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Abstract: This paper presents a method for seismic vulnerability analysis of bridge structures based on vector-valued 
intensity measure (vIM), which predicts the limit-state capacities effi ciently with multi-intensity measures of seismic 
event. Accounting for the uncertainties of the bridge model, ten single-bent overpass bridge structures are taken as samples 
statistically using Latin hypercube sampling approach. 200 earthquake records are chosen randomly for the uncertainties of 
ground motions according to the site condition of the bridges. The uncertainties of structural capacity and seismic demand 
are evaluated with the ratios of demand to capacity in different damage state. By comparing the relative importance of 
different intensity measures, Sa(T1) and Sa(T2) are chosen as vIM. Then, the vector-valued fragility functions of different 
bridge components are developed. Finally, the system-level vulnerability of the bridge based on vIM is studied with Dunnett-
Sobel class correlation matrix which can consider the correlation effects of different bridge components. The study indicates 
that an increment IMs from a scalar IM to vIM results in a signifi cant reduction in the dispersion of fragility functions and in 
the uncertainties in evaluating earthquake risk. The feasibility and validity of the proposed vulnerability analysis method is 
validated and the bridge is more vulnerable than any components.
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1   Introduction

As an important part of social infrastructures, bridge 
plays a crucial role in transportation and earthquake 
relief. The damage of bridges caused by earthquake often 
lead to traffi c interruption, which will not only affect 
people′s normal life and economic operation, resulting in 
serious economic losses, but also bring great diffi culties 
to earthquake relief work. Thus, studies on the seismic 
performance of bridge subjecting earthquake excitation 
are particularly important. Due to the uncertainties of 
ground motions and bridge dynamic characteristics, 
probabilistic methods were adopted in the evaluation 

of seismic performance of bridge structures widely. In 
this context, a basic framework of probabilistic methods 
for seismic design and evaluation based on performance 
is proposed at the Pacifi c Earthquake Engineering 
Research Center (PEER), the key point is to quantify the 
conditional probability that a structure would reach or 
exceed a specifi ed limit state for a given ground motion 
intensity level. It is worth pointing out that seismic 
vulnerability analysis of the structure is one of the main 
research contents of the theoretical performance based 
earthquake engineering framework.

Seismic vulnerability analysis is a probabilistic 
evaluation method for the seismic performance of 
structures(Lagaros, 2008), which quantifi es the seismic 
performance of a structure in a sense of probability 
and describes the correlation between ground motion 
(GM) intensity levels and structural damages from a 
macroscopic view. Intensity measure (IM, as a variable 
in the analysis) is often used abbreviate to represent 
the GM intensity levels. The uncertainties of structural 
response are closely related to IM which were chosen. 
The selection of IM is particularly important for the 
seismic vulnerability analysis. At present, the seismic 
vulnerability researches on bridge structures are mostly 
based on one IM (Choi et al., 2004, Hwang et al., 
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2001; Moschonas et al., 2009), which is referred as a 
scalar IM. Since the complexity property of GMs, the 
damage potential may not be characterized by scalar IM 
effectively. The studies of Baker (Baker, 2007; Baker 
and Cornell, 2005 and 2008) show that the vector-
valued IM (vIM) which includes more than one intensity 
measure contains more earthquake information and 
can refl ect the uncertainties of ground motions more 
accurately. Seyedi et al.(2010) have made efforts to 
develop fragility functions for different damage states 
of an eight-story RC building by vIM. The results 
illustrated that an increment from one IM to two leads to a 
signifi cant reduction in the scattering in the vulnerability 
analysis and allows the uncertainty related to the effect 
of the second intensity measure to be included in the 
risk assessments. Koutsourelakis (2010) presented a 
Bayesian framework to derive vector-valued fragility 
functions from the limited data available. A statistical-
learning model based on logistic regression is proposed 
to estimate the relative importance of each IM. 

Bridge system is composed with different 
components. The seismic performance of bridge is 
related to the seismic performance of each component 
signifi cantly. Here, the component is defi ned as a 
member or a set of members of bridge that provide 
predefi ned features, which will critically take effect on 
the seismic performance of bridges. In this paper, the 
predefi ned components for bridge model is declared 
in Section 4. As a system, the bridge structure is more 
susceptible to damage than any component. The system-
level vulnerability of bridges cannot be represented 
by the vulnerability of single component. To extend 
reliability bounds, Monte Carlo simulation has been 
widely used to account for system-level failure events 
explicitly in the seismic vulnerability analysis of bridges 
(Kwon and Elnashai, 2010; Nielson, 2005). However, the 
Monte Carlo simulation may become computationally 
demanding, because each defi nition of system-level 
failure event requires a series numerical simulations. 
Song and Kang (2009) proposed a matrix-based system 
reliability method to evaluate different bridge component 
failure events effi ciently while considering bridge 
component correlations in their response to seismic 
demands. However, as the number of bridge components 
N increases, the total number of system events from no 
component damaged (no damage state) to continuous 
collapse failure of all components (complete damage 
state) increases to 2N different combinations. There are 
exponential computational cost required.

