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The job-shop scheduling problem has attracted many researchers’ attention in the past few decades, and
many algorithms based on heuristic algorithms, genetic algorithms, and particle swarm optimization
algorithms have been presented to solve it, respectively. Unfortunately, their results have not been sat-
isfied at all yet. In this paper, a new hybrid swarm intelligence algorithm consists of particle swarm opti-
mization, simulated annealing technique and multi-type individual enhancement scheme is presented to
solve the job-shop scheduling problem. The experimental results show that the new proposed job-shop
scheduling algorithm is more robust and efficient than the existing algorithms.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The job-shop scheduling problem (JSSP) is one of the existing
combinatorial optimization problems and it has been demon-
strated to be an NP-hard problem (Garey, Johnson, & Sethi, 1976;
Lawer, Lenstra, Rinooy Kan, & Shmoys, 1993). In the job-shop
scheduling problem, each one of n jobs ðn P 1Þ must be processed
passing through m machines ðm P 1Þ in a given sequence. The se-
quence of m machines is different for each different job and cannot
be changed during the processing. When one job was processed on
a machine, it can be considered as one operation, each job
j ð1 6 j 6 nÞ needs a combination of m operations ðoj1; oj2; . . . ; ojmÞ
to complete the work. One operation is processed on one of m ma-
chines, and just only one operation can be processed at a time. Any
job cannot interrupt the machine that is processing one operation
of another job. Each machine can process at most one operation at
the same time. The main objective of the job-shop scheduling
problem is to find a schedule of operations that can minimize the
maximum completion time (called makespan) that is the com-
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pleted time of carrying total operations out in the schedule for n
jobs and m machines.

JSSP can be applied to the manufacture processing and effects
really the production time and the cost of production for a plant.
During the past few decades, JSSP has attracted many researchers
to develop algorithms. Because JSSP is an NP-hard problem, it is
difficult to develop a perfect algorithm to find a solution within a
reasonable time especially for higher dimensions. Recently, many
researchers made use of evolution algorithm to solve the problem,
such as tabu search method (Nowicki & Smutnicki, 2005;
Ponnambalam, Aravindan, & Rajesh, 2000), genetic algorithm
(Goncalves, Mendes, & Resende, 2005; Park, Choi, & Kim, 2003;
Wang & Zheng, 2001; Watanabe, Ida, & Gen, 2005), simulated
annealing (Van Laarhoven, Aarts, & Lenstra, 1992; Steinhöel, Albr-
echt, & Wong, 1999; Suresh & Mohanasundaram, 2005), ant colony
(Udomsakdigool & Kachitvichyanukul, 2008; Zhou, Li, & Zhang,
2004) and particle swarm optimization (Ge, Du, & Qian, 2007;
Ge, Sun, Liang, & Qian, 2008; Lian, Gu, & Jiao, 2006). In this paper,
we focus on exploiting particle swarm optimization algorithm to
achieve the better solution for JSSP.

Particle swarm optimization (PSO) is developed by Kennedy and
Eberhart (Kennedy & Eberhart, 1995). The position of one particle
is corresponding to a solution of the solving problem. Liking a bird
that flies to the food, one particle moves its position to a better
solution according to the best particle’s experience and its own
experience. Every particle moves iteratively until the end of itera-
tions. We call this process as evolution process. At the end of iter-
ations, the position of best particle is the best solution of the
solving problem. The original developed PSO is designed to search
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Table 1
A 3� 2 JSSP problem.

Job Operations

(a) Operation index
Job1 o11 o12

Job2 o21 o22

Job3 o31 o32

(b) Machine and time
Operation Machine Time

o11 1 2
o12 2 2
o21 2 3
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solution in a continuous space. Because PSO’s local search ability is
weaker than global searching ability, in order to get better solution,
some local search schemes should be integrated with the PSO. In
this paper, we embedded a multi-type individual enhancement
scheme (MIE) based on simulated annealing technique into parti-
cle swarm optimization (PSO). The proposed algorithm enhances
the particle’s searching ability and is suitable to solve the JSSP.
The experimental results show that the proposed PSO with mul-
ti-type individual enhancement scheme outperforms the original
PSO and is more efficient than those of existing meta-heuristics
methods such as discrete particle swarm optimization with simu-
lated annealing model (named HEA (Ge et al., 2007)), discrete par-
ticle swarm optimization with artificial immune system (named
HIA (Ge, Sun, Liang, & Qian, 2008)) and genetic algorithm (named
HGA (Goncalves et al., 2005)) for JSSP scheduling problem,
respectively.

The remainder of the paper is organized as follows: an introduc-
tion for the job-shop scheduling problem and particle swarm opti-
mization are given in Sections 2 and 3, respectively. Section 4 gives
a detailed description of the new proposed job-shop scheduling
algorithm. Section 5 discusses the experimental results. Finally,
Section 6 summarizes the contribution of this paper.

