Lévy flight from random nest
s | Fj=f(z;)
9 Choose a random nest &
10 if F; > F; then
11 I ¢ Iy
12 F; i — F j
13 end
14 Abandon a fraction pa of the worst nests
15 Build new nests at new locations via Lévy flights to replace nests lost
16 Evaluate fitness of new nests and rank all solutions
17 end

Fig. 4. Pseudo code of Cuckoo Search [27].
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The rules of the CS are as follows: (1) Each cuckoo selects a nest
randomly to lay one egg in it, in which the egg represents a solu-
tion in a set of solutions. (2) Part of the nest contains the best solu-
tions (eggs) that will survive to the next generation. (3) The
probability of the host bird finding the alien egg in a fixed number
of nests is p,] € [0,1] [65]. If the host bird discovers the alien egg
with this probability, then the bird will either discard the egg or
abandon the nest to build a new one. Thus, we assumed that a part
of p, with n nest is replaced by new nests. Fig. 4 shows the pseu-
docode and steps of the algorithm [66].

Lévy flight is used in the cuckoo algorithm to conduct local and
global searches [67]. Here, Lévy flight serves as an update mecha-
nism to update and modify the initial random search space. This
update mechanism allows the algorithm to generate new candi-
date solutions by applying small changes during the iteration
which behave like a step toward the best solution [30]. The rule
of Lévy flight is used successfully in stochastic simulations of dif-
ferent applications, such as biology and physics. Lévy flight is a
random path of walking that takes a sequence of jumps, which
are selected from a probability function. A step can be represented
by the following equation for the solution x{*!) of cuckoo i:
xlul - xl(f)

+ o Lévy (1) (2)

where o the size of each step in which o > 0 and depends on the
optimization problem scale. The product ¢ is the entrywise multi-
plication, and Lévy (1) is the Lévy distribution. The algorithm con-
tinues to move the eggs to another position if the objective
function found better positions.

Another advantage of CS over other counterpart stochastic opti-
mization algorithms, such as PSO and GA, is that it does not have
many parameters for tuning. The only parameter for tuning is p,.
Yang and Deb [27,31] obtained evidence from the literature and
showed that the generated results were independent of the value
of this parameter and can be fit to a proposed value p, = 0.25.

5.2. The d-tuples list generation algorithm

Generating the d-tuples list is essential to calculate the fitness
function F; = f(x;). The d-tuples list contains all possibilities of com-
binations between input factors k. As an example, we consider a
system with three input factors (kik,ks), each factor having three
levels (v;v,13). For exhaustive testing, when the combination
degree d =3 (i.e,, d = k), (3 x 3 x 3) combinations result in 9 combi-
nations. However, as mentioned previously, exhaustive testing is
impossible. Thus, lower combination degrees are considered to
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minimize the test cases. For example, when d = 2, the combinations
are (kqky), (kiks), and (k, k3). In turn, these combinations are con-
verted to the all-combination-list, ~which  contains
(3x3)+(3 x3)+(3 x 3)=27 combinations with d = 2. Then, this
list will be covered row by row during the optimization process.

Generation this list is difficult because of its tightness with the
combination degree. Thus, the generation of the list starts by con-
sidering the number of factors and then calculating the binary
equivalence numbers of (2¥ — 1). This algorithm is implemented
in the “Generate Binary Digits” function, as shown in Fig. 5.

The algorithm starts by inputting binary digits from 0 to
(2K~ 1) in a list. For example, when k = 3, then the list contains
(000) to (111). A filtering mechanism is combined with the algo-
rithm to filter the number of (1's) in each number from the list
depending on the combination degree. For example, when d = 2,
then the binary numbers after filtering are [(011),(101),(110)],
which are equivalent to [(kxk3), (kqiks), (ki1kz)], which, in turn,
serves as a master algorithm for generating combinations of input
factors for all degrees. The progress and output of this algorithm
can be noted clearly in the output screen of the strategy shown
in Fig. 6.

When the combinations of factors are identified, the values of
the corresponding factor are matched. This algorithm is imple-
mented in the “Generate-Combinations” function, as shown in
Figs. 5 and 6. When a factor is missed in the combination (i.e., its
corresponding binary value is 0), its corresponding value will be
“don’t care” because we do not need its value for that specific com-
bination (in this study, —1 is used as an indication only). Upon
completion of this algorithm, all the combinations are stored in a
list to be used for calculating the fitness function of the CS. The out-
put list of this algorithm can be noted clearly in the output screen
of the strategy shown in Fig. 6.