The main purpose of this article is to introduce 
a seismic vulnerability analysis method for bridge 
structures based on vIM. As an example, a single-
bent overpass bridge is taken as the analysis model. 
Considering the uncertainties related to the bridge itself, 
ten bridge samples are established statistically with Latin 
Hypercube sampling approach. Two hundred earthquake 
GMs are chosen according to the site condition to 
account for the uncertainties of ground motions (each 

bridge model randomly combined with 20 GMs). Then, 
a series of nonlinear dynamic time history analysis are 
conducted. The uncertainties of capacity and demand 
are evaluated using the ratios of demands to capacities 
in different damage states and vector-valued fragility 
functions of different bridge components are developed. 
Finally, the system-level vulnerability of the bridge 
based on vIM is studied with a special correlation matrix 
model which includes the correlation effects of different 
bridge components.

2  Seismic vulnerability analysis method for 
      bridge structure based on vIM

2.1  Vector-valued fragility function of bridge component 

Vulnerability of a bridge component is defi ned as the 
conditional probability that a bridge component reaches 
or exceeds a predefi ned damage state for a given ground 
motion intensity level. It usually can be expressed as 
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where Sd is seismic demand, c
jS  is structural capacity; 

the safety factor  d clnj
i

jF S S , Pf is failure probability 
for a specifi ed damage state j of the ith component. 
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jS  are 
usually described by a lognormal distribution (Hwang 
et al., 2001; Shinozuka et al., 2000) , the safety factor 

j
iF  follows a normal distribution. If a linear regression 

analysis between ln (IM) and j
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vulnerability for a specifi ed damage state j can be 
determined by (Pan et al., 2007)
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where a, b and c are linear regression coeffi cients, Sr  is sum 
of squares of the residuals with respect to the regression 
plane for scattered points, IM1 and IM2 are the fi rst and 
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second parameters in vIM. Hence, the vector-valued 
fragility function of a bridge component is fi nally 
defi ned by
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2.2   Vector-valued fragility function of bridge system

Since a bridge is a system composed with various 
bridge components. Its seismic performance is closely 
related to the seismic performance of each component. 
The damages of piers, bearings and abutments will lead 
to the bridge damage with different potential. Therefore, 
system-level failure events should be considered when 
conducting the seismic vulnerability analysis of bridge 
structures. Studies (Dueñas-Osorio and Padgett, 2011; 
Song and Kang, 2009) have shown that the bridge 
structure can be regarded as a series system consisting 
of different bridge components. It means that if any one 
of its components damages, the bridge structure will 
damage. Mathematically, the vulnerability of a bridge 
system with N components for the jth damage state is 
expressed as
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where N is number of bridge components; j = {1, 2, 
3, 4} and the numbers correspond to slight, moderate, 
extensive and complete damage states; vIM is vector-
valued IM; Ei(DSj|vIM) is the failure event that the ith 
bridge component reaches or exceeds the jth damage 
state for the given vIM.

Generally, a bridge system is composed of N 
components (each bridge component is tagged by i (i = 
1 to N) ). A vector with N entries is defi ned, k = [k1, 
k2, k3,…kN-1, kN]. Each entry takes values 1 or 0 if the 
ith bridge component fails or survives, respectively. The 
totality of such k failure event vectors is contained in the 
set K, whose cardinality is 2N and includes all possible 
combinations of bridge component failures. Then, the 
failure event that a bridge system reaches or exceeds the 
jth damage state is determined by
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Thus, the event that the bridge system survives is 
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The correlation effect between different bridges 
components, which will be addressed latter, are ignored 

here. The vulnerability of the bridge system can be 
expressed as 
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Pi(DSj|vIM) is the ith bridge component failure 
probability. Commonly, there is correlation between 
different bridge components. It will impose errors to 
vulnerability analysis results if the correlation effect 
were ignored. To explicitly account for this effect, a 
special correlation matrix model such as Dunnett-Sobel 
(DS) class (Dunnett and Sobel, 1955) is proposed. The 
standardized safety factor  