2. The job-shop scheduling problem

The job-shop scheduling problem (JSSP) consists of n jobs and m
machines. Each job must go through m machines to complete its
work. We consider one job consists of m operations. Each operation
uses one of m machines to complete one job’s work for a fixed time
interval. Once one operation is processed on a given machine, it
cannot be interrupted before it finishes the job’s work. The se-
quence of operations of one job should be predefined and maybe
different for any job. In general, one job being processed on one
machine is considered as one operation noted as oji0 (means jth
job being processed on i0th machine, 1 6 j 6 n;1 6 i0 6 m), then
every job has a sequence of m operations. Each machine can pro-
cess only one operation during the time interval. The objective of
JSSP is to find an appropriate operation permutation for all jobs
that can minimize the makespan Cmax, i.e., the maximum comple-
tion time of the final operation in the schedule of n�m operations.

For an n�m JSSP, the problem can be modeled by a set of m
machines, denoted by M ¼ f1;2; . . . ;mg, to process a set of n�m
operations, denoted by o ¼ f0;1;2; . . . ;n�mþ 1g. The operations
0 and n�mþ 1, which are dummy operations, represent the initial
and the last operations, respectively. Dummy operation is used to
model the JSSP problem and need not any processing time. A pre-
cedence constraint is used to let operation i to be scheduled after
all predecessor operations included in Pi are finished. Further,
one operation can be scheduled on an appointed machine that is
free. For the conceptual model, the notations are defined in the
following:
o22 1 1
o31 2 1
o32 1 1
n
 number of jobs
m
 number of operations for one job

Oi
 completed time of operation i ði ¼ 0;1;2; . . . ;n�mþ 1Þ

ti
 processing time of operation i on a given machine

xim
 the flag of operation i initiates machine m

Pi
 all predecessor operations of operation i
machine 
AðtÞ
 the set of operations being processed at time t

Machine 1 o11 o22 o32
oji0
 i0th operation of job j

Cmax
 makespan
Machine 2 o21 o31 o12

0 1 2 3 4 5 6
time 

Fig. 1. Gann chart of ðo11; o21 ; o22; o31; o32 ; o12Þ.

According to the description listed above, the conceptual model

of the JSSP can be defined as follows (Goncalves et al., 2005):
minimize On�mþ1 ðCmaxÞ ð1Þ
Oq 6 Oi � ti; i ¼ 0;1;2; . . . ;n�mþ 1; q 2 Pi ð2ÞX
i2AðtÞ

xim 6 1; m 2 M; t P 0 ð3Þ

Oi P 0; i ¼ 0;1;2; . . . ; n�mþ 1 ð4Þ

The objective fitness function in Eq. (1) is to minimize makespan
that is the completion time of the last operation. The constraint of
precedence relationship is defined by Eq. (2). In Eq. (3), it indicates
that one machine can process at most one operation at a time. The
finish time must be positive by the constraint stated in Eq. (4).

The following example illustrates the JSSP problem.
Suppose there are three jobs and two machines. The processing

time and the initiated machine order of each operation are given in
Table 1. The operation oj1 must be processed before oj2 for a job j. In
Table 1b, operation o21 is processed on machine 2 for 3-unit time
interval and operation o22 is processed on machine 1 for 1-unit
time interval and the operation order of o21 should be preceded be-
fore that of o22. An operation permutation, ðo11; o21; o22; o31;

o32; o12Þ, is feasible because it satisfied with the operation ordering
constraint as stated in Eqs. (1)–(4). O1 is 2-unit time interval that is
the finish time of operation o11 on machine 1. Then O3 is 4-unit
time interval as it is the summation of its own operation time
and the maximal finished time of its predecessors. According to
this permutation, the makespan of ðo11; o21; o22; o31; o32; o12Þ is
turned out to be 6-unit time interval. The resulting Gantt chart
for operation permutation ðo11; o21; o22; o31; o32; o12Þ is depicted
in Fig. 1.
3. Particle swarm optimization

Particle swarm optimization(PSO) is a novel evolutionary algo-
rithm that was inspired by the motion of a flock of birds searching
for foods and was proposed by Kennedy and Eberhart for optimiza-
tion of continuous non-linear problems (Kennedy & Eberhart,
1995). At the beginning of the evolutionary process, a set of parti-
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cles we called it as a swarm must be initiated randomly. Each par-
ticle can change its position in the search space just like a flying
bird searching the food in the sky. During the evolutionary process,
a particle id of a swarm adjusts its newer moving velocity accord-
ing to its best experience, the best experience of all particles in the
swarm and the previous moving velocity. Then, the particle id
moves to a new position according to newly generated velocity
and its previous position. The following mathematical formula is
used to describe how a particle keeps on moving and finding the
optimal solution:
v id ¼ x� v id þ C1 � RandðÞ � pbest
id � pid

� �

þ C2 � RandðÞ � pbest
gd � pid

� �
: ð5Þ

pid ¼ pid þ v id: ð6Þ

In Eq. (5), v id means the moving distance of idth particle on one
iteration and is limited to ½�Vmax;Vmax� in which Vmax is the maxi-
mum moving distance in one particle’s step. The variable x called
inertial weight is used to define a one step movement distance for
a particle. C1 is the self learning factor which means how much one
particle will believe in its own best experience pbest

id . C2 is the social
learning factor which means one particle will believe in the global
best experience pbest

gd of all particles of a swarm. Rand() is a function
to generate a random number uniformly distributed in U(0,1). pid

means the position of idth particle. So, pbest
id is the personal best po-

sition of idth particle and pbest
gd is the global best position of all par-

ticles of a swarm. Based on Eq. (5), the newly generated velocity
can be obtained for the idth particle, the position of the idth parti-
cle can be updated by Eq. (6).

