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The paper presents application of data mining methods for recognizing the most significant genes and
gene sequences (treated as features) stored in a dataset of gene expression microarray. The investigations
are performed for autism data. Few chosen methods of feature selection have been applied and their
results integrated in the final outcome. In this way we find the contents of small set of the most impor-
tant genes associated with autism. They have been applied in the classification procedure aimed on rec-
ognition of autism from reference group members. The results of numerical experiments concerning
selection of the most important genes and classification of the cases on the basis of the selected genes
will be discussed. The main contribution of the paper is in developing the fusion system of the results
of many selection approaches into the final set, most closely associated with autism. We have also pro-
posed special procedure of estimating the number of highest rank genes used in classification procedure.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Gene microarray technology is a sophisticated technique used
in molecular biology for detecting alterations in the expression of
thousands of genes simultaneously between different biological
conditions (De Rinaldis, 2007). The analysis of the expression levels
allows to detect altered gene expression of particular genes in a
given disease when compared to healthy controls. From the
practical point of view biologists need to identify only a small
number of the most significant genes that can be used as biomark-
ers in the disease tracing. The most relevant genes increase our
understanding of the mechanism of disease formation and allow
to predict the potential danger of being affected by such disease.

The main problem in this analysis is a limited number of obser-
vations related to very large number of gene expressions. Number
of observations is usually in the range of hundreds and number of
genes tens of thousands. Because of the large imbalance of the
number of genes and observations (patients) the selection is an
ill conditioned problem. Moreover, data stored in medical
databases are typically noisy and some gene sequences have large
variance (Alter et al., 2011). It makes the gene selection in DNA
microarrays even more difficult task.
Progress in bioengineering and data mining, which has been
observed in recent years, has created the solid foundations for dis-
covering the genes which are the best associated with the particu-
lar disease. Data analysis of microarrays is widely examined and
introduced in literature starting with pioneering Golub investiga-
tion in 1999 (Golub et al., 1999).

Actual approaches performing this task include different clus-
tering methods (Eisen, Spellman, & Brown, 1998), application of
neural networks and Support Vector Machines (Alonso-González
& Moro-Sancho, 2012; Guyon, Weston, Barnhill, & Vapnik, 2002;
Wilinski & Osowski, 2012), statistical tests (Baldi & Long, 2001),
linear regression methods applying forward and backward selec-
tion (Huang & Pan, 2003), fuzzy expert system based algorithms
(Kumar, Victoire, Renukadevi, & Devaraj, 2012; Woolf & Wang,
2000), rough set theory (Wang & Gotoh, 2010), use of chaotic bin-
ary particle swarm optimization (Chuang, Yang, Wu, & Yang 2011),
application of ReliefF method combined with different classifiers
(Alonso-González & Moro-Sancho, 2012), various statistical meth-
ods (Golub et al., 1999; Mitsubayashi, Aso, Nagashima, & Okada,
2008), as well as fusion of many selection methods (Wilinski &
Osowski, 2012; Yang, 2011). Most of the papers studied particular
methods and then selected the best one as the most appropriate for
the gene selection task, neglecting the others.

Although the progress in this field is high, there is still a need
for better understanding and improvement of the research, espe-
cially in the medical area not well covered in recent research. To
such examples belong autism data (Alter et al., 2011; Esteban &
Wall, 2011; Hu & Yinglei, 2013). These data belong to the most
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demanding, because of very large variability of gene expression
values representing the same class of data (Alter et al., 2011).
The large variance in the distribution of gene expression levels is
associated with many types of symptomatic profiles of autism rep-
resented in the base. Therefore, the application of standard meth-
ods, which serve very well in recognition of other cases, for
example different types of cancer, does not lead to the acceptable
results for autism.

Autism is a neurodevelopmental disorder that impairs the nor-
mal development of emotional interactions and other forms of
social communication (Yang & Gill, 2007). Genetic approaches to
autism study aim to identify risk variance at specific genes and
in this way to find association of their expression level with the
disease. There is a general idea that alterations at the level of gene
expression might be important sign in mediating the risk for
autism.

This paper is devoted to the task of selection of the genes and
gene sequences which are the most closely associated with the dis-
ease. The selected genes of the particular expression levels form
the most characteristic pattern for the autism. Applying a classifier
to such chosen data, should lead to the improved accuracy of the
recognition between autism and reference (healthy) cases. These
two tasks (gene selection and classification problem) will be con-
sidered in the paper.