An algorithm is used to assess the search process for the combi-
nations efficiently. In this study, the rows in the d-tuples list are
stored in groups. Each group is assigned an index number that
indicates its position in the list. The groups are selected based on
the combination of factors. For example, in the aforementioned
sample, the combination (k, k3) is stored in the index from O to 8
because it has nine rows of combinations. Thus, the next group is
stored in the index from 9 to 17.

5.3. Optimization process with Cuckoo Search

When the d-tuples list is generated, then CS starts. In this study,
the CS algorithm is modified to solve the current problem. The
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Fig. 5. Main window of the implemented strategy.
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Fig. 6. Strategy in progress when each algorithm is executed and the final optimized set is generated.

fitness function is used to derive the better solution among a set of
solutions. In this study, a row with higher fitness weight is defined
as arow that can cover a higher number of rows in the d-tuples list.
Fig. 7 shows the pseudocode of combinatorial test suite generation
in which the CS is modified for this purpose.

As shown in Fig. 7, the strategy starts by considering the input
configuration. Then, the d-tuples list is generated. CS starts by ini-
tializing a random population that contains a number of nests.
Given that the number of levels for each input factor is a discrete
number, the initialized population is discrete, not an open interval.
Thus, the population is initialized with a fixed interval between 0
and ;. In this study, a system has different factors in which a test
case is a composite of more than two factors that form a row in the
final test suite. As a result of such an arrangement, each test case is
treated as a vector x; that has dimensions equal to the number of
input factors of the system. In addition, the levels for each input
factor are basically an integer value. As a result, each dimension
in the vector-initialized population must be an integer value.

Although the initial population is initialized in a discrete inter-
val, the algorithm can produce out-of-the-bound levels for the
input factors. Thus, the vector must be restricted with lower and
upper bounds. The rationale behind this restriction is that the
cuckoo lays its eggs in the nests that are recognized by its eyes.

When the CS iterates, it uses Lévy flight to walk toward the opti-
mum solution. Lévy flight is a walk that uses random steps in
which the length of each step is determined by Lévy distribution.
The generation of random steps in Lévy flight consists of two steps
[68], namely, the generation of steps and the choice of random
direction. The generation of direction normally follows a uniform
distribution. However, in the literature, the generation of steps fol-
lows a few methods. In this study, we follow the Mantegna algo-
rithm, which is the most efficient and effective step generation
method. Within this algorithm, a step length s can be defined as
follows:

u

$= |y‘1//f

(3)

where u and v» are derived from the normal distribution in which

u~N(©0,02) v~N(O0, 02) (4)

(5

Based on the aforementioned design constraints, the complete
strategy steps, including the CS, are summarized in Fig. 7.

As mentioned previously, the strategy starts by considering the
input configuration. Normally, the input is a composite input with
the factors, levels, and desired combination degree d. The combina-
tion degree d > 1 and is less than the number of input factors. Using
the d-tuples generation algorithm described previously, the
d-tuples list is generated (Step 1). Then, the strategy uses the CS,
which starts by initializing a population with m nests, with each
nest consisting of dimensional vectors equal to the number of fac-
tors that have a number of levels (Step 2). From a practical point of
view, each nest contains a candidate test case for the final test
suite. Then, the CS starts to assess each nest by evaluating coverage
capability of the d-tuples (Steps 3-5). This mechanism is used to
assess the fitness function of the CS. The fitness function f(x;) of
the test case x; in this strategy is defined as:

fxo= Y d

ienewd—tuple(x;)

(6)

where d-tuples(x;) indicates new tuples that are not covered by the
previous generated tests but covered by the test x;. d; denotes the
strength of the interaction i. For example, when a nest can cover
four d-tuples, then its weight of coverage is 4. The strategy uses a
special mechanism described previously (Section 5.2) to determine
the number of covered tuples and to verify the weight. Based on the
results of coverage for all nests, the strategy sorts the nests again in
the search space based on the highest coverage (Step 10). The low-
est coverage in the search space will be abandoned. For the aban-
doned nests, a Lévy flight is conducted to verify the availability of
better coverage (Step 11). If better coverage is obtained for a speci-
fic nest, then the nest is replaced by the current nest content (Steps
12-15). This process serves just like global search in other optimiza-
tion algorithms. Then, for all of the top nests after sorting, a Lévy
flight is conducted to search for the local best nests (Steps
17-19). If better coverage is obtained after the Lévy flight for a
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Algorithm 2: Combinatorial test suite generation