The PSO algorithm is described as follows:

Algorithm 1. Particle swarm optimization (PSO) algorithm
1:
 Initialize a population of N particles with random
positions and random velocities with D dimensions in a
given searching space.
2:
 while a specified stop condition (the optimal solution is
found or the maximal number of iterations is reached) is
not met do
3:
 Evaluate the fitness of each particle in the populations
according to the objective function of the problem.
for each particle id do � �

4:
 Update the personal best position pbest

id for each

particle and the global best position pbest
gd

� �
for all

particles.

5:
 By Eq. (5), update the velocity of each particle.

6:
 By Eq. (6), update the position of each particle.

7:
 end for

8:
 end while
In order to improve the solution quality, the inertial weight x,

the cognition learning factor C1 and the social learning factor C2

are varying with time, not using the fixed coefficients. PSO algo-
rithm can get better solution by letting x be varying from higher
to lower by the increasing of time (Kuo et al., 2009; Xia & Wu,
2005). Let x be varying with time by the following linear decreas-
ing function.
x ¼ xmax � Iter �xmax �xmin

MaxIter
: ð7Þ
particle 1.3 0.7 2.4 1.1 5.3 3.4 

Fig. 2. A representation of a particle for a 3� 2 JSSP.
where MaxIter is the maximum iterations during the evolutionary
process, Iter is the current iteration number, xmax is the initial value
of x and xmin is the final value of x, respectively.
4. The proposed algorithm for JSSP

Some issues are in applying PSO algorithm to solve JSSP. The
original PSO design is developed to solve continuous function.
But, JSSP is a combinatorial problem, the solution space is discrete.
The first issue is to find a suitable representation which the parti-
cles of PSO can simulate an operation permutation schedule of
JSSP. In this paper, based on an operation permutation, the contin-
uous PSO combined with a random-key (RK) encoding scheme is
used to solve the first issue. The detailed description will be dis-
cussed in Section 4.1. The second issue is how to enhance PSO’s lo-
cal search ability by applying PSO to solve the combinatorial
problems. No matter applying CPSO (continuous PSO) or DPSO
(discrete PSO) to the combinatorial problem, embedding the local
search ability in PSO algorithm is an effective way to get a better
solution (Ge et al., 2008; Kuo et al., 2009; Liao, Tseng, & Luarn,
2007; Xia & Wu, 2005). A multiple-type individual enhancement
scheme based on SA (simulated annealing algorithm) is applied
to enhance the local search ability of PSO. The detailed description
is stated in Section 4.3. The complete algorithm named MPSO is
shown in Section 4.5, which consists of random-key (RK) encoding
scheme, multiple-type individual enhancement scheme based on
SA and particle swarm optimization.

4.1. Representation of a particle

The searching space is created in an n�m dimensions space for
n jobs on m machines JSSP. The position of a particle consists of
n�m dimensions and is represented with n�m real numbers. In
order to simulate an operation permutation sequence of JSSP, the
n�m real numbers are transformed into an integer series from 1
to n�m by the random-key encoding scheme. Each integer num-
ber represents one operation index ðoji0 ;1 6 j 6 n;1 6 i0 6 mÞ
according to its ordering in all n�m real numbers. Fig. 2 illustrates
an example of a representation of a particle for a 3� 2 JSSP.

4.2. Random key encoding scheme

The random-key (RK) encoding scheme can be used to trans-
form a position in RK continuous space to a discrete space. A vector
in RK space consists of real numbers. According to RK scheme, one
particle represented by real numbers can simulate an operation
permutation that consists of discrete numbers. For n jobs on m ma-
chines JSSP, the RK virtual space is created in n�m dimensions,
that is, one particle is represented as fRjjRj is a real number,
1 6 j 6 n�mg; Rj is the corresponding weight of an operation or-
der. During the process of the random key encoding scheme, a real
vector is sorted in an ascending order with an integer series
ðp1; p2; . . . ;pkÞ that each integer pk is between 1 and
n�m; 1 6 k 6 n�m. Each integer pk indirectly represents an
operation order of a job. Because each job must go through m ma-
chines to complete its work, a job must have m operations that are
scheduled in a predecessor constraint. According to this constraint,
we can easily make further transformation from an integer series
ðp1; p2; . . .pk; . . . ; pnmÞ to the job index by ðpk mod nÞ þ 1, where
n is the number of jobs. For pk 2 ðn;2n; . . . ;n�mÞ, it means the
listed operations belonging to job1. Similarly, for pk 2 ð1;
nþ 1; . . . ; ðm� 1Þ � nþ 1Þ, it means the listed operations belong-
ing to job 2, and so on. Through this transformation, the integer
series ðp1; p2; . . .pk; . . . ; pnmÞ can be transformed into an
operation order sequence, ðk1; k2; . . . ; kk; . . . ; knmÞ, where kk repre-
sents a job index, 1 6 kk 6 n. We scan this permutation



