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This paper describes the fully-informed particle swarm optimization based economic dispatch among
hydro-thermal units and compares the results with those obtained from existing heuristic and
non-heuristic techniques. The short-term hydro-thermal scheduling is optimized using the
meta-heuristic fully-informed particle swarm optimization (FIPSO) which is a variant of the canonical
particle swarm optimization (CPSO). The FIPSO helps in finding a good approximation of an optimal solu-
tion for nonlinear multi-modal optimization problems by searching the complete search space. A global
best (g-best) neighbourhood topology is compared with a local best (l-best) neighbourhood topology to
describe the impact of particles’ neighbourhood on the convergence behaviour of the FIPSO algorithm.

A standard two-generating-unit based system has been used to demonstrate the effectiveness of the
FIPSO in economic scheduling of hydro and thermal units. The results, when compared with those from
the literature, reveal the superiority of the proposed FIPSO algorithm.

� 2015 Elsevier Ltd. All rights reserved.
Introduction

Hydro-thermal scheduling is usually accomplished using either
classical optimization or heuristic optimization algorithms [1–3].
Ref. [3] describes the conventional methods such as Langrage mul-
tiplier, dynamic programming and gradient search to solve the eco-
nomic dispatch problem. In Refs. [4,5] meta-heuristic optimization
techniques have been described to find optimal solution of an
objective function which ensures the randomness in a constructive
way. Refs. [1–6] discuss the short-term hydro-thermal scheduling
using heuristic optimization techniques like evolutionary pro-
gramming and its variants such as fast evolutionary programming
and hybrid technique, simulated annealing and parallel simulated
annealing, a diploid genetic approach and genetic algorithm, honey
bee mating optimization, particle swarm optimization, improved
particle swarm optimization, and self-organizing hierarchical
particle swarm optimization.
The particle swarm optimization (PSO) method has recently
been applied in its canonical form in many power system operation
and control applications. There exist different variants of PSO
which provide better optimization as compared to canonical form
and they have been discussed in literature. Ref. [7] presents a sur-
vey of the applications of PSO algorithms in the optimization pro-
cess of power systems. The conventional techniques fail to search
the global optimum solution of multi-model (multiple optima)
non-linear optimization problems; therefore, heuristic algorithms
have been used in power system economic dispatch problems.
Mendes and Kennedy, in Ref. [11], introduced a variant of particle
swarm optimization and called it fully-informed particle swarm
optimization (FIPSO). The FIPSO made the solution converge with
minimum computational cost as it used lesser number of particles
in search space and reduced space complexity as compared to its
canonical versions.

This paper presents the optimization of combined hydro and
thermal generating units in economic dispatch scenario using
FIPSO and presents its superiority by comparing the convergence
behaviour of cost with all other implemented techniques in litera-
ture. The paper also describes the impact of the neighbourhood
topologies on the convergence behaviour of FIPSO. The results have
been presented and compared with those from other techniques
described in Refs. [8–15].
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Fig. 1. (a) g-best and (b) l-best neighbourhood topologies [10].
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Hydrothermal scheduling problem

In the context of power system operation and control, the
short-term hydro-thermal scheduling problem is described as the
dispatch of thermal and hydro generating units in such a way that
the operating cost is minimized which is predominantly the fuel
cost of the thermal units [2,9]. In short-term scheduling usually
the scheduling period is not more than a week. The objective
function, to be minimized, is given by the following expression:

minðf Þ ¼
XN

j

njFj ð1Þ

where n is the number of hours in the jth scheduling interval which
comprises on twelve hours in our case. Fj is the operating cost of the
interval j. In hydro-generation the discharge rate of water is a major
concern as usually the main purpose is irrigation; therefore the
water discharge constraint considered is given by the following
equation:

XN

j

njDj ¼ Dtot ð2Þ

The second constraint in the present case is the balancing of power
between the load demand (Pload), losses in the system (Ploss), hydro
generation (Phydal) and thermal generation (Pthermal), which can be
expressed using the following equation:

Pload þ Ploss ¼ Phydal þ Pthermal ð3Þ

The losses in hydro generation are the function of output power;
Ploss ¼ f ðPhydalÞ while the hydro generation is the function of dis-
charge rate for the jth interval; Phydal ¼ f ðDjÞ. The discharge rate,
thermal power and hydro power must follow the following inequal-
ity constraints in the economic dispatch of a power system:

Dmin < Dj < Dmax ðWater discharge limitsÞ
Pthermal;min < Pthermal;j < Pthermal;max ðThermal generation limitsÞ
Phydal;min < Phydal;j < Phydal;max ðHydro generation limitsÞ

8><
>:

ð4Þ

The volume of water (Vj) in a reservoir, in interval j, is the function
of the inflow rate (Rj), discharge rate (Dj) and spillage rate (Sj) in the
interval j as follows [2]:

Vj ¼ Vj�1 þ njðRj � Dj � SjÞ ð5Þ

The following volume constraint must also be fulfilled in selected
economic dispatch:

Vmin < Vj < Vmax ð6Þ

The primary objective is to minimize the production cost of
hydro-thermal energy along with fulfilling the hydro and thermal
units’ constraints described above.

The problem considered in this paper has an equivalent thermal
units’ cost equation and a single or a non-cascaded hydro unit’s
power equation.

Optimization methodology: fully-informed particle swarm
optimization

The fully-informed particle swarm optimization has been
selected to implement the economic dispatch with constraints
defined in the previous section. Two neighbourhood topologies,
i.e. the g-best topology and the l-best topology have been used. In
FIPSO each particle is influenced by all its neighbours; therefore,
it has more chances of traversing the complete search space which
potentially has the global optimum as compared to canonical PSO
in which each particle is influenced by the best neighbour and its
own best position in the search space. This new extension in the
canonical PSO was introduced by Kennedy along with Mendes
and Neves in Refs. [10,11] explaining that reaching towards the
optima in PSO is not that effective as it can be with FIPSO. The
canonical PSO iterations are proceeded as:

#jþ1
i ¼ R # j

i þ Rand 0; /
2

� �
� P j

i � X j
i

� �
þ Rand 0; /

2

� �
� P j

g � X j
i

� �� �
Xjþ1

i ¼ X j
i þ #

jþ1
i

8<
:

ð7Þ

where #jþ1
i is the ith velocity vector at iteration j + 1 and R is the

restriction coefficient which is originally considered to vary linearly
from 0.3 to �0.2 as was reported in Ref. [16]. R is sometimes also
known as inertia weight and its suitable selection helps the algo-
rithm to reach to the solution in lesser number of iterations and it
also helps to enhance the convergence behaviour of an algorithm.
Usually its value, in each iteration, varies using the following
formula:

R ¼ Rmax �
ðRmax � RminÞ
iterationmax

� iteration ð8Þ

P j
i is the best position found by the particle i till the jth iteration

while X j
i is the present position of the particle i at the jth iteration,

P j
g is the best neighbour of X j

i at the jth iteration with minimum
value of objective function. / is the acceleration coefficient and it
controls the convergence of particles: usually its value is taken
equal to 4.1 [11]. The modified version of Eq. (7) that was used to
optimize the objective function in FIPSO is as follows:

#jþ1
i ¼ R # j

i þ
PNi

n¼1
Randð0;/Þ� P j

nbrðnÞ�X j
i

� �
Ni

0
@

1
A

Xjþ1
i ¼ X j

i þ #
jþ1
i

8>>><
>>>:

ð9Þ

where P j
nbrðnÞ is the best position found by nth neighbour of particle i

till the jth iteration. By fully informed, it is meant that for each of
the iteration j, every particle has the following information:
� Its own position Xi at the end of each of the iteration j.
� The local best of each of its neighbour [11].

Therefore, it is now possible for each of the particles to traverse
the search space while getting an influence from all of the best pos-
sible positions found so far by each of its neighbour and this is per-
formed by every individual particle at the end of every iteration j.

Impact of neighbourhood topologies

Since its birth in 1995 the particle swarm optimization has been
modified in many ways. One of the dimensions of these
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modifications is the working on the neighbourhood topologies.
Two types of neighbourhoods, g-best topology and l-best or ring
topology are used. The architecture of swarm particle distribution
is shown in Fig. 1 for local and global best topology.