i i

j j j j
i i F FZ F     (i = 1 to 

N) is the DS class standard normal random variable. It 
means that the correlation coeffi cient between j

iZ  and 
j

kZ  is specifi ed as ,
j j j

i k i kt t    for i k  and , 1j
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i = k. Then, j
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where Ui and X are independent standard normal 
random variables in the DS class, j

iZ  are conditionally 
independent of each other for a given outcome X = x; j

it  
allows the DS class of standard normal random variables 
to approximately express the correlation coeffi cient 
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Noting that 
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With the determination of j
it , each of the j ok K  event 

vectors can be estimated for all possible values of X, so 
the vector-valued fragility function of the bridge system, 
which accounts for the correlation effects between 
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different bridge components, is expressed as follows
(φ(x) = standard normal probability density function )
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The seismic vulnerability analysis procedure of the 
bridge structure based on vIM is shown in Fig. 1.

3    Bridge model and modeling consideration

3.1  The two span single-bent overpass bridge model

A two span single-bent overpass bridge is taken as 
the research object and the length of span is 44 m for each 
span. C50 concrete is used in the superstructure which is 
supported on a reinforced concrete two-column bent. The 
width and height of the box girder is 16.4 m and 1.75 m, 
the cross area is 8.268 m2, the bending moment of inertia 
of girder section about vertical axis and horizontal axis 
is 122.9 m4 and 2.901 m4, and the torsional moment 
of inertia of girder section is 11.8 m4, respectively. 
Polytetrafl uoroethylene (PTEF) sliding bearings are 
seated on the abutments with U-shaped wing walls. The 
piers are solid circular columns with a height of 12 m 
and a diameter of 1.65 m and their concrete strength 
grades are C40. Longitudinal and spiral reinforcements 

are specifi ed as HRB335 and their reinforcement ratios 
are 1.2% and 0.8%. The site condition is II in Chinese 
seismic code. 

In this study, the three-dimensional fi nite-element 
model of the bridge is created in OpenSees platform 
(OpenSees, 2012). The decks and the box-girders are 
combined together and simulated with elastic beam-
column element. Beams with hinges elements are 
used to model the piers. The interaction of pile-soil-
structure is taken into account (Penzien et al., 1964). 
P-Δ effects are included. Generally, the selection of 
an appropriate abutment model has great infl uences 
on nonlinear behavior of the bridge structure under 
earthquakes, especially on the short and medium span 
bridges (Aviram et al., 2008). To refl ect the dynamic 
response characteristics of abutments, spring abutment 
model proposed by Mackie (Aviram et al., 2008) is 
used. To be clarify, the spatial seismic excitation effect 
is not taken into account. For more complicated bridge 
model, the reader could referred to Sextos′ work (Sextos 
et al., 2003). The nonlinear analysis model of the bridge 
is shown in Fig. 2. It must be noted that the two span 
single-bent overpass bridge′s pier in the sketch (Fig. 2.) 
is plotted twice, one for geometry illustration and one for 
simplifi ed model.

3.2  Consideration of the uncertainties of bridge itself

Uncertainties of a bridge are mainly related to the 
parameters of materials, such as the variability of steel 
and concrete, and often leads to the uncertainties of 
structural dynamic characteristics including natural 
periods and vibration modes. Furthermore, it will result 
in the uncertainties of structural dynamic responses. The 
existing research (Kwon and Elnashai, 2006) has shown 
that uncertainties of the structure have great infl uence 
on its dynamic response. A parametritc analysis carried 
out by Pan et al. (2007) illustrated that bridge response 
is sensitive to uncertainties associated with material 
parameters such as superstructure weight, concrete 
compressive strength and reinforcement yield strength. 
According to statistical properties of construction 
materials, Latin Hypercube sampling approach 
(Wyss and Jorgensen, 1998) is used to account for the 
uncertainties of the three parameters mentioned above in 

Fig. 1  Seismic vulnerability analysis procedure of the bridge 
            structure based on vIM Fig. 2   Nonlinear analysis model of the single-bent overpass

vIM

x

yz
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this approach. Each parameter is described by a normal 
distribution variable and the probability density function 
of each random variable is divided into a histogram with 
equal probability intervals graded linearly corresponding 
to cumulative distributions varying from 5% to 95%. The 
statistical information of variables is shown in Table 1. Then, 
10 nonlinear analysis models of the bridge were built.