individual 0.7 2.4 1.3 1.1 3.4 5.3 

integer series 1 4 3 2 5 6 

permutation with job index 2 2 1 3 3 1 

operation permutation o21 o22 o11 o31 o32 o12

Swapping operation 
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ðk1; k2; . . . ; kk; . . . ; knmÞ from left to right, then each job index has m
occurrences. By scanning, the ith occurrence of a job index is cor-
responding to the ith operation in the m operations of a job. The
operation permutation is always feasible because the operation or-
der is satisfied with the predecessor constraint.

We illustrate a complete example to show the processing from
RK virtual space to a feasible operation permutation in the JSSP
solution space as shown in Fig. 3. For a 3� 2 JSSP, suppose that
the position of a particle in RK virtual space is (1.3, 0.7, 2.4, 1.1,
3.4, 5.3). It can be encoded to an integer series (3, 1, 4, 2, 5, 6) by
sorting the 3� 2 real numbers in an ascending order (For example,
0.7 is the smallest number, it is then ranked to 1). In this integer
series, the integers 3 and 6 indicate the operations belonging to
job 1 because (3 mod 3) + 1 = 1, (6 mod 3) + 1 = 1. The integers 1
and 4 indicate the operations belonging to job 2, because (1 mod
3) + 1 = 2, (4 mod 3) + 1 = 2. The integers 2 and 5 indicate the oper-
ations belonging to job3 by (2 mod 3) + 1 = 3 and (5 mod 3) + 1 = 3,
respectively. Then, an operation permutation (1, 2, 2, 3, 3, 1) corre-
sponding to job indexes is obtained. By scanning (1, 2, 2, 3, 3, 1)
from left to right, the first 1 means the first operation of job 1, cor-
responding to o11, the second 1 means the second operation of job
1, corresponding to o12. According to this scanning process, the
partial series (2, 2) is corresponding to ðo21; o22Þ and (3, 3) is cor-
responding to ðo31; o32Þ. After scanning the job index series from
left to right, the permutation (1, 2, 2, 3, 3, 1) is corresponding to
an operation sequence ðo11; o21; o22; o31; o32; o12Þ. The operation
sequence represented by this encoding scheme is always a feasible
solution of JSSP and the representation of a particle is easily to pro-
ceed the local searching which will be explained on the multi-type
individual enhancement scheme. An example from the RK virtual
space to an operation permutation is shown in Fig. 3. It is obvious
that a vector in RK space is corresponding to a particle of PSO.

4.3. Multiple-type individual enhancement scheme

In order to enhance the local search ability and get a better solu-
tion, Kuo et al. (2009) proposed an individual enhancement scheme
which is to exchange the job order of two jobs for solving the FSSP
problem. In this paper, we developed a new multiple-type individual
enhancement scheme for JSSP problem. A multiple-type individual
enhancement scheme is composed of swapping operation, insertion
operation, inversion operation and long-distance movement opera-
tion which can be used to search an individual’s neighborhood to get
a better solution. Swapping operation scheme is to swap two
weighting numbers that indirectly represent two operations in the
pth and qth dimension ðp – qÞ of an individual in RK virtual space.
Insertion operation is to remove the one in the pth dimension and in-
sert it into the qth dimension ðp – qÞ of an individual. In general, it is
enough to get a better solution for most problems by using these two
types of enhancement scheme. By the experimental experience, it
needs a scheme to jump away from the local optimal for some hard
problems which have higher dimensions. So, we incorporated an-
other two types of enhancement scheme to the proposed algorithm.
The inversion operation scheme is to pick two dimensions p and
q ðp – qÞ first and invert the weighting numbers between them.
a vector in RK space 1.3 0.7 2.4 1.1 3.4 5.3 

an integer series 3 1 4 2 5 6 

a permutation with job index 1 2 2 3 3 1 

an operation sequence o11 o21 o22 o31 o32 o12

Fig. 3. An example for the RK encoding scheme.
The last enhancement scheme is the long distance movement oper-
ation. At first, pick two dimensions p and q ðp – qÞ of an individual,
remove all weighting numbers between them and insert these re-
moved weighting numbers to the place where it begins at the rth
dimension ðr – p – q; r R ½p; q�Þ.

The process of multiple-type individual enhancement scheme is
to select an operation scheme from multiple-type individual
enhancement scheme, to operate on an individual, and to compare
the makespan obtained before the selected scheme and that ob-
tained after the selected scheme. If the latter is better than the for-
mer, update the real vector of the individual by the selected
operation scheme. If not, the new real vector can be accepted
and updated according to a threshold that is generated by the sim-
ulated annealing algorithm (SA). If a random probability is less
than a threshold, the new real vector can be accepted and updated;
otherwise, drop the new real vector and keep the previous real vec-
tor as a next position to proceed the local search operation. After
finishing one scheme, continue to select another scheme to operate
on the individual until it meets the stop condition.