� g-best topology: It is the one in which the particles are gener-
ated randomly and the iterations proceed by getting influence
of the global best among all the neighbours. It is described
mathematically by Eq. (9).
� l-best topology: In this topology, the particles are so generated

that they form the shape of a ring and thus each particle has two
immediate neighbours. As a result each particle is influenced by
just two neighbours and iterations proceed by following the
global better of the two neighbours per particle per iteration.
According to Ref. [10], it can be implemented by considering
an array of particles while each particle’s previous and next
entry are the neighbours of that particle. It is mathematically

represented by Eq. (10). Here, L j
nbrðnÞ represents the nth neigh-

bour of every particle Xi in a neighbourhood at iteration j.
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Fig. 2. Flow chart of the proposed method.
FIPSO for short-term hydro-thermal scheduling

In the FIPSO implementation of short-term hydro-thermal
scheduling problem, there are four candidates for being the parti-
cles. The selected particle of interest is considered to be an inde-
pendent variable and the other three candidates are considered
dependent on particle of interest. These candidates are volume of
water in the reservoir, the generated thermal power, the generated
hydro power and the water discharge rate. According to Ref. [1],
the volume of water being particle can help in searching the com-
plete search space of the objective function. We have thus selected
the volume of water in the reservoir as the particle of interest and
the other variables such as discharge rate, thermal power and
hydro power are taken as dependent variables. The FIPSO based
algorithm implemented on short-term hydro-thermal scheduling
problem has the following flow strategy:

1. Initialize the particle vector randomly, i.e. the volume of water
in the reservoir within the specified limits for each of the six
scheduling periods.

2. Initialize the velocity vectors randomly. The velocity is defined
within the maximum and minimum limits as:

#max ¼ Xmax�Xmin
no: of iterations

#min ¼ �ð#maxÞ

(
ð11Þ

3. Initialize randomly the vectors of local best for each of the par-
ticles within the reservoir volume limits.

4. Produce the corresponding vectors of hydro-power, thermal
power, discharge rate, individual cost and minimum cost.

5. If the constraints for hydro and/or thermal powers, as given in
the problem statement, are violated, set the particles within
the limits.

6. For each of the iterations, find the fitness (objective) function
using the particles, as well as the local bests. Compare the
two results to update the vectors of local bests, i.e. Pnbr(n).

7. Update the particles’ locations using the FIPSO velocity defined
by Eq. (9).
 



Table 1
Loading outline.

Days Hours Power (MW)

1 First 12 h 1200
Second 12 h 1500

2 First 12 h 1100
Second 12 h 1800

3 First 12 h 950
Second 12 h 1300
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8. Repeat from step 4 until the stopping criterion is reached which
is the number of iterations in this implementation.

9. Extract the particle results for economic scheduling.

The process flow is shown in the form of a flow chart in Fig. 2.
System of interest

The selected system of study is explained in this section to solve
the short-term hydro-thermal scheduling problem using FIPSO.
The results of the optimization will be discussed in the next section
and compared with those from the existing techniques. Because
this paper makes a comparison of the FIPSO implementation on
the short-term hydro-thermal scheduling problem with previously
implemented heuristic algorithms, the system of interest taken is
the same as tested upon in Refs. [1–3,12–15]. All the experimental
Fig. 3. Convergence behaviour with g-best neighbourho
conditions are same as used in those references and the corre-
sponding hydro-thermal system is described below.

Corresponding thermal system:

H ¼ 500þ 8ðPthermalÞ þ 0:0016ðPthermalÞ2ðMBTU=hÞ
Fuel Cost ¼ 1:15ð$=MBTUÞ
150 MW < ðPthermalÞ < 1500 MW

8><
>: ð12Þ

Hydro plant:

D¼
330þ4:97ðPhydalÞðacre� ft=hÞ 0 MW6 Phydal 6 1000 MW

5300þ 12ðPhydal � 1000Þ þ 0:05ðPhydal � 1000Þ2 1000 MW6 Phydal 6 1100 MW

(

ð13Þ

Loading outline:
The loading outline for the six intervals of 12 h is given in

Table 1.
Water-Reservoir Constraints:
The reservoir has the volume of 100,000 acre-ft at the start

while 60,000 acre-ft at the end of the plan while the reservoir vol-
ume constraint for the selected problem is:

60;000ðacre-ftÞ 6 V 6 120;000ðacre-ftÞ ð14Þ

Unceasing inflow into the reservoir is of 2000 acre-ft/h over the
whole time schedule. Eq. (5), already described, gives the continuity
equation; however, the spillage is considered equal to zero.

 

od topology with (a) 8, (b) 50 and (c) 100 particles.
 



Fig. 4. Convergence behaviour with l-best neighbourhood topology with (a) 8, (b) 50 and (c) 100 particles.
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Fig. 5. Statistical representation of 100 independent trials with g-best neighbourhood topology with (a) 8, (b) 50 and (c) 100 particles.
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Results and discussions

According to Refs. [10,11], the FIPSO algorithm requires a lesser
number of particles as compared to the canonical version of PSO
for the same performance; therefore, eight (8) particles have been
used. 1000 iterations have been performed to learn the
convergence behaviour of the algorithm. The FIPSO programs were
developed and run in the MATLAB 2012 a environment.

