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Abstract

Although the simple assembly line balancing problem (SALBP) is the topic of many studies, typi-
cally they either consider minimizing the number of stations for a given cycle time (called type one),
or minimizing the cycle time for a given number of stations (called type two). Rarely, type E of the
problem is considered. In the type E, cycle time and number of stations are both decision variables, and
the objective is to maximize the line efficiency. This paper presents a mixed integer linear programming
formulation for the type E simple assembly line balancing problem. Moreover, to further strengthen the
presented formulation, two enhancement techniques in form of valid inequalities and auxiliary variables
are proposed. As the secondary objectives of the problem, minimization of the number of stations, the
cycle time, and the smoothness index are studied as well. In the case of workload smoothing, three
different linearization methods are employed and compared for minimizing the smoothness index. The
results of computational study on the benchmark data set demonstrate the efficacy of the improved
formulation.
Keywords— Simple assembly line balancing, Workload smoothing, Linearization, Type E

1 Introduction

Over the past six decades, the topic of assembly line balancing has received considerable attention from
those who either (both) study or (and) implement production planning. The assembly line balancing
problem (ALBP) consists of assigning tasks to an ordered sequence of stations such that the precedence
relations among the tasks are satisfied and some performance measure is optimized (Erel and Sarin
[9]). The simple assembly line balancing problem (SALBP), the basic version of the problem, has been
examined extensively. One can refer interested readers to surveys by Baybars [4], Ghosh and Gagnon
[12], Erel and Sarin [9], Rekiek et al. [19], Scholl and Becker [22], Battaa and Dolgui [3], Saif et al. [20],
and Sivasankaran and Shahabudeen [24] for details.
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These problems are commonly classified into two categories; SALBP-1 and SALBP-2. In the
SALBP-1, for a given cycle time (or for a given production rate) the number of required stations
is minimized. In the SALBP-2, the number of stations is given, and the objective is to minimize the
cycle time (or maximize the production rate). The more generalized SALBP is called SALBP-E where
both the cycle time and the number of stations are decision variables for the problem. The objective
of the SALBP-E is to maximize the line efficiency by minimizing the product of the cycle time and the
number of stations. Unlike the SALBP-1 and SALBP-2, this problem is rarely studied by researchers,
likely because of its non-linear form and the difficulty of dealing with (see Battaa and Dolgui [3]).

Scholl and Becker [22] mention that procedures directly solving the SALBP-E are not available.
Indeed, the SALBP-E is typically solved by iteratively solving several SALBP-1 or SALBP-2 instances.
For example, Wei and Chao [26] propose an exact solution procedure based on solving several SALBP-2
formulations. They also present a non-linear model which combines the SALBP-1 and SALBP-2. The
work of Zacharia and Nearchou [28] can be seen as the first attempt to solve the SALBP-E directly,
without solving several SALBP-1 or SALBP-2 instances. They assume that the cycle time and the
task processing times are triangular fuzzy numbers, and refer to this problem as the fuzzy SALBP-E
(f -SALBP-E). To solve this problem, they use a meta-heuristic based on genetic algorithms. As far as
we know, no exact solution procedure or mathematical formulation exists in the literature to directly
solve the SALBP-E.

The SALBP is first formulated as integer linear programming formulations by Bowman [5]. He
develops two different formulations for the SALBP-1. In the first formulation he considers some decision
variables representing the amount of time which a task devotes to a station. To assure that task times
do not split between the stations, he uses a set of binary variables to provide non-divisibility constraints.
In the second formulation, he considers some decision variables representing the clock time when a task
is started. Accordingly, to assure that tasks do not use the same clock time, he employs a set of binary
variables and adds the non-interference constraints. Later, White [27] reformulates Bowman’s first
model and shows that the new model requires fewer variables and constraints. In this formulation,
a set of binary variables are used which take value one if and only if a task is assigned to a specific
station. Based on these variables, Patterson and Albracht [17] introduce the concept of earliest and
latest stations to which a task can be assigned (a preprocessing for the formulation). They compare
the new formulation with the previous ones and conclude that the new formulation consists of fewer
variables and constraints. Baybars [4] presents a binary integer linear programming formulation for the
SALBP-2. The formulation is a modification of White’s formulation, in which the objective function
is adapted. Pastor and Ferrer [16] consider a modification of the formulation presented by Patterson
and Albracht [17]. They point out that in addition to the precedence relations, the earliest and latest
stations for a specific task depend on the upper bound on the number of stations for the SALBP-1, or
the upper bound on the cycle time for the SALBP-2. They introduce a set of valid inequalities for the
SALBP-1 and SALBP-2 to impose this concept on the formulation. Using the new approach, they can
solve a greater number of instances to optimality by the improved formulation.

As reviewed, one important research line in the SALBPs is to develop effective mathematical pro-
gramming formulations. But, the type E of the problem has not been linearly formulated. This paper
presents a mixed integer linear programming (MILP) formulation for the problem, which can be solved
by standard linear solvers. Moreover, to further strengthen the presented formulation, several improve-
ments in form of valid inequalities and auxiliary variables are proposed. The improved formulation is
then capable of solving small and medium instances of the problem to optimality, within a reasonable
amount of time. Furthermore, the application of different secondary objectives in the problem such
as the workload smoothing are studied. To the best of our knowledge, this is the first exact method
presented to solve the SALBP-E directly by an MILP formulation.

The rest of the paper is organized as follows. Section 2 formally describes the problem under
study and reviews some preliminary notations. Section 3 introduces an MILP formulation for the
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SALBP-E. Moreover, some secondary objectives such as the workload smoothing are considered for the
formulation. In the case of workload smoothing, because the secondary objective is non-linear, three
different linearization methods are employed and compared. Section 4 discusses some improvement
techniques to enhance the formulation. Section 5 computationally evaluates the performance of the
model on the benchmark data set. Finally, Section 6 provides some concluding remarks.

2 Problem description and notations

The SALBP-E can be described as follows. A single product (so called single-model) is manufactured
on a serial line. The total amount of work for manufacturing the product is partitioned into a set of
elementary operations named tasks. Due to technological and organizational conditions, there exist
some precedence relations among the tasks, which constitute edges (arcs) of a precedence graph. In
the precedence graph, only direct predecessors (or successors) of each task (node) are shown (the set
of all predecessors and successors of a task can be obtained by computing the transitive closure of
the precedence graph). Performing each task takes a task time, which is the weight of the task in the
precedence graph. It is assumed that the task times are deterministic and integer values. Each task
must be assigned to exactly one station, but the stations can include more than one task. The total
execution time of tasks assigned to a station is its station time. Due to continuous movement of the line,
each product unit remains at each station for a fixed time span, which is called the cycle time. Each
station time must not exceed the cycle time. In other words, the cycle time is equal to the maximal
station time. The difference between the cycle time and the station time is called the idle time for the
station. Due to integrality of the cycle time (the maximal station time), the idle times are also integer
values. We denote the total idle time for the stations by I, the cycle time by c, and the number of
stations by m. The required line capacity, denoted by T , is defined as the product of the cycle time
and the number of stations, i.e. T = m · c. The SALBP-E seeks to find a feasible combination (m, c)
so as to minimize T . Table 1 defines the notation and parameters for the SALBP-E.