3.3  Selection of ground motions

A key factor of seismic vulnerability analysis is the 
input ground motions, which is the basis of structural 
seismic analysis. There are signifi cant differences in 
structural response when a bridge suffers different 
earthquakes. To perform the vulnerability analysis, 
various hazard levels of ground motions need to 
be adopted to evaluate the probability that a bridge 
experiencing certain damage state within a given 
return period. These earthquake records should be 
representative of the seismic characteristics of the 
specifi ed site condition. Because there are differences 
between Chinese and American seismic codes, 
earthquake records selected from the strong motion 
database of PEER cannot be used directly. To obtain 
earthquake records satisfi ed the site condition Class II in 
Chinese seismic code (thickness of sediment layer hd 
≥  5 m with equivalent shear wave speed vs satisfy 
250 m/s < vs < 500 m/s; or 3 m < hd <50 m with 150 m/s 
< vs < 250 m/s, or 3 m < hd <15 m with vs ≤ 150 m/s), 
the method proposed by Lv and Zhao (2007) is adopted, 
which provide the relationship of site conditions between 
China and U.S. by comparison of the soil classifi ed 
parameters, and proposed a modifi cation procedure for 
US site condition when it is adopted in China. Then, 
200 earthquake records (for different hazard levels) 

are chosen for seismic vulnerability analysis. General 
properties of these records are, (1) fault distance range: 
20‒200 km; (2) moment magnitude range: 6.5‒7.6; (3) 
shear wave velocity range: 260‒510 m/s; (4) no velocity 
pulse effect. General properties and PGA distribution of 
200 earthquake records are shown in Table 2 and Fig. 3.

To refl ect the randomness of earthquakes, 200 
earthquake records are divided into ten groups with twenty 
records each. Therefore, it is possible to randomly assign 
these groups of earthquake records to the ten established 
bridge models. Finally, we can get 200 groups of bridge-
earthquake samples. The nonlinear time history analysis 
for 200 samples in x (longitude) direction, as well as in 
y (transverse) direction of bridge, is conducted on the 
Open System for Earthquake Engineering Simulation 
platform (OpenSees, 2012).

Fig.  3   PGA distribution of two hundred earthquake records

Table 1   Statistical information of variables

Variables Distribution Mean Variation coeffi cient
w (kN/m3) Normal distribution  26.25 0.1
fy (MPa) Normal distribution 263.48 0.072
fc (MPa) Normal distribution  33.30 0.12

Table 2   General properties of two hundred earthquake records

Earthquake name Fault distance 
range (km)

Moment 
magnitude

Shear wave velocity 
range (km/s)

Velocity 
pulse

Number of 
earthquake 
records

San Fernando (1971) 22‒193 6.6 271‒453 None 25
Imperial Valley (1979) 32‒85 6.5 275‒362 None 12
Loma Prieta (1989) 28‒117 6.9 271‒478 None 26
Landers (1992) 54‒190 7.3 270‒446 None 48
Northridge (1994) 31‒144 6.7 301‒445 None 21
Duzce, Turkey (1999) 34‒183 7.1 274‒425 None 14
Chi-Chi, Chinese Taipei (1999) 24‒120 7.6 262‒504 None 54
Total 200

PGA (g)
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3.4   Damage states defi nition

The structures or structural components may 
undergo different damage stage in the design process 
based on performance states for different performance 
targets. To assess the seismic vulnerability of a bridge, 
the damage state must be determined. Furthermore, the 
damage indexes also need to be quantifi ed. According 
to HAZUS 99 (HAZUS99, 1999), seismic damage 
states of a bridge can be classifi ed into fi ve: no damage, 
slight damage, moderate damage, extensive damage and 
complete damage (collapse). Because bridge is a system 
composed by different components, damages of piers, 
bearings and abutments all possess damage potential to 
the bridge system-level damage. In this study, damage 
indexes of each bridge component, which correspond to 
the fi ve damage states, are fi rst defi ned.

Damage states for piers are determined using the 
relative displacement ductility ratio of a pier, which is 
defi ned by (Hwang et al., 2001)

d
cy1





                                

(13)

where Δ is the relative displacement at the top of a 
pier obtained from seismic response analysis; Δcy1 is 
the relative displacement of a pier when the vertical 
reinforcing steel bars at the bottom of the pier reach the 
fi rst yield. The fi ve damage states are quantifi ed in terms 
of the relative displacement ductility ratios as shown in 
Table 3. In Table 3, μcy1 is the fi rst yield displacement 
ductility ratio; μcy is the yield displacement ductility ratio 
(which corresponding to the rotation curvature at the 
plastic hinge region equal to φy, which is the equivalent 
yield curvature, the readers may be referred to Priestley 
et al. (2007)); μc4 is the displacement ductility ratio with 
εc = 0.004 (concrete compression strain at the bottom of 
pier edges); μcmax is the maximum displacement ductility 
ratio, which can be expressed as μcmax= μc4+3 (Buckle 
et al., 2006). It is noted that the displacement ductility 
ratio is defi ned in terms of the fi rst yield displacement, 
so μcy1 is equal to 1.