In the numerical experiments we will analyze different gene
ranking methods. It is known that different selection algorithms
may provide differing results for the same datasets (Wilinski &
Osowski, 2012). The results of individual selection methods will
be fused and lead to the final set of genes. The application of sev-
eral methods gives opportunity to look on the selection problem
from different points of view. After fusing their results the proba-
bility of proper selection of the most important genes is increased.
The results of numerical experiments concerning selection of the
most important genes in autism as well as classification of cases
on the basis of the selected genes will be discussed.

The other contribution of the paper is developing the fusion sys-
tem of the results of many selection approaches into the final set,
most closely associated with the disease. This is in contrast to
the majority of papers, where different methods have been tried,
but only one (the best) was treated as the final solution. We have
also proposed special procedure of estimating the number of
higher rank genes using the self-organization procedure. In the
task of classification we have implemented the ensemble of classi-
fiers integrated into the final system, which is responsible for rec-
ognition of autism from the reference cases. The trained classifier
system may then be used to predict the autism or non-autism class
of the newly acquired data.

2. Applied feature selection methods

Feature selection is the most important operation in processing
the data stored in gene microarrays. The application of feature
selection methods allows to identify a small number of important
genes that can be used as biomarkers of the appropriate disease. In
this paper some chosen feature selection methods will be exam-
ined and integrated into the final system. Using the set of methods
instead of single one will increase the probability of finding the
globally optimal set of genes which are the best associated with
the particular disease.

The paper will apply the following methods: Fisher discrimi-
nant analysis, ReliefF algorithm, two sample t-test, Kolmogorov–
Smirnov test, Kruskal–Wallis test, stepwise regression method,
feature correlation with a class and SVM recursive feature elimina-
tion. These methods rely their operation principle on different
foundations and thank to this allow to look on the selection prob-
lem from different points of view.
2.1. Fisher discriminant analysis

In Fisher discriminant analysis the greatest weight is assigned
to feature which is characterized by a large difference of the mean
values in two studied classes and a small value of standard devia-
tions within each class. The two class discrimination measure of
the feature f is defined in the form (Duda, Hart, & Stork, 2003;
Guyon & Elisseeff, 2003):

S12ðf Þ ¼
jc1 � c2j
r1 þ r2

ð1Þ

where c1 and c2 represent the mean values for classes 1 and 2,
respectively, while r1 and r2 are the appropriate standard devia-
tions. A large value of S12(f) indicates good class discriminative abil-
ity of the feature.

2.2. ReliefF algorithm

The ReliefF algorithm ranks the features according to its the
highest correlation with the observed class while taking into
account the distances between opposite classes (Robnik-Sikonja
& Kononenko, 2003). The main idea of the ReliefF algorithm is to
estimate the quality of the features according to how well their
values distinguish between observations that are near to each
other. ReliefF selects randomly an instance Ri of observation and
then searches for k of its nearest neighbors from the same class,
called nearest hits Hj and also k nearest neighbors from each of
the different classes, called nearest misses Mj(C). It updates the
quality estimation W(A) for all attributes A depending on their val-
ues for Ri, hits Hj and misses Mj(C). If instances Ri and Hj have dif-
ferent values of the attribute A then the attribute A separates two
instances with the same class which is not desirable. So the quality
estimation W(A) is decreased. If instances Ri and Mj have different
values of the attribute A then this attribute separates two instances
of different class values which is desirable. So the quality estima-
tion W(A) is increased. The algorithm averages the contribution
of all hits and misses. The detailed description of the procedure
can be found in Robnik-Sikonja and Kononenko (2003).

2.3. Two-sample t-test

The next used selection method is a two-sample Student t-test.
One explicit assumption of t-test is that each of two compared pop-
ulations of genes (autism and controls) should follow a normal dis-
tribution. Checking the condition of normality distribution of genes
in our data base we found that in about 80% cases it was fulfilled.
The null hypothesis of t-test is that data in the class 1 and 2 are
independent random samples of normal distributions with equal
means and equal but unknown variances against the alternative
hypothesis that the means are not equal. The test statistic is formu-
lated in the form

t ¼ c1 � c2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

1
n þ

r2
2

m

q ð2Þ

where and n and m represent the sample sizes of both classes
(Sprent & Smeeton, 2007).