A SALBP-E instance is defined by an interval [
¯
c, c̄] of possible cycle times and/or an interval [

¯
m, m̄]

of possible numbers of stations (Scholl and Becker [22]). For example, in the SALBP-E’s benchmark
(see http://alb.mansci.de), just the bounds on the number of stations (intervals [

¯
m, m̄]) are given.

In fact, whenever the bounds on one of the variables m and c are given, bounds on the other variable
can be calculated theoretically. As is shown by Proposition 1, for a given interval [

¯
m, m̄], the lower

bound and upper bound on the cycle time can be calculated theoretically as a function of m̄ and
¯
m,

respectively. In the case that interval [
¯
c, c̄] is given, one can simply set

¯
m = dtsum/c̄e and m̄ = n.

Proposition 1. In the SALBP-E,
¯
c = f(m̄) and c̄ = g(

¯
m) are valid bounds on the optimal value of

the cycle time, where

f(m) := max{tmax, d
tsum
m
e} (1)

g(m) :=


max{tmax, b

2 · (tsum − 1)

m
c} If m is even,

max{tmax, b
2 · tsum
m+ 1

c} If m is odd.

(2)

Proof. Hackman et al. [13] prove that for a SALBP-2 instance, with m stations given,
¯
c = f(m) and

c̄ = g(m) are valid bounds on the cycle time, if execution times are integer. It is obvious that a SALBP-
E can be considered as m̄−

¯
m+1 SALBP-2 instances. Since f(m) and g(m) are non-increasing functions
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Table 1: The notation and parameters for the SALBP-E

Notation Definition

n The number of tasks

V Set of tasks, i.e., V = 1, 2, ..., n

i, j Indices for the tasks

k Index for the stations

ti The execution time for task i ∈ V

tmin The minimum of the task times, i.e., tmin = mini∈V (ti)

tmax The maximum of the task times, i.e., tmax = maxi∈V (ti)

tsum The sum of the task times, i.e., tsum =
∑

i∈V ti

¯
c The lower bound on the cycle time

c̄ The upper bound on the cycle time

¯
m The lower bound on the number of stations

m̄ The upper bound on the number of stations

KD The set of definite stations, i.e., KD = {1, ...,
¯
m}

KP The set of probable stations, i.e., KP = {
¯
m + 1, ..., m̄}

K The set of all possible stations, i.e., K = KD ∪KP

R The set of direct precedence relations

Pi The set of all (direct and indirect) predecessors of task i ∈ V

Fi The set of all (direct and indirect) successors of task i ∈ V

tpi The execution time for all predecessors of task i ∈ V , i.e., tPi =
∑

j∈Pi
tj

tFi The execution time for all successors of task i ∈ V , i.e., tFi =
∑

j∈Fi
tj

Ei The earliest station for task i ∈ V , i.e., Ei = dti + tpi
c̄
e

Li The latest station for task i ∈ V , i.e., Li = m̄ + 1− dti + tFi
c̄
e

FSi The set of stations to which task i ∈ V is feasibly assignable, i.e., FSi = {Ei, Ei + 1, ..., Li}

FTk The set of tasks are feasibly assignable to station k ∈ K, i.e., FTk = {i ∈ V | k ∈ FSi}

of m, f(m̄) and g(
¯
m) give the smallest lower bound and the largest upper bound in these instances,

respectively. So, they can be considered as valid bounds for the cycle time in the SALBP-E.

The line efficiency, denoted by η, is defined as

η :=
tsum
T
× 100% (3)
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As earlier mentioned, the objective of the SALBP-E is to minimize the required line capacity T .
Since tsum is a constant value, maximizing η is equivalent to minimizing T . Thus, the objective of the
SALBP-E is also maximization of the line efficiency defined by equation (3). On the other hand, in the
SALBP, the relation T = I + tsum holds (see Scholl [21]). Therefore, to maximize the line efficiency,
one can minimize the total idle time. Later, in Section 3, by the use of this point, we formulate the
SALBP-E as an MILP formulation.

An illustrative example is presented to further explain the SALBP-E. The example is problem
“Jackson” with [

¯
m, m̄] = [3, 7] from the benchmark. Fig 1 shows the precedence graph with n = 11

tasks and the task times as the node weights.

Figure 1: Precedence graph of the Jackson’s problem

To solve a SALBP-E instance, the first step is to provide bounds on the number of stations or the
cycle time. Since the bounds on the number of stations are given, Proposition 1 is used to calculate
bounds on the cycle time. Considering tsum = 46, the bounds are calculated as [

¯
c, c̄] = [f(7), g(3)] =

[7, 23].
This instance of the problem has two different optimal combinations (m, c) = (3, 16) and (m, c) =

(4, 12) with T = 48. Observe that combination (m, c) = (6, 8) with T = 48 is infeasible because for
c = 8 at least m = 7 stations are required. Table 2 details four optimal solutions for the example.
From the table we see that there might be more than one optimal combination of (m, c), and also
more than one solution corresponding to each optimal combination. One can distinguish these optimal
solutions by defining some secondary objectives. Secondary objectives are commonly employed in the
assembly line balancing problems. For example, recently Scholl et al. [23] use a secondary objective
for minimizing the setup times in an assembly line balancing and scheduling problem with sequence-
dependent setup times. Because in the SALBP-E several optimal combinations of the cycle time and
the number of stations are possible, minimizing the cycle time (maximizing the production rate) and
minimizing the number of stations (minimizing the station related costs) can be considered as the
secondary objectives. The reader is referred to Amen [1] for different costs connected to the number
of stations.

Also, it is notable to point out that solutions to the problem may not assign equal workloads to the
stations, and therefore create operating inefficiencies (see Rachamadugu and Talbot [18]). For instance,
the distribution of the idle times for solutions 2 and 4 is smoother, which makes them superior to the
other two solutions. To equalize the station times (to smooth the station loads), a secondary objective
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Table 2: Some optimal solutions for the example

Combination Solution Station Tasks Station time Idle time

(m,c)=(3,16)

1
1 {1,2,6,8} 16 0
2 {3,4,5,7} 16 0
3 {9,10,11} 14 2

2
1 {1,2,4} 15 1
2 {3,5,6,7,9} 16 0
3 {8,10,11} 15 1

(m,c)=(4,12)

3

1 {1,3,5} 12 0
2 {2,6,8} 10 2
3 {4,10} 12 0
4 {7,9,11} 12 0

4

1 {1,2,5,6} 11 1
2 {3,8} 11 1
3 {4,10} 12 0
4 {7,9,11} 12 0

can be used. This secondary objective can be expressed in the form of different functions (see e.g.,
Eswaramoorthi et al. [11] and Emde et al. [8]). One of the most famous functions is the smoothness
index (SX), which is defined as follows:

SX :=

√√√√ m∑
k=1

(c− t′k)2 (4)

In this definition, t′k is the station time for station k. Recently, for the SALBP with a given value of
the number of stations, Mozdgir et al. [15] present a non-linear model in which the smoothness index
is minimized as the primary objective of the model. In this paper, we minimize the smoothness index
as a secondary objective for the SALBP-E. To optimally solve the problem under hand, three different
linear functions are also introduced in Section 3.