An example is given to explain the operation scheme based on
the RK encoding scheme in Figs. 4–7. In Fig. 4, the individual (0.7,
1.3, 2.4, 1.1, 3.4, 5.3) is obtained by swapping two items located at
the second dimension and the third dimension from the individual
(0.7, 2.4, 1.3, 1.1, 3.4, 5.3). According to the RK encoding scheme,
the individual can be transformed to an operation permutation
with job indexes. Like Fig. 3, the makespan of (0.7,2.4, 1.3, 1.1,
3.4, 5.3) is 8 and that of (0.7, 1.3, 2.4, 1.1, 3.4, 5.3) is changed to
6. For the Makespan, the latter is better than the former. Hence,
after swapping, the position of this individual is updated from
(0.7,2.4, 1.3, 1.1, 3.4, 5.3) to (0.7, 1.3, 2.4, 1.1, 3.4, 5.3). In Fig. 5,
the individual (1.1, 2.3, 4.6, 3.7, 6.5, 5.1) is obtained by inserting
the item 3.7 in the first dimension to the 4th dimension in the indi-
vidual (3.7, 1.1, 2.3, 4.6, 6.5, 5.1). The makespan of (1.1, 2.3, 4.6, 3.7,
6.5, 5.1) equals to 8. The makespan of (3.7, 1.1, 2.3, 4.6, 6.5, 5.1)
equals to 6. Assume the probability exceeds the threshold evalu-
ated by SA, we drop the position (1.1, 2.3, 4.6, 3.7, 6.5, 5.1) and
keep the individual on position (3.7, 1.1, 2.3, 4.6, 6.5, 5.1). In
Fig. 6, it illustrates the inversion operation scheme. By inversing
the weighting numbers between the 3rd dimension and the 6th
dimension of the individual (1.8, 0.9, 2.7, 1.6, 5.5, 3.3), we get
the new position of this individual as (1.8, 0.9, 3.3, 5.5, 1.6, 2.7).
In Fig. 7, for the long distance movement operation scheme, the
individual (5.8, 3.2, 1.9, 0.5, 2.9, 1.4) is obtained by moving the seg-
ment between dimensions 5 and 6 in individual (1.9, 0.5, 2.9, 1.4,
individual 0.7 1.3 2.4 1.1 3.4 5.3 

integer series 1 3 4 2 5 6 

permutation with job index 2 1 2 3 3 1 

operation permutation o21 o11 o22 o31 o32 o12

Fig. 4. Swapping operation scheme, p = 2 and q = 3.



individual 3.7 1.1 2.3 4.6 6.5 5.1 

integer series 3 1 2 4 6 5 

permutation with job index 1 2 3 2 1 3 

operation permutation o11 o21 o31 o22 o12 o32

Insertion operation 

individual 1.1 2.3 4.6 3.7 6.5 5.1 

integer series 1 2 4 3 6 5 

permutation with job index 2 3 2 1 1 3 

operation permutation o21 o31 o22 o11 o12 o32

Fig. 5. Insertion operation scheme, p = 1 and q = 4.

individual 1.8 0.9 2.7 1.6 5.5 3.3 

Inversion operation 

individual 1.8 0.9 3.3 5.5 1.6 2.7 

Fig. 6. Inverse operation scheme between p = 3 and q = 6.

individual 1.9 0.5 2.9 1.4 5.8 3.2 

Long-distance movement 

individual 5.8 3.2 1.9 0.5 2.9 1.4 

Fig. 7. Long distance movement operation scheme, p = 5, q = 6 and r = 1.
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5.8, 3.2) to the first dimension of this individual. Like before, the
makespan of the new position of an individual in Figs. 6 and 7
can be evaluated as in Figs. 4 and 5.

A partial algorithm about 4 type operations is listed in Algo-
rithm 2. Probs means the probability of executing the swapping
scheme; Probi means the probability of executing the insertion
scheme; Probinv means the probability of executing the inversion
scheme; Problong means the probability of executing the long dis-
tance movement scheme, respectively.

Algorithm 2. the operation of multi-type individual enhancement

Input: p, the individual to be enhanced
Output: p0, one individual after executing multi-type

individual enhancement

1:
 q rand()

2:
 if ð0 6 q 6 ProbsÞ then execute swapping scheme for

individual p

3:
 else if ðProbs < q 6 Probs þ ProbiÞ then execute inserting

scheme for individual p

4:
 else if ðProbs þ Probi < q 6 Probs þ Probi þ ProbinvÞ then

execute inversion scheme for individual p

5:
 //Finally, (q will match with ProblongÞ
else execute long distance movement scheme for
individual p
6:
 end if
For example, suppose that Probs ¼ 0:4; Probi ¼ 0:4; Probinv ¼

0:1, and Problong ¼ 0:1, if rand() = 0.33, the individual pwill be
enhanced by swapping scheme; if rand() = 0.66, the individual p will
be enhanced by inserting scheme; if rand() = 0.88, the individual p
will be enhanced by inversion scheme; if rand() = 0.98,the individual
p will be enhanced by long distance movement scheme.