Two sample t-test is implemented in MATLAB as ttest2 function
(Matlab user manual – statistics toolbox, 2013). The test result
returns h, which is equal 1 or 0. The value of 1 indicates a rejection
of the null hypothesis at the 5% significance level, while h = 0
indicates a failure to reject the null hypothesis at the same signif-
icance level. The function returns also the p-value of the test. Low
value of p indicates that the compared populations are significantly
different.
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2.4. Kolmogorov–Smirnov test

The other statistical feature selection method applied in the
research was the Kolmogorov–Smirnov (KS) test. It compares the
medians of the groups of data to determine if the samples come
from the same population (Sprent & Smeeton, 2007). The null
hypothesis is that both classes are drawn from the same continu-
ous distribution. The alternative hypothesis is that they are drawn
from different distributions. The KS test statistic is based on the
relation

KS ¼maxðjF1ðxÞ � F2ðxÞjÞ ð3Þ

where F1(x) and F2(x) are the cumulative distribution of samples of
feature f belonging to class 1 and 2. High value of this coefficient
indicates that the feature has good class discriminative ability. On
the other hand, a small value of this factor indicates that feature
should be rejected at the selection stage. Fig. 1 illustrates the results
of KS test for two types of genes: the significant one and the ran-
domly chosen, assessed as a non-significant.

In the case of significant gene (Fig. 1(a)) the p value was equal
0.0039 and KS = 0.2881. In the case of not significant gene we got
p = 0.3374 and KS = 0.1536.
2.5. Kruskal–Wallis test

In this method medians of the samples are compared, but test
uses ranks of the data rather than the numeric values (Sprent &
Smeeton, 2007). It finds ranks by ordering the data from the small-
est to the largest across all groups and taking the numeric index of
this ordering. The Kruskal–Wallis test does not make any assump-
tions about normality. It returns the p value for the null hypothesis
that all samples are drawn from the same population.
2.6. Stepwise regression method

Stepwise regression is a systematic method for adding and
removing features to the set of input attributes based on their
statistical significance in a regression. The method begins with
an initial model and then compares the explanatory power of
incrementally larger and smaller models. At each step, the p value
of F-statistics (Sprent & Smeeton, 2007) is computed to test models
with and without selected feature. Based on the statistic result
algorithm makes a decision whether feature should be included
in a model or not. If a feature is not currently in the model, the null
hypothesis is that the term would have a zero coefficient if added
to the model. If there is sufficient evidence to reject the null
hypothesis, the feature is added to the model. Conversely, if a fea-
ture is currently in the model, the null hypothesis is that the term
has a zero coefficient. If there is insufficient evidence to reject the
null hypothesis the term is removed from the model.
Fig. 1. The cumulative distribution functions for two classes (autism and controls) for the
Presented method may build different sets of features, depend-
ing on the initial model and order of adding and removing features
from the set of attributes. Considering that outcomes may not be
reproducible the stepwise regression method provides locally opti-
mal result.

2.7. Feature correlation with class

In this method, the direct correlation of the feature values with
a class is examined. The discriminative value S(f) of the feature f for
recognizing one class from the other K classes is defined as follows
(Guyon & Elisseeff, 2003; Wilinski & Osowski, 2012):

Sðf Þ ¼
PK

k¼1Pkðck � cÞ2

r2ðf Þ
PK

k¼1Pkð1� PkÞ
ð4Þ

where c is a mean value of feature for all data, ck is a mean value of
the feature for the kth class data, r2(f) is a variance of feature, Pk is a
probability of kth class occurrence in dataset (the uniform distribu-
tion is usually assumed). The large value of S(f) indicates good dis-
criminative ability of feature f for recognition of the particular class
from the other K classes. In this paper the number of classes is K = 2.

2.8. SVM recursive feature elimination

SVM network can be configured for solving selection problem in
the form of recursive feature elimination (SVM-RFE) (Guyon et al.,
2002). In this approach SVM network with linear kernel is used.
Network is learned applying all available features used simulta-
neously as an input attributes. The sign function is added for
matching the input values to the appropriate class label. The out-
put y at presentation of the features organized in the form of vector
f is defined by the following equation

yðf Þ ¼ sgnðuÞ ¼ sgnðwT f þ bÞ ð5Þ

where w = [w1, w2, ... ,wn]T is the weight vector, f = [f1, f2, ... , fn]T is a
vector of features and b is a bias. Large absolute value of weight
connecting feature f with the network denotes strong ability of this
feature to distinguish two classes.

In SVM-RFE approach to feature selection, the features are elim-
inated step by step according to the assumed criterion related to
their support in the discrimination of the classes. The SVM is re-
trained using smaller and smaller population of features. In each
step the features associated with the smallest absolute weights
are eliminated. In this approach we eliminate 20% of the actual
number of genes. The process is repeated until the appropriate
number of the most important features is obtained.

2.9. Fusion of selection methods

The results of the separate selection processes are combined
together to perform the second step of selection, which lead to
significant gene (a) and for the not significant gene (b) in Kolmogorov–Smirnov test.