We include each secondary objective and the primary objective of the problem into a single ob-
jective function. That is, by solving an MILP formulation, the maximization of the line efficiency
and optimization of the secondary objective are performed simultaneously. Note that the secondary
objectives can also be optimized lexicographically, i.e., by procedures that solve a sequence of single-
objective optimization problems. In other words, the problem is first solved to optimize the primary
objective, and then some information is transfered to a second problem with the objective of optimizing
the secondary objective. This approach is not examined in this paper.

3 The SALBP-E formulation

In this section, a mixed integer linear program is developed for the problem. The decision dimension
of this problem is the assignment of tasks to stations. The decision variables are defined as follows.
For each task i ∈ V , and station k ∈ FSi, the binary decision variable xik indicates whether the task
is assigned to that station, that is,

xik :=

{
1 If task i is assigned to station k,
0 Otherwise.
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Also, for each station k ∈ KP , the binary decision variable uk indicates whether any task is assigned
to that station, that is,

uk :=

{
1 If any task is assigned to station k,
0 Otherwise.

Using these variables, the SALBP-1 formulation (F1) can be expressed as follows:

F1: min
∑

k∈KP

k · uk (5)

subject to:
∑

k∈FSi

xik = 1 ∀i ∈ V (6)

∑
k∈FSi

k · xik ≤
∑

k∈FSj

k · xjk ∀(i, j) ∈ R (7)

∑
i∈FTk

ti · xik ≤ c ∀k ∈ KD (8)

∑
i∈FTk

ti · xik ≤ c · uk ∀k ∈ KP (9)

xik ∈ {0, 1} ∀i ∈ V and k ∈ FSi (10)

uk ∈ {0, 1} ∀k ∈ KP. (11)

The objective function (5) has two important roles. First it minimizes the number of stations, by
minimizing the weighted number of probable stations. Secondly, it removes any empty stations which
appear between two consecutive stations, i.e., it ensures that uk+1 = 0 if uk = 0. Thus, in addition
to minimizing the number of stations, it breaks the symmetry in the formulation. After solving the
formulation, the number of stations, m, is calculated using m =

¯
m +

∑
k∈KP uk . Constraint set (6)

enforces each task to be assigned to exactly one station. Constraint set (7) imposes precedence relations
on tasks. Constraint sets (8) and (9) ensure that station times do not exceed the given cycle time.
Finally, constraint sets (10) and (11) ensure that decision variables xik and uk are binary.

The SALBP-2 minimizes the cycle time for a given number of stations. Therefore, any variables
and constraints associated with the probable stations (KP ) are not used in the SALBP-2 formulation
(F2). The formulation is expressed as follows:

F2: min c (12)

subject to: (6), (7), (8), (10), and:

¯
c ≤ c ≤ c̄. (13)

In F2 objective function (12) minimizes the cycle time. Also constraints (13) are domain constraints
for variable c.

As can be seen, variable c is not used in F1, as well as, variable uk is not used in F2. However,
the SALBP-E formulation (FE) includes both of these variables as well as xik variables. In fact, FE
can be formulated by using these well-known variables, and a new set of continuous variables. In this
case, the SALBP-E is formulated as a mixed integer linear program. We introduce for each station
k ∈ K, variable δk as the idle time for the station. Thus, m̄ continuous variables are defined. FE can
be expressed as follows:
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FE: min I =
∑
k∈K

δk (14)

subject to: (6), (7), (10), (11), (13), and:∑
i∈FTk

ti · xik + δk = c ∀k ∈ KD (15)

∑
i∈FTk

ti · xik + δk ≤ c ∀k ∈ KP (16)

∑
i∈FTk

ti · xik + δk ≥ c+ c̄ · (uk − 1) ∀k ∈ KP (17)

∑
i∈FTk

ti · xik + δk ≤ c̄ · uk ∀k ∈ KP (18)

uk+1 ≤ uk ∀k ∈ KP\{m̄} (19)

δk ≥ 0 ∀k ∈ K. (20)

In FE, objective function (14) minimizes the total idle time for the stations. Let us remind that the
total idle time minimization ensures efficiency maximization. Constraint sets (15), (16), (17) and (18)
capture the idle times for station k. Note that the idle time of a station becomes zero if no task is
assigned to that station. Constraint set (19) avoids the symmetry. Finally, constraint set (20) defines
decision variables of the idle times. We know that the idle time variables can only take integer values
in advance. The reason why the idle time variables are considered as continuous variables is that
constraint sets (15), (16), (17) and (18) make the idle time variables take integer values even if they are
relaxed. So, these variables can be safely set as continuous variables, hence the need for fewer integer
variables in the formulation.

Experimental results indicate that in spite of adding more integer variables into the formulation,
considering these variables as integer variables gives much better performance (see Section 5). This is
because the IP solver is capable of generating general cutting planes such as the well-known Gomory
Fractional Cuts due to integrality of the idle time variables. Thus, to exploit this ability of the IP solver,
one should change the non-negativity constraints (20) to integrality constraints. This modification also
indicates the integrality of the objective function. So, objective integrality cuts can also be generated by
the solver. In other words, if the objective coefficients are all integer, then the objective value also must
be an integer because the variables are required to be integer. In this case, if

¯
I is the best lower bound

found so far, the objective integrality cut
∑

k∈K δk ≥ d̄Ie can be generated. The interested reader is
referred to Chen et al. [7] for further information on different kinds of cutting planes.

Comparing with F1, FE only requires m̄ more continuous variables and 3 · (m̄−
¯
m)− 1 additional

constraints. Comparing with F2, it just includes m̄ additional continuous variables. As can be seen,
we succeeded to formulate the SALBP-E as a linear program with a few additional variables and
constraints, i.e., the number of additional variables and the number of additional constraints required
is linearly bounded by the number of tasks.

It is obvious that the proposed model for FE can also be used to solve both SALBP-1 and SALBP-2.
This is due to the fact that the SALBP-E is the more general version of the problem, and therefore
any formulation which solves SALBP-E instances is also valid for solving the SALBP-1 and SALBP-2.