The two forms of PSO had been implemented earlier on the
same short-term hydro-thermal scheduling problem as reported

 



Table 2
Results of best solution of short-term hydro-thermal scheduling using FIPSO method
with 8, 50, 100 particles using g-best.

Interval Thermal
power
(MW)

Hydro
power
(MW)

Volume
of water
(acre-ft)

Discharge
rate
(acre-ft/h)

Total cost of
operation
($)

1 864.0 336.0 100,000 2000.0 623,550
2 497.3 1002.7 60,000 5333.3
3 1100 0 100,000 0
4 797.3 1002.7 60,000 5333.3
5 950.0 0 100,000 0
6 297.3 1002.7 60,000 5333.3
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Fig. 6. Statistical representation of 100 independent trials with l-best neighbourhood topology with (a) 8, (b) 50 and (c) 100 particles.

Fig. 7. Convergence characteristics of the CPSO taken from Ref. [1].

Fig. 8. Convergence characteristics of Improved PSO taken from Ref. [3].
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in Refs. [1,3]. Table 3 shows the comparison of the results between
the present work done using FIPSO and those reported in Refs.
[1,3]. It is quite clear, from the results, that the proposed FIPSO
method has outperformed the two previous works and a signifi-
cant savings is made in comparison to the techniques reported in
Refs. [1,3].

Comparing the FIPSO implementation on this two generators
problem with the implementations of CPSO reported in Refs.
[1,3], one drawback has also been observed. Though FIPSO is able
to reach closer to the global optimum solution, yet owing to its
fully-informed nature it converges to the global optimum at a
slower rate. Figs. 7 and 8, taken from Refs. [1,3] respectively, when
compared with Figs. 3 and 4 clearly illustrate this fact. In the CPSO
the solution converged in around the 20th iteration while the
FIPSO reached its best solution around the 100th iteration. This
can be considered as a drawback in the efficiency of FIPSO in such
implementations. However, the minimum solution obtained using
FIPSO is far better than the other two forms of CPSO as presented in
Refs. [1,3]. It can also be inferred that the different variants of PSO
are far more superior in finding the near global optimal solution of
short-term hydro-thermal scheduling problems as compared to
the other heuristic and non-heuristic algorithms.
Both the g-best and l-best topologies are implemented to inves-
tigate the performance of the FIPSO for economic dispatch. Table 2
shows the best achieved result of the selected problem with g-best

 



Table 3
Comparison among the proposed algorithm and the previously implemented two
forms of PSO.

Works (existing implementations) Minimum cost ($)

Samudai et al. [1] 693428.5
Padamini et al. [3] 693426.2
Proposed FIPSO method 623550.0

Table 4
Results of best solution of short-term hydro-thermal scheduling using FIPSO method
with 8, 50 and 100 particles using l-best neighbourhood.

Interval Thermal
power
(MW)

Hydro
power
(MW)

Volume
of water
(acre-ft)

Discharge
rate
(acre-ft/h)

Total cost of
operation
($)

1 864.0 336.0 100,000 2000.0 624650.0
2 500.0 1000.0 60,000 5333.3
3 1100 0 100,000 0
4 800.0 1000.0 60,000 5333.3
5 950.0 0 100,000 0
6 300.0 1000.0 60,000 5333.3

Table 5
Comparison of result of proposed method with results of previously done works.

Number Researcher Algorithm Minimum
cost ($)

1 Wood and
Wollenberg [2]

Gradient search 709877.38

2 Sinha et al. [12] Fast evolutionary
programming

709862.05

3 Wong and Wong
[13]

Simulated annealing 709874.36

4 Sinha et al. [14] GAF 709863.70
5 Sinha et al. [14] CEP 709862.65
6 Sinha et al. [14] FEP 709864.59
7 Sinha et al. [14] Particle swarm optimization 709862.048
8 Suman et al. [15] Hybrid evolutionary

programming
703180.26

9 Samudi et al. [1] Particle swarm optimization 693428.4
10 Padamini et al. [3] Improved particle swarm

optimization
693426.2

11 This paper FIPSO 623550.0

Table 6
Results of CPSO given in Ref. [1].