4.4. Simulated annealing

An algorithm simulates ideas and mechanism in the annealing
of solids is named simulated annealing (SA). Since its introduction
by Kirkpatrick, Gelatt and Vecchi in 1984, the simulated annealing
algorithm(SA) has been successfully applied to many combinato-
rial optimization problems (Kirkpatrick, Gelatt, & Vecchi, 1984).
The key function of SA is to allow occasional alternations to accept
worsened solutions in order to increase the probability of jumping
away from a local optimum and getting a better solution. SA algo-
rithm starts from an initial state s, the system is perturbed ran-
domly to a neighboring state s0 by applying a suitable operation
on state s. Two objective functions f ðsÞ and fðs0Þ are evaluated,
respectively. For a minimization problem, s0 is accepted as a new
state if the difference of two objective functions, D ¼ f ðs0Þ � f ðsÞ,
is < 0. If D ¼ f ðs0Þ � f ðsÞP 0, the new state s0 is accepted with prob-
ability given by min 1; exp�D

T

n o
, where T is a control parameter re-

ferred as temperature. The temperature T is defined by user, and T
is decreased iteration by iteration according to a referred cooling
schedule from high to low. The SA algorithm is executed from high
temperature until T is lower than a user-defined final temperature
Tf which is a value near to zero. By SA algorithm, we can decide
whether to accept an individual that is enhanced by Algorithm 2
but its makespan is not better than the individual not being en-
hanced by Algorithm 2 or not. For an enhanced individual that
did not make improvement for makespan, if one random probabil-
ity is smaller than min 1; exp�D

T

n o
, the individual’s position can be

accepted as a new position of the individual; otherwise, we drop
the position and keep the previous position for the individual. A
complete multi-type individual enhancement scheme based on
simulated annealing algorithm (SA) is listed in the following.

Algorithm 3. Multi-type individual enhancement scheme

Input: P, the individual to be enhanced; a starting
temperature T; a final temperature Tf ; a cooling rate b

Output: an enhanced individual

1:
 MakespanðPÞ  makespan of an operation

permutation represented by P

2:
 while (T > Tf Þ do

3:
 Randomly select an operation from the multi-type

individual enhancement scheme (MIE) by Algorithm 2,
and generate a new individual P0 by the selected
operation.
4:
 MakespanðP0Þ  makespan of an operation
permutation represented by P0
5:
 D MakespanðP0Þ – MakespanðPÞ

6:
 if ðD > 0Þ then //P0 is worse than P
// randomly generate a probability rand() to accept

the worse P’ with a probability exp�D
Tn o� �
7:
 if R ¼ randðÞ < min 1; exp�
D
T then
8:
 P  P0 //update P to be a enhanced P0
9:
 MakespanðPÞ  MakespanðP0Þ

10:
 end if

11:
 else

12:
 P  P0 // to accept a better P0
13:
 MakespanðPÞ  MakespanðP0Þ

14:
 T  b� T

15:
 end if

16:
 end while
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4.5. The MPSO algorithm
In this paper, we integrated random-key (RK) encoding scheme,
multi-type individual enhancement scheme (MIE) into particle
swarm optimization (PSO), named it as MPSO to solve the job-shop
scheduling problem. In MPSO, a particle is represented by a real
vector as shown in Fig. 2. Every particle moves its position in the
RK virtual space by Eqs. (5 and 6), and the objective function of
one particle corresponding to the solution space of JSSP can be
evaluated by the transformation from RK space to a solution space
of JSSP. For increasing the local search ability of PSO, MIE is used as
an effective way to search the local neighborhood of one particle in
the solution space of JSSP. The RK encoding scheme provides a
search space for the continuous particle swarm optimization
(PSO) and an easy way to encode the representation of PSO.
According to the RK encoding scheme, we enhance the particle
by MIE scheme that is corresponding to make a local search for
the particle. One particle is selected with a probability ProbMIE as
an individual to be enhanced in the MIE algorithm. After MIE algo-
rithm, the selected particles can be in a better position than the
previous one. Then, each particle of the swarm moves to a new po-
sition according to Eqs. (5) and (6). The process of MIE scheme and
PSO Algroithm is executed until it gets the optimal solution or the
maximum iteration number.