Based on the research results of Nielson (2005), 
damage indexes of PTEF sliding bearings and abutments 
measured by displacements are defi ned, as shown in 
Table 4. μcdL is the displacement of PTEF sliding bearings 

in longitudinal direction; μcdT is the displacement of 
PTEF sliding bearings in transverse direction; μcabP is the 
displacement of abutments in passive action; μcabA is the 
displacement of abutments in active action; μcabT is the 
displacement of abutments in transverse direction.

4   vIM based seismic vulnerability analysis of 
     the single-bent overpass bridge

The single-bent overpass has seven components 
which correspond to columns in longitudinal direction, 
columns in transverse direction, PTEF sliding bearings 
in longitudinal direction, PTEF sliding bearings in 
transverse direction, abutments in passive action, 
abutments in active action and abutments in transverse 
direction. Each component of the bridge is indexed by 
i (i = 1 to 7).

4.1  Selection of vIM

In this study, vIM with two intensity measures, IM1 
and IM2, was adopted to perform the seismic vulnerability 
analysis of the bridge. The selection principle of the two 
parameters is to make sure that both of them are strongly 
correlated with the safety factor j

iF . On the other hand, 
the correlation between the two measures should be as 
small as possible.

The nonlinear time history analysis of the 10 sample 
bridges has been carried out using 200 earthquake records. 
Each bridge was analyzed for twenty different records 
selected to cover a wide range of PGAs. So a total of two 
hundred analysis cases have been performed. According 
to the analysis results and the basic characteristics of 
the two hundred earthquake records, the correlation 
coeffi cients between ln (IM)s and the safety factors 2

iF  
in moderate damage state, as well as the correlation 
coeffi cients between different IMs, are calculated, as 
shown in Table 5 and Table 6.

It can be seen from Table 5–6, the above two 
conditions often cannot be satisfi ed simultaneously. 
Considering these two conditions synthetically, Sa(T1) 
(The spectral acceleration at the fi rst period) and Sa(T2) 
(The spectral acceleration at the second period) are 
chosen as the two parameters of vector-valued IM, that 
is vIM = (Sa(T1), Sa(T2)). It should be noted that the 

Table 3  Damage states of piers measured by the relative    
                 displacement ductility ratios

Damage states Criteria

No damage μd < μcy1

Slight damage μcy1 ≤ μd < μcy

Moderate damage μcy ≤ μd < μc4

Extensive damage μc4 ≤ μd < μcmax

Complete damage μd  ≥ μcmax

Table 4 Damage states of PTEF sliding bearings and 
                 abutments measured by displacements

Damage 
indexs

Slight 
damage

Moderate 
damage

Extensive 
damage

Complete 
damage

μcdL (mm) 100 150 200 500
μcdT (mm) 100 150 200 500
μcabP (mm) 37 146 - -
μcabA (mm) 9.8 37.9 77.2 -

μcabT (mm) 9.8 37.9 77.2 -



No. 4                  Li Zhongxian et al.: Vector-intensity measure based seismic vulnerability analysis of bridge structures                        701

power-law form multi-spectral values IM and spectral 
shape IM (Vamvatsikos and Cornell, 2005) also take into 
account more than one spectral information. However, 
vIM does not only decrease dispersion but also lead to 
the fragility surface which provide a direct visualization 
of the spectral shape′s infl uence on the capacities for 
fragility analysis of structures. In this paper, the fi rst two 
vibration modes of the bridge are, T1 = 0.98 s (longitude 
vibration along the bridge), T2 = 0.74 s (transverse 
vibration).

4.2   Vulnerability of bridge component

Based on the results of the nonlinear time history 
analysis, a regression analysis is performed to establish 
a relationship between the safety factors 2

iF  in moderate 
damage state,   1ln aS T , and   2ln aS T . Then, 
vector-valued fragility functions of different bridge 
components can be obtained by Eq. (5). Regression 
models and vector-valued fragility functions of different 
bridge components is shown in Table 7.