Interval Thermal
power
(MW)

Hydro
power
(MW)

Volume of
water
(acre-ft)

Discharge
rate
(acre-ft/h)

Total cost of
operation
($)

1 812.5404 387.4596 96931.91 2255.674 693428.5
2 801.5828 698.4172 75318.31 3801.133
3 1100 0 99318.31 0
4 804.7232 995.2768 60,000 5276.526
5 950.0 0 84,000 0
6 561.5694 738.4306 60,000 4000

Table 7
Results of improved PSO as given in Ref. [3].

Interval Thermal
power
(MW)

Hydro
power
(MW)

Volume
of water
(acre-ft)

Discharge
rate
(acre-ft/h)

Total cost of
operation
($)

1 812.54 387.45 96931.91 2255.674 693426.2
2 801.58 698.41 75318.31 3801.133
3 1100 0 99314.31 0
4 804.72 995.27 59996.04 5276.52
5 950.0 0 83996.04 0
6 561.56 738.43 59996.04 4000
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topology and Table 4 presents the best achieved result of the
selected problem when l-best topology of neighbourhood is consid-
ered. It should be noticed that the final value of the cost function
obtained while implementing FIPSO with 8, 50 and 100 particles
are the same and also the scheduling of the six intervals are same
for g-best topology. Therefore, the results are presented in a single
table. Same is the case with the three implementations of 8, 50 and
100 particles when l-best topology was used. However, it can be
observed from the results of Tables 2 and 4 that with g-best
implementations, the objective function is even more minimized
as compared with the l-best implementation. Therefore, g-best
topology is superior as compared to l-best neighbourhood topology
for these types of optimization problems. Fig. 3 shows the conver-
gence behaviour of the cost function for 1000 iterations with g-best
topology with 8, 50 and 100 swarm particles respectively. Fig. 4
shows the convergence behaviour of the cost function for 1000
iterations with l-best topology with 8, 50 and 100 swarm particles
respectively.

To study the results of two neighbourhoods statistically, the bar
graphs of results for both the neighbourhoods with 8, 50 and 100
particles have been shown in Figs. 5 and 6. Each performance is
made for 100 times independently and the bar graphs are obtained
with both the topologies. Clearly it is observed that g-best topology
has performed better as compared with the l-best topology. With
g-best topology, the best possible minimum cost solution is
achieved though with 8 particles: the approximations are most
of the times near to the best solution, but with larger number of
particles, it reaches the best solution all the times. However, it
can also be observed that the l-best topology with FIPSO also per-
forms well to direct to a good approximation to the minimum
solution.

Comparison with other algorithms

The short-term hydro-thermal scheduling has been a very
famous problem in the domain of power systems operation and
control: different algorithms have been proposed to find a better
result for the problem. Table 5 shows the comparison of the results
obtained using the proposed FIPSO algorithm with those from the
algorithms reported in Refs. [1–3,12–15] for the selected set of
problem. It is clear that the proposed FIPSO method produces
excellent results in minimizing the objective function (see Tables
6 and 7).
Future work

After finding such good results with the proposed FIPSO imple-
mentation on the non-cascaded short-term hydro-thermal
scheduling problem, it can be suggested that the algorithm be
implemented on a cascaded short-term hydro-thermal scheduling
problem. Moreover, long-term hydro-thermal scheduling problems
can also be addressed using the swarm intelligence. All the
multi-modal, non-linear optimization problems can be solved
using the heuristic swarm intelligence algorithms. The FIPSO has
performed well using its g-best and l-best neighbourhood topolo-
gies. There are many neighbourhood topologies upon which a sig-
nificant work can be done using the FIPSO algorithm to observe the
convergence trends of such optimization problems.
Conclusions

The paper presents the comparison of the results obtained
using different algorithms of optimization with those of the
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fully-informed particle swarm optimization for a two-
generating-unit based economic dispatch of a power system. It has
been observed that the FIPSO is an excellent optimization algorithm
as it gives a good approximation to the minimum solution. The two
neighbourhood topologies, g-best and l-best, have been imple-
mented to investigate the performance of the FIPSO and it has been
observed that the g-best outperforms as compared to the l-best
topology in economic dispatch. The results in terms of cost have
been compared with those from CPSO and its different variants for
the selected problem. Due to the meta-heuristic nature of the
FIPSO algorithm, statistical analysis has also been performed for
the run of 1000 iterations considering different number of swarm
particles. It has been observed that the FIPSO algorithm is a good
variant of CPSO: owing to its capability of traversing the complete
search space due to its fully-informed character it helps in finding
a near approximation to the global optimum solution. However, it
must be said that the FIPSO has one drawback compared to the other
forms of CPSO: it has a slow convergence rate.
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