Algorithm 4. MPSO Algorithm

Input: ProbMIE, the probability to execute the multi-type
individual enhancement scheme; set c1; c2; x, MaxIter

Output: one best operation permutation schedule represented
by the global best
1:
 Initialize the position and velocity for all particles of a
swarm
2:
 while the stop condition(the optimal solution is found
or the maximal number of iteration is reached) is not
met do
3:
 for each particle id do

4:
 if S ¼ randðÞ 6 ProbMIE then

5:
 Execute the multi-type individual enhancement

scheme shown in Algorithm 3 for particle id

6:
 end if

7:
 Update the local best of each particle

8:
 end for

9:
 Update the global best of the swarm

10:
 Update the x according to Eq. (7)

11:
 for each particle id do

12:
 Move particleid to the next position according to

Eqs. (5 and 6) with new x

13:
 end for

14:
 end while
5. Experimental results

In this paper, we use 43 instances that are taken from the OR-
Library (Beasley, 1990) as test benchmarks to test our new pro-
posed algorithm, named MPSO. In the 43 instances, FT06, FT10,
and FT20 were designed by Fisher and Thompson (Fisher &
Thompson, 1963) and instances LA01–LA40 that were designed
by Lawerence (Lawrence, 1984). We coded the MPSO algorithm
in ANSI C language with the environment of Microsoft Visual
C++ 6.0, and simulated it with a 1.73GHz Intel Pentium M PC.
The parameters used during the experimental process in Eqs. (5
and 6) are defined in the following. C1 ¼ 2:0;C2 ¼ 2:0;x (the iner-
tia weight) is decreased linearly from ðxmaxÞ 1.4 to ðxminÞ 0.4 for a
run. The maximum of velocity Vmax is n�m� 0:1, the maximum
of position is limited at n�m, and the population size of the
swarm is set to 30. The probability to run the multi-type individ-
ual enhancement scheme (MIE) shown in Algorithm 3 during the
whole running procedure of MPSO algorithm is set to be 0.01. The
initial temperature T is set to be the difference between the
makespan of selected particle and the best known solution, Tf

is set to be 0.1, and b is set to be 0.97. Every instance is executed
by MPSO for 10 runs. Most of the 43 instances only need 300 iter-
ations in each run, but a few of them need 500 iterations in each
run.

The evaluated experimental results compared with the results
in HIA (Ge et al., 2008), HEA (Ge et al., 2007) and HGA (Goncalves
et al., 2005) are listed in Table 2. In Table 2, instance means the
problem name, size means the problem size n jobs on m machines,
BKS means the best known solution for the instance, Best means
the best solution found by each algorithm, and RD means the per-
centage of the deviation with respect to the best known solution
for MPSO and HIA algorithms, respectively. In Table 2, the boldface
represents the better solution for one instance that at least one of
the four algorithms cannot obtain the best known solution. Accord-
ing to Table 2, MPSO can find the best known solution with 35 in-
stances that is much better than HIA, HEA and HGA. For instances
LA24, LA25, LA27 to LA29 and LA36 to LA40, the deviations be-
tween the best minimum founded solution (Best) and the best
known solution (BKS) are all less than the deviation results of
HIA. Except for LA 37, MPSO can obtain better solution for in-
stances LA24, LA25, LA27 to LA29, LA36, LA38 to LA40 than HGA.
Obviously, the experimental results show that MPSO is more effi-
cient than other existing discrete particle swarm optimization
and genetic algorithms, respectively.

We use the same parameters in Eqs. (5 and 6) to test the original
PSO with random key encoding scheme and the proposed MPSO
algorithm. We select instances FT06, FT10, FT20 and the first in-
stance of other type instance set as test benchmark. Each instance
is executed for 10 runs. The original PSO is executed 105 iterations
for each run. The results are shown in Table 3. BKS and Best are the
same meaning as those in Table 2. Max means the maximum
founded solution by PSO and MPSO for 10 runs, Avg means the
average of results for 10 runs, respectively. The first fact in Table
3 shows that MIE can provide a better searching ability than the
original PSO. In general, the PSO is easy to be trapped in a local
optimal and cannot find a better solution. From the results of Table
3, MIE effectively increases the local searching ability of the origi-
nal PSO for the JSSP scheduling problems. Observing Table 3, the
difference between the MPSO’s Max and the BKS, and the differ-
ence between the MPSO’s Avg and the BKS are within 2%. This fact
shows that the solution of MPSO is quite stable.

In the above experimental results, we can see that MPSO can
obtain the optimal area in the search space with smaller popula-
tion size, and can get better solution by making use of the better
individual enhancement ability.
6. Conclusions

In this paper, an algorithm called MPSO that combining ran-
dom-key (RK) encoding scheme, multi-type individual enhance-
ment scheme (MIE), and particle swarm optimization (PSO) is
proposed to solve the NP-hard JSSP problem. For combinatorial
optimization problems such as JSSP, the search space is a discrete
space that used by HIA (Ge et al., 2008) and HEA (Ge et al.,
2007). But, MPSO adopts the real space as the search space called
random-key (RK) space. In RK space, a position of a particle com-
posed of n�m real numbers can represent the permutation of all
operations of all jobs by the encoding scheme. It is very different
to most of other proposed algorithms for solving the job shop



Table 2
Computational Results of FT and LA test instances.