Although vIM = (Sa(T1), Sa(T2)) seems to be more 
effective for the estimation of structural damages and 
it is also well adapted to vector-valued probabilistic 
seismic hazard assessment proposed by Bazzurro and 
Cornell (2002), Sa(T1) and Sa(T2) are strongly correlated 
(R = 0.798). Due to the strong correlation between the 
two parameters, data points usually do not cover the 
whole space defi ned by Sa(T1)-Sa(T2). So it will lead 
to serious errors if we consider the whole space as the 
domain of independent variables for vector-valued 
fragility functions. To account for the correlation effects 
of the two IMs, a method suggested by Gehl et al. (2013) 

is used. In this method, a regression analysis with 95% 
confi dence levels is performed between Sa(T1) and Sa(T2) 

using the data points corresponding to the two hundred 
earthquake records, as shown in Fig. 4. The median 
line represents the linear relation between the two 
parameters. Two dotted lines are the lower and upper 
bounds of 95% confi dence intervals. Then, the area 
between the confi dence intervals can be considered as 
the validity domain of independent variables for vector-
valued fragility functions.

4.3   Comparison between scalar IM and vIM

Fragility curves are generally developed using one 
intensity measure, referred as scalar IM, to relate the 
level of shaking intensity to the expected structural 
damages. When the ground motions are represented by 
vIM, which includes two intensity measures (such as 
Sa(T1) and Sa(T2) ), fragility curves will become fragility 
surfaces. The goal of this section is to illustrate that 
vIM is more effective for estimating bridge damages 
than scalar IM. Table 8 shows standard deviations of 
the fragility functions based on scalar IM and vIM for 
different bridge components in moderate damage state. 
We can see that the standard deviations of vector-valued 
fragility functions are smaller than single-variable 
fragility functions. It indicates that an increment of IM 
from one to two IMs results in a signifi cant reduction in 
the dispersion in the vulnerability analysis of the bridge 
structure.

To appropriately illustrate the difference between 
single-variable fragility curves and vector-valued 
fragility surfaces, a fragility surface need to be 
transformed into fragility curves which usually can be 

Table 5  Correlation coeffi cients between ln (IM)s′ and the safety factors 2
iF  in moderate damage state

            F1
2           F2

2          F3
2          F4

2         F5
2      F6

2       F7
2

ln(PGA) 0.758 0.690 0.780 0.642 0.853 0.883 0.902
ln(PGV) 0.847 0.847 0.849 0.836 0.690 0.597 0.635
ln(PGD) 0.431 0.426 0.415 0.437 0.289 0.188 0.183
ln(Sa(T1)) 0.955 0.883 0.944 0.841 0.634 0.543 0.578
ln(Sa(T2)) 0.818 0.743 0.825 0.714 0.645 0.620 0.629

ln(PGV/PGA) 0.262 0.296 0.260 0.284 0.305 0.237 0.217

Table 6   Correlation coeffi cients between different IMs

PGA PGV PGD Sa(T1) Sa(T2)
PGV/
PGA

PGA 1 0.700 0.214 0.717 0.780 0.274
PGV 0.700 1 0.597 0.820 0.738 0.304
PGD 0.214 0.597 1 0.380 0.360 0.186
Sa(T1) 0.717 0.820 0.380 1 0.798 0.260
Sa(T2) 0.780 0.738 0.360 0.798 1 0.288
PGV/PGA 0.274 0.304 0.186 0.260 0.288 1

Fig. 4  Correlation analysis between Sa(T1) and Sa(T2)
Sa(T1) (g)

S a(T
2) 

(g
)
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plotted with respect to one intensity measure by fi xing 
the second one. However, Sa(T1) and Sa(T2) are strongly 
correlated. Developing the single-variable fragility 
curves with one intensity measure while keeping the 
other one constant, it will lead to erroneous conclusions, 
especially for extreme limit-state. So the method proposed 
by Gehl et al. (2013), which is to cut slices along the 
affi ne lines within the validity domain of independent 
variables for vector-valued fragility functions, is used to 

obtain the transformed fragility curves. Then, the fi rst 
bridge component (Columns in longitudinal direction, 
component 1 defi ned in this section previously) is taken 
as the example.

The comparison of the single-variable fragility 
curve and slices of the vector-valued fragility surface in 
moderate damage state is shown in Fig. 5.

The result shows that single-variable fragility curve 
cannot represent the effects of a second intensity measure 
on the seismic behavior of the bridge. If there is only 
one intensity measure used in the seismic vulnerability 
analysis, an average curve will be developed and it 
will not incorporate the variability due to the other 
characteristics of ground motions. Vector-valued fragility 
surface can propagate the effects of a second intensity 
measure in the result. Also, it allows the uncertainties 
related to the effects of the second intensity measure to 
be considered within risk assessment. Its superiority is 
obviously that fragility surface can refl ect the damage 
levels of the bridge structure better.