As earlier discussed in Section 2, a SALBP-E instance may include more than one optimal combi-
nation of the cycle time and the number of stations. One might be interested to minimize either the
cycle time or the number of stations as a secondary objective. To this end, the following expressions
can be considered as the objective function.
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min (m̄−
¯
m+ 1) ·

∑
k∈K

δk −
∑

k∈KP

uk (21)

min (m̄−
¯
m+ 1) ·

∑
k∈K

δk +
∑

k∈KP

uk (22)

Both objective functions (21) and (22) maximize the line efficiency as the primary objective. Among
optimal combinations (m, c), objective function (21) maximizes the number of stations as the secondary
objective, which is equivalent to minimizing the cycle time. Also, objective function (22) minimizes the
number of stations as the secondary objective. Note that these secondary objectives do not influence
maximization of the line efficiency because the total idle time is an integer value (consider the division
of each expression by m̄−

¯
m+ 1). We write the objective functions in such a form to make sure that

the objective function coefficients are all integers.
Another secondary objective for the SALBP-E is workload smoothing (or leveling), which can be

executed by minimizing the smoothness index (see equation (4)). We write the smoothness index in
terms of the idle time variables as follows:

SX :=

√√√√ m∑
k=1

δ2
k (23)

It is obvious that instead of minimizing the smoothness index directly, one can minimize SX2.
This is very helpful because dealing with quadratic terms

∑m
k=1 δ

2
k is much easier. We first present

a property of the real numbers, which can be used to linearize these quadratic terms. Suppose that
r1, r2, ..., rM are M real numbers. Then, the following property holds.

(
M∑
`=1

r`)
2 =

M∑
`=1

r2
` + 2

M∑
`=1

M∑
`′=`+1

r` · r`′ (24)

Property (24) can also be used in developing a theoretical upper bound for the smoothness index.
This theoretical upper bound is presented by Proposition 2.

Proposition 2. In the SALBP-E, uSX := max(m̄ · tmax, 2 · tsum) − tsum is an upper bound on the
optimal value of the smoothness index.

Proof. Suppose that Ī is an upper bound on the total idle time, i.e.,
∑m

k=1 δk ≤ Ī. Because the idle
times are non-negative integer variables, property (24) implies that SX ≤ Ī. So, any upper bound
on the total idle time is an upper bound on the smoothness index as well. It is enough to show that
max(m̄ · tmax, 2 · tsum)− tsum is an upper bound on the total idle time. From Proposition 1, we see that
m · c ≤ m · c̄ ≤ max(m̄ · tmax, 2 · tsum). The assertion is proved by replacing m · c with I + tsum.

Using the upper bound provided by Proposition 2, the following objective function is used for
maximizing the line efficiency as the primary objective, and minimizing the smoothness index as the
secondary objective.

min (u2
SX + 1) ·

∑
k∈K

δk +
∑
k∈K

δ2
k (25)
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Note that due to integrality of the idle time variables, objective function (25) does not influ-
ence minimization of the total idle time. We present three different methods for linearizing objec-
tive function (25). The first method is to introduce time index variables γkh for each k ∈ K and
h ∈ H = {1, 2, ..., c̄− tmin} as follows.

γkh :=

{
1 If δk = h ,
0 Otherwise.

Now, objective function (25) can be linearized as follows.

min (u2
SX + 1) ·

∑
k∈K

δk +
∑
k∈K

∑
h∈H

h2 · γkh (26)

Note that constraint sets (27), (28) and (29) are also included into the model.

∑
h∈H

γkh ≤ 1 ∀k ∈ K (27)∑
h∈H

h · γkh ≥ δk ∀k ∈ K (28)

γkh ∈ {0, 1} ∀k ∈ K and h ∈ H (29)

Constraint set (27) guarantees that for each station k, at most one variable γkh is positive (the idle
time for station k can only take one unique value). When variable δk is positive, constraint set (28)
in conjunction with constraint set (27) assures that exactly one of the variables γkh take value one.
Otherwise, objective function (26) ensures that all variables γkh corresponding to station k take value
zero. Constraint set (29) makes sure that decision variables γkh are binary.

The major disadvantage of this method is that it requires a great number of binary variables, i.e.,
m̄ · (c̄ − tmin) binary variables are defined. Moreover, it includes so many non-zero elements into the
coefficient matrix of the formulation. Due to this linearization, the number of non-zero elements that
are included into the objective function and constraints of the model is m̄ · (3 · (c̄− tmin) + 1). In the
second and third methods, we try to resolve these drawbacks.

We know that the product of two binary variables can be easily linearized. Moreover, for a binary
variable d, it is obvious that d = d2 = d3 = ... . Taking this idea into account, it seems that the binary
or 0-1 representation of integer variables δk can be advantageous. Let a = logc̄−tmin

2 . The binary
representation of integer variable δk in terms of binary variables ypk is δk =

∑
p∈A 2p · ypk, in which

A = {0, 1, 2, ..., bac}. Considering property (24), quadratic term δ2
k is represented as

δ2
k =

∑
p∈A

4p · ypk +
∑
p∈A

∑
q∈CA

p

2(p+q+1) · ypk · yqk

in which CA
p = {q ∈ A | q ≥ p + 1}. To linearize the quadratic term ypk · yqk, binary variable

zpqk is used. After linearization, minimization of the smoothness index can be executed by the use of
objective function (30) and addition of constraint sets (31), (32), (33), and (34) into the model.

min (u2
SX + 1) ·

∑
k∈K

δk +
∑
k∈K

∑
p∈A

4p · ypk +
∑
k∈K

∑
p∈A

∑
q∈CA

p

2(p+q+1) · zpqk (30)

zpqk ≥ ypk + yqk − 1 ∀k ∈ K, p ∈ A and q ∈ CA
p

(31)∑
p∈A

2p · ypk ≥ δk ∀k ∈ K (32)

10



ypk ∈ {0, 1} ∀k ∈ K and p ∈ A (33)

zpqk ∈ {0, 1} ∀k ∈ K, p ∈ A and q ∈ CA
p

(34)

Constraint set (31) in conjunction with objective function (30) ensures that the binary variable
zpqk takes value one when both variables ypk and yqk take value one, and zero, otherwise. Constraint
set (32) connects binary variables ypk to integer variable δk. Constraint sets (33) and (34) assure that
decision variables ypk and zpqk are binary.

This method requires m̄ · (0.5bac2 + 1.5bac + 1) binary variables and m̄ · (0.5bac2 + 0.5bac + 1)
constraints. Due to this linearization approach, the number of non-zero elements that are included into
the objective function and constraints of the model is m̄ · (2(bac+ 1)2 + 1).