Instance Size (n �m) BKS MPSO in this paper Ge et al. (2008) Ge et al. (2007) Goncalves et al. (2005)

HIA HIA HEA HGA-Param
Best RD Best RD Best Best

FT06 6 � 6 55 55 0.00 55 0.00 55 55
FT10 10 � 10 930 930 0.00 930 0.00 930 930
FT20 20 � 5 1165 1165 0.00 1165 0.00 1169 1165
LA01 10 � 5 666 666 0.00 666 0.00 666 666
LA02 10 � 5 655 655 0.00 655 0.00 655 655
LA03 10 � 5 597 597 0.00 597 0.00 597 597
LA04 10 � 5 590 590 0.00 590 0.00 590 590
LA05 10 � 5 593 593 0.00 593 0.00 593 593
LA06 15 � 5 926 926 0.00 926 0.00 926 926
LA07 15 � 5 890 890 0.00 890 0.00 890 890
LA08 15 � 5 863 863 0.00 863 0.00 863 863
LA09 15 � 5 951 951 0.00 951 0.00 951 951
LA10 15 � 5 958 958 0.00 958 0.00 958 958
LA11 20 � 5 1222 1222 0.00 1222 0.00 1222 1222
LA12 20 � 5 1039 1039 0.00 1039 0.00 1039 1039
LA13 20 � 5 1150 1150 0.00 1150 0.00 1150 1150
LA14 20 � 5 1292 1292 0.00 1292 0.00 1292 1292
LA15 20 � 5 1207 1207 0.00 1207 0.00 1207 1207
LA16 10 � 10 945 945 0.00 945 0.00 945 945
LA17 10 � 10 784 784 0.00 784 0.00 784 784
LA18 10 � 10 848 848 0.00 848 0.00 848 848
LA19 10 � 10 842 842 0.00 842 0.00 – 842
LA20 10 � 10 902 902 0.00 902 0.00 – 907
LA21 15 � 10 1046 1046 0.00 1046 0.00 1046 1046
LA22 15 � 10 927 932 0.54 932 0.54 935 935
LA23 15 � 10 1032 1032 0.00 1032 0.00 1032 1032
LA24 15 � 10 935 941 0.64 950 1.60 – 953
LA25 15 � 10 977 977 0.00 979 0.20 – 986
LA26 20 � 10 1218 1218 0.00 1218 0.00 1218 1218
LA27 20 � 10 1235 1239 0.32 1256 1.70 1272 1256
LA28 20 � 10 1216 1216 0.00 1227 0.90 1227 1232
LA29 20 � 10 1152 1173 1.82 1184 2.78 1192 1196
LA30 20 � 10 1355 1355 0.00 1355 0.00 1355 1355
LA31 30 � 10 1784 1784 0.00 1784 0.00 1784 1784
LA32 30 � 10 1850 1850 0.00 1850 0.00 1850 1850
LA33 30 � 10 1719 1719 0.00 1719 0.00 1719 1719
LA34 30 � 10 1721 1721 0.00 1721 0.00 1721 1721
LA35 30 � 10 1888 1888 0.00 1888 0.00 1888 1888
LA36 15 � 15 1268 1278 0.79 1281 1.03 1287 1279
LA37 15 � 15 1397 1411 1.00 1415 1.72 1415 1408
LA38 15 � 15 1196 1208 1.00 1213 1.42 1213 1219
LA39 15 � 15 1233 1233 0.00 1246 1.05 1245 1246
LA40 15 � 15 1222 1225 0.25 1240 1.47 1242 1241

Table 3
Computational comparison between PSO and MPSO.

Instance Size BKS PSO MPSO

Best Max Avg Best Max Avg

FT06 6� 6 55 55 59 56.1 55 55 55.0
FT10 10� 10 930 985 1084 1035.6 930 937 930.7
FT20 20� 5 1165 1208 1352 1266.9 1165 1169 1165.4
LA01 10� 5 666 666 688 668.6 666 666 666.0
LA06 15� 5 926 926 926 926.0 926 926 926.0
LA11 20� 5 1222 1222 1222 1222.0 1222 1222 1222.0
LA16 10� 10 945 956 1035 986.9 945 946 945.7
LA21 15� 10 1046 1102 1147 1128.4 1046 1058 1051.3
LA26 20� 10 1218 1263 1351 1312.6 1218 1218 1218.0
LA31 30� 10 1784 1789 1897 1830.4 1784 1784 1784.0
LA36 15� 15 1268 1373 1436 1409.2 1278 1293 1287.5
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scheduling problems and is easy to escape the limit of each type of
combinatorial optimization problems.

Many pre-proposed evolutionary algorithms for solving JSSP
need a heuristic algorithm to initialize a population in order to
speed the convergence rate. It has a drawback of increasing the
computational load. It need not use any one heuristic algorithm
in the proposed MPSO algorithm and can still achieve a better solu-
tion. MPSO is tested and approved with 43 instances that are a
standard benchmark taken from the OR-Library. According to the
experimental results, MPSO can reach the optimal area in the
search space with smaller population size and iterations than other
existing algorithms achieved. Of course, for another important
achievement, combining a multi-type individual enhancement
scheme into the PSO can achieve a superior result. For other variant
job scheduling, we believe MPSO can easily be applied to solve
these problems in the future research.
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