4.4   Vulnerability of bridge system 

The correlation coeffi cient between the standardized 
safety factors j

iZ  and j
kZ  for a specifi ed damage state j 

is expressed as

Table 7  Regression models and vector-valued fragility functions of different bridge components in moderate damage state

Component 
number Regression models

Standard    
deviation σ2

F1

Vector-valued fragility 
functions

1 μ2
F1

= ln(F1
2) = 0.763×ln(Sa(T1))+0.11×ln(Sa(T2))+0.446 0.13665             P1 = Ф(μ2

F1 
/ σ2

F1
)

2 μ2
F2 

= ln(F2
2) = 0.727×ln(Sa(T1))+0.311×ln(Sa(T2))+0.775 0.25991             P2 = Ф(μ2

F2 
/ σ2

F2
)

3 μ2
F3 

= ln(F3
2) = 0.650×ln(Sa(T1))+0.148×ln(Sa(T2))+0.484 0.13566             P3 = Ф(μ2

F3 
/ σ2

F3
)

4 μ2
F4 

= ln(F4
2) = 0.676×ln(Sa(T1))+0.277×ln(Sa(T2))+0.16 0.32047             P4 = Ф(μ2

F4 
/ σ2

F4
)

5 μ2
F5 

= ln(F5
2) = 0.355×ln(Sa(T1))+0.367×ln(Sa(T2))-0.961 0.40461             P5 = Ф(μ2

F5 
/ σ2

F5
)

6 μ2
F6 

= ln(F6
2) = 0.114×ln(Sa(T1))+0.546×ln(Sa(T2))-0.648 0.45179                     P6 = Ф(μ2

F6 
/ σ2

F6
)

7 μ2
F7 

= ln(F7
2) = 0.069×ln(Sa(T1))+0.594×ln(Sa(T2))-0.686 0.43303             P7 = Ф(μ2

F7 
/ σ2

F7
)

Table 8  Standard deviations of fragility functions based  
              on scalar IM and vIM for different bridge components 
                 in moderate damage state

Component
number

Standard deviations 
scalar IM vIM

(Sa(T1), Sa(T2))Sa(T1) Sa(T2)
1 0.20118 0.29339 0.13665
2 0.31929 0.35854 0.25991
3 0.20408 0.25941 0.13566
4 0.35277 0.39398 0.32047
5 0.49179 0.48134 0.40461
6 0.55607 0.53230 0.45179
7 0.52524 0.50258 0.43303

Fig. 5   Comparison of the single-valued fragility curve and slices of the vector-valued fragility surface (median line representing 
               the linear relation between Sa(T1) and Sa(T2), the lower and upper bounds of 95% confi dence intervals ) in moderate damage state

Lower bound
Median
Upper bound
Single-variable 
fragility curves

P

Sa(T1) (g)

Lower bound
Median
Upper bound
Single-variable 
fragility curves

P

Sa(T2) (g)
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Fig. 6  Fragility surface of the bridge system in moderate 
              damage state
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The correlation coeffi cients 2
,i kZ Z  between different 

bridge components in moderate damage state can 
be obtained by Eq. (14). Table 9 shows the computed 
correlation coeffi cients 2

,i kZ Z . To achieve the suitable 
values of 2

it , a DS class correlation matrix which fi ts 
the correlation coeffi cients 2

,i kZ Z  with the least sum-of-
squared-errors is found. The approximated correlation 
matrix is provided in Table 10 for comparison.

As can be seen from Table 9‒10, the computed 
correlation matrix is approximated by a DS class 
matrix with small errors. In this condition, the values 
of 2

it  for moderate damage state are 0.9775, 0.9150, 
0.6005, 0.8936, 0.7992, 0.4999, 0.5321. Based on the 
vector-valued fragility functions of different bridge 
components in Table 7 and the values of 2

it , the vector-
valued fragility function of the bridge system can be 
obtained by Eq. (12). Then, the fragility surface of the 
bridge system in moderate damage state can be plotted, 

as shown in Fig. 6.
To verify the validity of the vector-valued fragility 

function of the bridge system, a Monte Carlo simulation 
(MCS) approach using the same demand and capacity 
models is adopted. Then, two single-variable fragility 
curves can be obtained by cutting slices along the lower 
and upper boundary of the fragility surface. Figure 7 
shows two single-variable fragility curves obtained by 
slices of the fragility surface of the bridge system and 
the MCS result, and they fi ts very well. The result further 
illustrated the validity of the vector-valued fragility 
function for bridge system.