The 0-1 representation method requires introduction of two types of binary variables. Another way
of linearizing objective function (25) is to represent the idle time variables as 0-1-2 integer variables.
Let b = logc̄−tmin

3 . The 0-1-2 representation of integer variable δk in terms of integer variables y′pk is

δk =
∑

k∈B 3p · y′pk, in which B = {0, 1, 2, ..., bbc}. Considering property (24), quadratic term δ2
k is

represented as

δ2
k =

∑
p∈B

9p · (y′pk)
2

+ 2
∑
p∈B

∑
q∈CB

p \{p}

3(p+q) · y′pk · y′qk

in which CB
p = {q ∈ B | q ≥ p}. To linearize quadratic term y′pk · y′qk, integer variable z′pqk is used.

It is not hard to see that the following inequality can be considered for extracting the product of two
integer variables y′pk and y′qk.

2 · z′pqk ≥ 3 · (y′pk + y′qk)− |y′pk − y′qk| − 4 ∀k ∈ K, p ∈ B and q ∈ CB
p (35)

To linearize inequalities (35), auxiliary binary variable z′′pqk is introduced. After linearization,
minimization of the smoothness index can be executed by the use of objective function (36) and
addition of constraint sets (37) through (42) into the model.

min (u2
SX + 1) ·

∑
k∈K

δk +
∑
k∈K

∑
p∈B

9p · z′ppk + 2
∑
k∈K

∑
p∈B

∑
q∈CB

p \{p}

3(p+q) · z′pqk (36)

y′pk + 2 · y′qk − 2 · z′′pqk ≤ z′pqk + 2 ∀k ∈ K, p ∈ B and q ∈ CB
p

(37)

2 · y′pk + y′qk + 2 · z′′pqk ≤ z′pqk + 4 ∀k ∈ K, p ∈ B and q ∈ CB
p

(38)∑
p∈B

3p · y′pk ≥ δk ∀k ∈ K (39)

y′pk ∈ {0, 1, 2} ∀k ∈ K and p ∈ B (40)

z′pqk ∈ {0, 1, 2, 3, 4} ∀k ∈ K, p ∈ B and q ∈ CB
p

(41)

z′′pqk ∈ {0, 1} ∀k ∈ K, p ∈ B and q ∈ CB
p

(42)

Constraint sets (37) and (38) in conjunction with objective function (36) ensure that the binary
variable z′pqk takes the product of two integer variables y′pk and y′qk. These constraints are the linearized
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form of inequalities (35). Constraint set (39) connects integer variables y′pk to integer variables δk.
Constraint sets (40), (41) and (42) define the new decision variables of the model.

In total, the 0-1-2 representation method requires introduction of m̄·(bbc2+4bbc+3) integer variables
and m̄ · (bbc2 + 3bbc+ 3) constraints. Due to this linearization, the number of non-zero elements that
are included into the objective function and constraints of the model is m̄ · (4.5bbc2 + 12.5bbc + 9).
Note that in constraint sets (37) and (38) when p = q, only one coefficient (= 3) for variable y′pk is
considered. Table 3 numerically compares the three methods in terms of the number of variables (NV ),
the number of constraints (NC), and the number of non-zero elements (NNZ). Since b = a · log2

3, the
problem size is only described by factor a.

Table 3: The comparison of the three linearization methods

a
NV (×m̄) NC(×m̄) NNZ(×m̄)

TI 0-1 0-1-2 TI 0-1 0-1-2 TI 0-1 0-1-2

5 32 21 24 2 16 21 97 73 87
10 1024 66 63 2 56 57 3073 243 246
15 32768 136 120 2 121 111 98305 513 486

The data in the table show that the time index representation method include many variables and
non-zero elements into the model in comparison to the other two methods. However, it requires a few
numbers of constraints, irrespective of the value of a. The difference between the 0-1 and the 0-1-2
methods is small enough to say that they have similar size complexity. However, later in section 5,
the experimental results indicate that the 0-1 method has very small computational complexity in
comparison to the 0-1-2 method.

4 Formulation improvement

This section discusses how the proposed formulation can be improved. There are different techniques
to enhance a mathematical programming model. Some techniques such as preprocessing and cut gener-
ation are widely implemented in the integer programming (IP) solvers to make the original formulation
tighter. However, sometimes a mathematical programming formulation can be strengthened by defin-
ing special preprocessing and valid inequalities for the formulation. These are usually inspired by the
specific knowledge of the problem. This paper also provides two techniques to improve the presented
formulation. The first technique is based on generating valid inequalities based on the precedence rela-
tions, and the second is a new approach to speed up solving the linear programming (LP) relaxations
of the integer program.

4.1 Precedence-oriented inequalities

In section 2, we show that similar to the SALBP-1 and SALBP-2, a preprocessing based on the concept
of earliest and latest stations can be applied to the SALBP-E. The performance of this preprocessing
depends primarily on the bounds provided for the cycle time and the number of stations. Usually these
bounds are weak, and therefore a few numbers of variables are eliminated in the preprocessing phase.

In the following, we present two new sets of valid inequalities based on the precedence relations.
These inequalities impose the concept of earliest and latest stations on the formulation dynamically,
i.e. with the bounds provided by the formulation itself. The following set of inequalities ensures that
task i cannot be assigned to some earlier stations.

12



(ti + tPi ) · xik ≤ k · c ∀i ∈ V and k ∈ FSi (43)

To show the validity of these inequalities, suppose that c is given. By dividing both sides of
inequalities (43) by c, the coefficient of variable xik is a lower bound on the station index to which task
i can be assigned (see the definition of the earliest station in Table 1). So, if task i and its predecessors
require more than k stations, then it cannot be assigned to station k (xik = 0). Since c is a decision
variable, we write inequalities (43) in such a form to be able to impose this concept on the formulation
by linear constraints. In fact, inequalities (43) give a lower bound on the cycle time based on the task
assignments to the stations. These inequalities can be strengthened by considering the idle times as
follows.

(ti + tPi ) · xik +

k∑
k′=1

δk′ ≤ k · c ∀i ∈ V and k ∈ FSi (44)

In other words, if the execution time of task i and its predecessors plus the idle times of stations 1
through k require more than k stations, variable xik cannot take value one.

Another set of inequalities can be developed to restrict the set of tasks assignable to the last stations.
These inequalities can be expressed in terms of the required line capacity as follows.