Input: Input-factors k and levels v

Output: A test case

1 Let d-tuples list be a set of all combinations’ list that must be covered
2 Initialize a population of m host nests z;,i =1, 2, ..., m
3 for «all z; do
4 | Calculate the coverage of combinations and return the weight
5 end
6 Iteration number Iter < 1
7 while (Number of iterations <Max Number of iterations)
8 or (d-tuples list is not empty) do
9 Iter + Iter +1
10 Sort the nest by the weight of combination’s coverage
11 for all nests to be abandoned do
12 Current position z;
13 Perform Lévy flight from x; to generate new egg x;
14 T; < x;
15 Fi « [(x:)
16 end
17 for all of the top nests do
18 Current position z;
19 perform Lévy flight from 2; to generate new eggs x
20 Fk < f(.’L‘k)
21 if Fy, >F; then
22 I < Tk
23 F; < I
24 end
25 end
26 end

27 Add the first nest to the final test suite
28 Remove all the related combinations from the d-tuples list

Fig. 7. Pseudocode of combinatorial test case generation with CS.

specific nest, then the nest is replaced with the one that have better
coverage (Steps 20-24). These steps (Steps 9-26) in the CS will
update the search space for each iteration.

Two stopping criteria are defined for the CS. First, if the nest
reaches the maximum coverage, then the loop will stop and the
algorithm will add this test case to the final test suite and remove
its related tuples in the n-tuples list. Second, if the d-tuples list is
empty, then no combinations are covered. If the iteration reaches
the final iteration, then the algorithm will select the best coverage
nest to be added to the final test suite (Step 27) and remove the
related tuples in the n-tuples list (Step 28). Fig. 8 shows a graphical
representation of the strategy to summarize the aforementioned
steps for better understanding. The sequence of running is show
in red’ circle in the figure.

The constructed final test suite can be noted clearly in Fig. 6.
This mechanism will continue as far as n-tuples remain in the list.
Fig. 9 shows a running example to illustrate how the tuples are
covered and removed and how the final test suite is constructed.

6. Evaluation results and discussion

The evaluation phase for the proposed strategy is divided into
the following three main sections: (1) evaluation of the generation
efficiency, (2) evaluation of the generation performance, and (3)
evaluation of the effectiveness of the generated test suite. Based
on the literature [16,26,69], efficiency is evaluated based on the
size of the generated test suite, whereas performance is evaluated
based on the time taken by the strategy to generate a specific test

! For interpretation of color in Figs. 8 and 11, the reader is referred to the web
version of this article.

suite. For these two evaluation phases, the strategy is compared
with other available strategies.

Some strategies are available publicly as tools to be downloaded
and installed. Other strategies are unavailable publicly, yet their
evaluations are published for certain cases. We consider the perfor-
mance evaluation for strategies that are available for implementa-
tion within the same evaluation environment. By contrast, for
unavailable strategies, we consider the efficiency evaluation only.
The rationale behind this option is that the efficiency criterion is
not affected by the research environment as the size of the CA is
not affected by computer speed. However, installing all the tools
in the same environment is essential to ensure a fair comparison
of performance as the construction time is affected by the specifi-
cations of the computer.

The effectiveness of the generated test suite is evaluated by
adopting a case study on a reliable artifact program to prove the
applicability and correctness of the strategy for a real-world soft-
ware testing problem. Given that the generated test suite did not
consider the internal structure of the artifact program, the testing
process represents a functional testing process that considers the
program configuration.

The experimental environment consists of a desktop PC with
Windows 7, 64-bit, 2.5 GHz, Intel Core i5 CPU, and 6 GB of RAM.
The algorithms are coded and implemented in C#.

6.1. Efficiency evaluation

The efficiency of the combinatorial test suite construction is
measured by the size of the test suite generated by the strategy.
For strategies that depend on metaheuristic algorithms, a degree
of randomness is observed, especially when the strategy starts