By comparing the vulnerability of different bridge 
component, it is found that component 3 (PTEF sliding 
bearings in longitudinal direction) is more vulnerable to 
earthquake damage than any other bridge component. 
So we can illustrate the difference between the system 
vulnerability and the component vulnerability by just 
considering component 3 only. Figure 8 shows contour 
distributions of the vulnerability of the bridge system 
and component 3.

It can be seen from Fig. 8 that for any given value of 
vIM(Sa(T1), Sa(T2)), the vulnerability failure probability 
of the bridge system is signifi cantly greater than 
component 3. The result indicates that a bridge system 

Fig. 7  Two single-variable fragility curves obtained by slices 
             of the fragility surface ( the lower and upper bounds of 
             95% confi dence intervals) of the bridge system and the 
            Monte Carlo simulation (MCS) routines

Single-variable fragility 
curves-lower bound
Single-variable fragility
curves-upper bound
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Table 9  Correlation coeffi cient matrix for standardized safety 
          factors of different bridge Components in moderate 
              damage state

   Z1
2    Z2

2    Z3
2     Z4

2     Z5
2     Z6

2    Z7
2

Z1
2 1 0.881 0.601 0.861 0.808 0.486 0.511

Z2
2 0.881 1 0.526 0.886 0.699 0.440 0.488

Z3
2 0.601 0.526 1 0.531 0.505 0.296 0.310

Z4
2 0.861 0.886 0.531 1 0.670 0.424 0.475

Z5
2 0.808 0.699 0.505 0.670 1 0.444 0.436

Z6
2 0.486 0.440 0.296 0.424 0.444 1 0.277

Z7
2 0.511 0.488 0.310 0.475 0.436 0.277 1

Table 10  Correlation coeffi cient matrix for standardized 
             safety factors of different bridge components in 
                      moderate damage state approximated by DS class

    Z1
2     Z2

2     Z3
2     Z4

2    Z5
2    Z6

2     Z7
2

Z1
2 1 0.894 0.587 0.873 0.781 0.487 0.520

Z2
2 0.894 1 0.549 0.818 0.731 0.457 0.487

Z3
2 0.587 0.549 1 0.537 0.480 0.300 0.320

Z4
2 0.873 0.818 0.537 1 0.714 0.447 0.475

Z5
2 0.781 0.731 0.480 0.714 1 0.400 0.425

Z6
2 0.487 0.457 0.300 0.447 0.400 1 0.266

Z7
2 0.520 0.487 0.320 0.475 0.425 0.266 1



704                                              EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION                                          Vol.13 

is more vulnerable to earthquake damage than any other 
components. If the seismic vulnerability of the bridge 
structure is represented by the vulnerability of single 
component, it will overestimate the seismic performance 
of the bridge. The component vulnerability cannot refl ect 
the real seismic performance of the bridge structure and 
the system level failure events must be taken into account 
when performing the seismic vulnerability analysis for 
the bridge structures.

5   Conclusions

Current methods used to perform the seismic 
vulnerability analysis of the bridge structure often 
represent the ground motions intensity by one intensity 
measure, which cannot accurately characterize the 
seismic damage potential to bridge structure relevant to 
seismic intensity measure.

A fragility analysis method for the vulnerability 
of the bridge system based on vIM with a special 
correlation matrix model which includes the correlation 
effects of different bridge components is presented. The 
research results show that an increment of IM from one 
(scalar IM) to two (vIM) leads to a signifi cant reduction 
in the scatter of the fragility functions and a potential 
reduction in the uncertainties for evaluating earthquake 
risk consequently. The vector-valued fragility functions 
developed by vIM can propagate the effects of a second 
intensity measure and allows the uncertainties related 
to the effects of the second intensity measure to be 
considered within risk assessments, they can refl ect the 
damage levels of the bridge structure better.

Bridge structure consists of different components, 
and its seismic performance is closely related to the 
seismic performance of each component. By studying 
the vulnerability of the bridge system, it indicates that 
Dunnett–Sobel class correlation matrix model can 
account for the correlation effects of different bridge 
components better. As a system, the bridge is more 

vulnerable to earthquake damages than any other 
components, the system-level failure events must 
be taken into account when performing the seismic 
vulnerability analysis of the bridges.
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Fig. 8   Comparative analysis of (a) the vulnerability of the bridge system and (b) the vulnerability of Component 3
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