(ti + tFi ) · xik + (k − 1) · c ≤ T ∀i ∈ V and k ∈ (FSi ∩KD)\{1}
(45)

(ti + tFi ) · xik + (k − 1) · c ≤ T + ((k − 1) · c̄− tsum) · (1− uk) ∀i ∈ V and k ∈ (FSi ∩KD) (46)

Suppose that combination (m, c) is given. According to inequalities (45) and (46), task i cannot
be assigned to station k if this assignment violates the given capacity. To better understand these
inequalities, consider inequalities (45). Replace T with m · c, and divide both sides of the inequalities
by c. The result is as follows:

k ≤ m+ 1− (
ti + tFi
c

) · xik

As is seen, inequalities (45) specify an upper bound on the station index to which task i can be
assigned (see the definition of the latest station in Table 1). So, if task i is assigned to station k,
then k − 1 previous stations plus the number of required stations for task i and its successors cannot
violate the total number of stations, m. If no task is assigned to station k, inequalities (46) remain
inactive. Otherwise, they are similar to inequalities (45). Note that similar to what we have done for
strengthening inequalities (43), inequalities (45) and (46) can be strengthened by considering the idle
times as follows:

(ti + tFi ) · xik + (k − 1) · c+

m̄∑
k′=k

δk′ ≤ T ∀i ∈ V and k ∈ (FSi ∩KD)\{1}

(47)

(ti + tFi ) · xik + (k − 1) · c+
m̄∑

k′=k

δk′ ≤ T + ((k − 1) · c̄− tsum) · (1− uk) ∀i ∈ V and k ∈ (FSi ∩KD)

(48)
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Such strengthening of these inequalities is more understood when we consider their linearized form
as follows. Observe that T is replaced with

∑
k∈K δk + tsum.

(ti + tFi ) · xik + (k − 1) · c ≤
k−1∑
k′=1

δk′ + tsum ∀i ∈ V and k ∈ (FSi ∩KD)\{1}

(49)

(ti + tFi ) · xik + (k − 1) · c ≤
k−1∑
k′=1

δk′ + tsum + ((k − 1) · c̄− tsum) · (1− uk) ∀i ∈ V and k ∈ (FSi ∩KD)

(50)

In Section 5, we show that adding inequalities (44), (49), and (50) into the formulation significantly
reduces the computational complexity of the model.

4.2 Size reduction by the use of auxiliary variables

The quality of a linear programming problem depends on the size of the coefficient matrix, which is a
function of the number of variables and constraints, as well as the number of non-zero elements (see
Chen et al. [6]). A high number of non-zeros in the coefficient matrix can cause numerical difficulties
to solve the LP relaxations. In this section, we introduce a new approach to decrease problem size by
reducing the number of non-zero elements in the coefficient matrix. We show that defining auxiliary
variables can be very effective in reducing the problem size.

Auxiliary variables are commonly used in integer programming as well as constraint programming
methods for different reasons. For example, they are used in formulating non-convex decisions, guiding
branching scheme, or hybrid modeling. We refer the interested reader to Smith [25], Atamtürk and
Savelsbergh [2], and Hooker [14] for some applications of the auxiliary variables. In the following, it is
shown that how auxiliary variables can be used in modeling a better formulation.

Let |R| and |FSi| be the cardinality of sets R and FSi, respectively. Observe that |R| and |FSi| are
bounded by O(n2) and O(n), respectively. In FE, precedence constraints (7) add a great number of
non-zero elements into the coefficient matrix. In fact, they add N1 =

∑
(i,j)∈R (|FSi|+ |FSj |) non-zero

elements to the coefficient matrix of the formulation, which is bounded by O(n3). It is not hard to see
that by eliminating these constraints, the number of non-zero elements of FE is decreased to O(n2).

To alleviate the numerical difficulties associated with precedence constraints (7), we define contin-
uous auxiliary variable αi as follows:

αi =
∑

k∈FSi

k · xik ∀i ∈ V (51)

where αi indicates the station number to which task i is assigned. Using these auxiliary variables
we can write precedence constraints as follows:

αi ≤ αj ∀(i, j) ∈ R (52)

Therefore, constraint set (7) is replaced with constraint sets (51) and (52). Note that terms∑
k∈FSi

k · xik still remain in the formulation, but in much smaller number of constraints. In con-
straint set (7) they are considered for each (i, j) ∈ R, but in constraint sets (51) they are considered
for each i ∈ V . In fact, the number of non-zero elements that constraint sets (51) and (52) add to the
formulation is equal to N2 = n+ 2|R|+

∑
i∈V |FSi|, which is bounded by O(n2).
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Also, it is important to point out that adding valid inequalities (44), (49), and (50) to the formulation
makes it stronger, albeit with a sharp increase in the number of non-zero elements. Thus, to avoid
such inefficiency, we define continuous auxiliary variable βk as follows.

βk =
k∑

k′=1

δk′ ∀k ∈ K (53)

By these auxiliary variables, the modified inequalities are expressed as follows:

(ti + tPi ) · xik + βk ≤ k · c ∀i ∈ V and k ∈ FSi (54)

(ti + tFi ) · xik + (k − 1) · c ≤ βk−1 + tsum ∀i ∈ V and k ∈ (FSi ∩KD)\{1}
(55)

(ti + tFi ) · xik + (k − 1) · c ≤ βk−1 + tsum + ((k − 1) · c̄− tsum) · (1− uk) ∀i ∈ V and k ∈ (FSi ∩KD)
(56)

Note that defining the auxiliary variables adds n + m̄ variables and n + m̄ constraints to the
improved formulation, but it reduces the number of non-zero elements to O(n2). The effectiveness of
this technique is investigated in Section 5. Such application of the auxiliary variables is also applied to
an order acceptance and scheduling problem by Esmaeilbeigi et al. [10].

5 Computational Results

To evaluate the performance of the proposed formulation and improvements, we conducted a compu-
tational study on the benchmark data sets. We used CPLEX 12.4 to solve the model. The time limit
was set to 1800 seconds. All the experiments were run on a computer with a single-core 2.5 GHz Intel
processor and 4.0 GB RAM.

The well-known instances of the SALBP, including the SALBP-E instances, can be found in the
website http://alb.mansci.de. We consider two classes of instances of the problem, denoted by C1
and C2. Class C1 includes small and medium instances with up to 50 tasks, and Class C2 includes
larger instances from 50 to 100 tasks. In total, C1 and C2 include 62 and 103 instances of the SALBP-
E, respectively. In each class, a set of precedence graphs, and for each precedence graph a number of
instances exists. Each precedence graph is specified with a “Name”, and each instance is specified with
a lower bound and an upper bound on the number of stations. The bounds on the cycle time are also
calculated through Proposition 1.

To show the effectiveness of the proposed improvements, they are separately added to the formula-
tion. Consequently, four different levels of the formulation are considered as follows.

• FE.1: The original formulation of FE;

• FE.2: FE.1 when non-negativity constraints (20) are changed to integrality constraints.

• FE.3: FE.2 with valid inequalities (44), (49), and (50).

• FE.4: FE.2 when constraints (51) and (52) are used instead of constraints (7) , and con-
straints (54), (55), and (56) are added.

Also, to compare the three linearization methods of the objective function (25), three levels FE.5,
FE.6, and FE.7 are defined as follows.

• FE.5: FE.4 in which objective function (26) is used, and constraint sets (27), (28), and (29) are
added.
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• FE.6: FE.4 in which objective function (30) is used, and constraint sets (31), (32), (33), and (34)
are added.

• FE.7: FE.4 in which objective function (36) is used, and constraint sets (37), (38), (39), (40), (41),
and (42) are added.

Moreover, to examine the impact of the two other secondary objectives on the formulation, we
consider two levels of formulation as follows.

• FE.8: FE.4 in which objective function (21) is used.

• FE.9: FE.4 in which objective function (22) is used.

In order to measure the performance of each formulation, the average computational time (Avg.Time)
and the average number of searched nodes (Avg.Node) are considered. Where suitable, the average
optimality gap (Avg.Gap) and the number of instances which are solved to optimality are also reported.
We first examine the effect of the proposed inequalities on the formulation.

5.1 Performance of valid inequalities

In order to show the effectiveness of the proposed inequalities, and to examine the effect of the integrality
consideration of the idle time variables, we solve instances of C1 by FE.1, FE.2 and FE.3. Details of
the results are provided in Table 4. As was mentioned, for each precedence graph a number of instances
exists. So, for each precedence graph in the table (each row), the averages are reported. In the row
AVG, the weighted averages (affected by the number of instances for each precedence graph) are shown.
In other words, in the row AVG the average amounts for all 62 instances of the class are reported.

We first compare FE.1 with FE.2 to evaluate performance of the general cutting planes generated
by CPLEX due to integrality of the idle time variables. Note that we make CPLEX to generate such
cuts by changing the non-negativity constraints of the idle time variables to integrality constraints.
The data in the table indicates that these cutting planes result in a significant improvement in the
runtime. It can be seen that FE.1 cannot solve all problem instances within the specified time limit
(two instances of “Sawyer” and two instances of “Kilbridge” are not solved by FE.1). Evidently, in
terms of the solution time, FE.2 performs far better than FE.1 because the number of searched nodes
in FE.2 is reduced considerably. For example, in the specified time limit, CPLEX explores 861801
nodes to solve instances of “Kilbridge” by FE.1, but it explores 4091 nodes to solve them by FE.2
(99.5% reduction in the number of searched nodes). This confirms that general cutting planes are very
effective in solving the FE. These cutting planes improve the global lower bound on the total idle time,
significantly. Note that general cutting planes are usually expected to be very weak (see e.g., Chen
et al. [7]), but as we have shown, they give good performance for the FE.

We now compare FE.2 with FE.3 to examine effect of the precedence-oriented inequalities on FE.2.
Note that both FE.2 and FE.3 solve all the instances to optimality. As is shown by Table 4, these valid
inequalities reduce the number of explored nodes in all instances. For example, in FE.3 the number
of searched nodes for instances of “Kilbridge” is reduced to 1025 nodes, which shows a 75% decrease
in comparison to FE.2. In sum, the average solution time for 62 instances of C1 is reduced by more
than 60%. These experimental results confirm that the proposed valid inequalities make the original
formulation stronger.

5.2 Role of the auxiliary variables

To show that how auxiliary variables can be effective in solving instances of the problem, we compare
FE.3 with FE.4 on C2. Details for these instances are provided in Table 5. For the better comparison,
the numbers of instances which are solved to optimality are also shown.
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Table 4: Comparing FE.1, FE.2, and FE.3 on C1.

FE.1 FE.2 FE.3

Name Avg.Time Avg.Gap Avg.Node Avg.Time Avg.Node Avg.Time Avg.Node
(s) (%) NO (s) NO (s) NO

“Mertens” 0.1 0 103 0.1 68 0.1 68
“Bowman” 0.1 0 13 0.1 14 0.1 5
“Jaeschke” 0.1 0 100 0.1 69 0.2 23
“Jackson” 0.2 0 460 0.2 270 0.1 32
“Mansoor” 0.1 0 107 0.1 89 0.1 15
“Mitchell” 0.4 0 381 0.8 774 0.4 100
“Roszieg” 3.5 0 3850 3.6 4470 0.8 485

“Heskiaoff” 289.2 0 696182 27.7 55220 17.4 20775
“Buxey” 207.7 0 169244 45.9 32853 7.8 4883
“Sawyer” 714.6 25.0 528396 44.7 44816 34.0 31361
“Lutz1” 57.6 0 27324 46.1 23975 8.8 5550

“Gunther” 301.8 0 132851 67.6 35008 19.3 8185
“Kilbridge” 647.9 33.3 861801 5.0 4091 2.7 1025

AVG 251.1 6.5 258156 27.6 22430 10.7 8344

Table 5: Comparing FE.3 with FE.4 on C2.

Name
FE.3 FE.4

Avg.Time Avg.Gap Avg.Node Optimal Avg.Time Avg.Gap Avg.Node Optimal
(s) (%) NO NO (s) (%) NO NO

“Hahn” 1.5 0 531 4 1.5 0 379 4
“Warnecke” 1380.0 69.1 79959 4 1157.8 55.6 200129 6

“Tonge” 1781.1 84.7 553871 1 1650.6 83.9 533367 1
“Wee-Mag” 1557.7 79.3 135882 3 1444.3 70.8 111403 5
“Arcus1” 1679.7 53.8 275812 1 1663.9 53.3 447361 1
“Lutz2” 1488.2 66.1 39710 4 1438.9 61.3 140658 6
“Lutz3” 833.5 14.3 81564 12 386.1 0 67547 14

AVG 1389.1 59.5 167073 28.2% 1241.6 52.6 217475 35.9%

According to Table 5, FE.3 is able to solve 28.2% of instances of C2 to optimality, but FE.4 solves
35.9%. Except for instances of “Hahn” which are solved to optimality by both FE.3 and FE.4, in the
other cases, FE.4 shows better performance in terms of the solution time and the optimality gap. We
now compare the number of nodes which are explored by CPLEX for solving FE.3 and FE.4. It can
be seen that CPLEX explores 167073 nodes within 1389.1 seconds to solve FE.3. However, it explores
217475 nodes within 1241.6 seconds to solve FE.4. These data say that CPLEX explores 120 nodes per
second to solve FE.3, but it explores 175 nodes per second to solve FE.4. Thus, due to including the
auxiliary variables, the LP relaxations for FE.4 are easier to be solved. Such advantage of using the
auxiliary variables can improve both the global lower bound and the global upper bound in the B&B
tree. For example, consider instance “Lutz3” with (

¯
m, m̄) = (11, 23) and the optimal objective value

of 6. According to our computational experiments, CPLEX explores 41740 nodes within 1800 seconds
to solve this instance using FE.3. However, the instance cannot be solved to optimality and CPLEX
achieves interval [0, 24] for the optimal solution. When FE.4 is used, CPLEX explores 125516 nodes,
and achieves the optimal solution within 972 seconds. In Table 6, we report details for 29 instances of
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C2 which are solved to optimality by both FE.3 and FE.4.

Table 6: Results of instances in C2 which are solved to optimality by both FE.3 and FE.4.

Name

FE.3 FE.4

Avg.Time Avg.Node Avg.Time Avg.Node
(s) NO (s) NO

“Hahn” 1.5 531 1.5 379
“Warnecke” 224.8 74061 77.4 55561

“Tonge” 1572.5 467903 5.8 2209
“Wee-Mag” 262.0 76776 605.5 83995
“Arcus1” 236.3 19362 29.9 2311
“Lutz2” 396.8 25293 256.6 70779
“Lutz3” 672.4 83920 365.9 68094

AVG 453.6 73247 261.6 54500

It can be inferred from Table 6 that on average the solution time is improved by 42.3% for these
instances. In addition, in the most cases the use of the auxiliary variables has reduced the number
of searched nodes as well. We also solved instances of C1 using auxiliary variables. Even in these
instances the average solution time and the average number of searched nodes are reduced, i.e. to 8.6
seconds and 7322 nodes (see Table 8). It is evident from these results that the introduction of auxiliary
variables is effective in solving the FE.

5.3 Comparison of the three linearization methods

In Section 3, we see that the 0-1 and the 0-1-2 linearization methods are similar in terms of the size.
Moreover, it is shown that the time index representation method adds a lot of variables and non-zero
elements. Table 7 compares the three methods on C1, computationally. Although, FE.6 and FE.7 are
similar in size, FE.7 cannot solve all instances to optimally, and its solution time is about 14 times
larger than FE.6. This is because CPLEX can solve the binary programs more efficient than the integer
programs.

As is seen from the table, FE.5 and FE.6 are similar in terms of the computational time, but they
mainly differ in the number of searched nodes. In fact, CPLEX explores 238 and 549 nodes per second
to solve FE.5 and FE.6, respectively. This is because FE.5 adds a great number of non-zero elements,
which increases the solution time of the LP-relaxations. The results indicate that the 0-1 representation
method is better because it requires very low memory in comparison to the time index representation
method.

5.4 Effects of the secondary objectives

In order to examine impact of the secondary objectives on the formulation, we used C1 and solved FE.4,
FE.8, and FE.9. The results are summarized in Table 8. It can be seen that in comparison to FE.4,
solution time for FE.6, FE.8, and FE.9 is increased by a factor of 4.8, 2.6, and 1.3, respectively. While
minimizing the cycle time as a secondary objective makes the formulation hard to solve, minimizing the
number of stations is rather easier. Likely the reason is that in the optimal solution for these instances,
the optimal number of stations is very close to the given lower bound on the number of stations. For
example, in the results of solving FE.8, in 55% of instances, the optimal number of stations is equal to
the lower bounds. Thus, considering minimization of the cycle time as a secondary objective in these
instances is in conflict with the original objective of the problem, and makes the problem harder to
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Table 7: Computational comparison of the three linearization methods on C1.

Name
FE.7 FE.6 FE.5

Avg.Time Avg.Gap Avg.Node Avg.Time Avg.Node Avg.Time Avg.Node
(s) (×10−4%) NO (s) NO (s) NO

“Mertens” 0.2 0 369 0.2 67 0.1 62
“Bowman” 0.2 0 85 0.3 13 0.1 12
“Jaeschke” 0.6 0 1510 0.3 82 0.2 58
“Jackson” 0.3 0 289 0.3 55 0.2 58
“Mansoor” 0.3 0 196 0.2 13 0.3 26
“Mitchell” 1.3 0 2398 0.5 155 0.6 111
“Roszieg” 193.0 0 203252 1.3 458 1.4 598

“Heskiaoff” 1029.0 0.7 961129 49.9 31735 58.6 30995
“Buxey” 388.5 2.9 404251 15.0 12488 16.7 9871
“Sawyer” 783.5 4.6 806013 29.6 15726 26.4 19072
“Lutz1” 1801.2 0.1 602582 46.4 9336 222.3 5521

“Gunther” 923.6 8.3 544092 196.8 114074 34.1 12707
“Kilbridge” 302.2 0.5 598841 4.9 2592 4.6 1325

AVG 579.9 2.1 442528 40.9 22434 37.5 8933

solve. FE.6 is much harder to solve because the size of the model is increased due to the linearization
scheme. Evidently, the increase in the solution time and the number of searched nodes are penalty for
considering the secondary objectives.

Table 8: Effect of considering secondary objectives on instances of C1.

Name

FE.4 FE.8 FE.9

Avg.Time Avg.Node Avg.Time Avg.Node Avg.Time Avg.Node
(s) NO (s) NO (s) NO

“Mertens” 0.1 62 0.3 100 0.1 69
“Bowman” 0.2 17 0.1 5 0.1 29
“Jaeschke” 0.2 34 0.3 66 0.3 47
“Jackson” 0.2 105 0.3 229 0.3 58
“Mansoor” 0.1 20 0.2 0 0.2 39
“Mitchell” 0.5 21 1.0 479 0.6 229
“Roszieg” 0.8 22 1.7 1153 1.2 698

“Heskiaoff” 16.6 23 35.7 22500 36.3 29563
“Buxey” 3.9 24 22.0 9891 5.2 3976
“Sawyer” 20.7 25 86.1 33773 25.1 23256
“Lutz1” 7.5 26 8.1 4189 7.0 4711

“Gunther” 18.8 27 25.1 11453 20.9 9656
“Kilbridge” 5.8 28 8.0 3176 3.8 1602

AVG 8.6 29 22.1 9967 11.2 8237
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6 Conclusion

In this study, we developed a mixed integer linear programming formulation for the SALBP-E. In
comparison to the previous formulations of the SALBP-1 and SALBP-2, the number of additional
variables and the number of additional constraints required for this formulation is linearly bounded by
the number of tasks. We showed that considering general cutting planes and precedence-oriented valid
inequalities are very effective in solving the presented formulation. In addition, including appropriate
auxiliary variables into the formulation is shown to be helpful in reducing the solution time. These
auxiliary variables decrease the number of non-zero elements in the coefficient matrix of the formulation
considerably. The improved formulation is then capable of solving instances of the problem with up
to 50 tasks in less than 10 seconds on average. The effect of considering different secondary objectives
is also examined on the improved formulation. In the case of workload smoothing, three different
linearization methods are employed and compared for minimizing the smoothness index.

The future study can be devoted to improving the current formulation. For example, it is possible
that new sets of valid inequalities are developed for the problem. Also, one may reformulate the
problem and provide a better formulation by new sets of decision variables. Valid inequalities might
have a better effect if the problem is modeled in another way. Moreover, in this paper, each secondary
objective is considered as part of a single objective function. The secondary objectives can also be
optimized lexicographically, i.e., by procedures that solve a sequence of single-objective optimization
problems. Both procedures require more research and mathematical analysis.
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