Table 1
The redundancy rate achieved by different algorithms among the top 100 genes
selected by different methods.

FDA RFA TT KST KWT SWR COR SVM

FDA 100 9 17 10 12 3 17 1
RFA 9 100 44 34 45 4 44 1
TT 17 44 100 31 63 2 100 1
KST 10 34 31 100 45 1 31 1
KWT 12 45 63 45 100 1 63 1
SWR 3 4 2 1 1 100 2 1
COR 17 44 100 31 63 2 100 1
SVM 1 1 1 1 1 1 1 100
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the final quasi optimal ranking of genes. We expect the genes of
two classes be located in two clusters (the autism class and
reference class), each gathering the cases similar to each other.
The cluster purity with respect to the class membership, ana-
lyzed at different size of the best gene subsets, should indicate
the optimal, representative number of genes for recognition of
autism.

The results of a single analysis are not representative for the
problem, because of small population of available data. To get reli-
able results of selection the individual methods will be repeated
many times on a randomly chosen samples of the original data
set. In our experiments we have performed each selection method
10 times by using 60% of the randomly selected rows of the data
set. In each run we observe the position of particular gene among
the others. The final position of the gene depends on the sum of its
positions in all runs. We assign the global weight w(f) to each gene.
The following formula has been used

wðf Þ ¼
XK

i¼1

XNr

j¼1

wijðf Þ ð6Þ

The index K is the number of applied selection methods (K = 8 in
this research), Nr – the number of repeated runs of selection, wij is
the position of genes in ith method of selection and jth run. The
genes are arranged according to the decreasing values of the global
weight. The best gene is the one of the smallest value.

3. Numerical results of gene selection

3.1. Materials

The numerical experiments of gene selection have been done
using the dataset related to the autism. The database is publicly
available and was downloaded from GEO (NCBI) repository (NCBI
data base, 2011). Number of observations in this dataset equals
146 and number of genes 54,613. The database consists of two
classes: the first one is related to children with autism (number
of such observations n = 82) and the second to the control group
of healthy children (n = 64). Blood draws for all subjects were done
between the spring and summer of 2004. Total RNA was extracted
for microarray experiments with Affymetrix Human U133 Plus 2.0
39 Expression Arrays. Our main task is to find a small subset of
genes with good class discriminative abilities. This problem is
resolved by using several gene selection methods combined into
one final system.

3.2. The main stages of experiments

This section describes the numerical experiments of gene selec-
tion for the autism data. We will present the results concerning the
selection, clusterization and PCA transformation. In the introduc-
tory phase of experiments we have excluded the genes of very sim-
ilar values of expression means for both classes. The features, for
which the ratio of the means in both classes was above 0.98, were
removed from the base. In this way the number of genes was
reduced from 54,613 to 16,230.

In the next stage eight feature selection methods were applied
to discover the importance of the genes and their order. The selec-
tion procedure has been repeated 10 times on randomly selected
60% of the available observations. The positions of each gene was
noted in each run and then summed up. On this basis the genes
have been arranged in a sequence starting from the best to the
least significant. In the following stage the most significant genes
have been fused into one common set of the reduced dimension.
To find the optimal population size of the most significant genes
we have applied the cluster purity. The final outcome of the
clusterization will be illustrated and examined using PCA transfor-
mation (Haykin, 2000).

3.3. Comparative results of selection methods

Feature selection methods described in the previous sections
have been applied to get the order of genes, sorted in a decreasing
fashion. The following abbreviations are applied: FDA – the Fisher
discriminant analysis, RFA – the ReliefF algorithm, TT – the two-
sample t-test, KST – the Kolmogorov–Smirnov test, KWT – the
Kruskal–Wallis test, SWR – the stepwise regression method, COR –
the feature correlation with a class, SVM – the SVM-RFE method.

We compare the selection results on the basis of 100 the most
relevant genes chosen in each method. As was expected the meth-
ods have selected different contents of the best genes. Table 1
shows how many identical genes among the first 100 of the most
important have been selected by different methods.

The contents of the best selected sets differ from method to
method. Analyzing them we found that few methods identified
a large percentage of the same genes. For example the correla-
tion feature with a class and t-test produced exactly the same
sets of genes. Kruskal–Wallis test has found 63% of genes which
were identical with the COR and TT tests. On the other hand
some of the methods have resulted in very different sets, i.e.,
stepwise regression and hypothesis test outcomes are overlap-
ping only in 1% or 2%. Very low is the agreement of SVM-RFE
results and all other methods (only one common gene among
the first 100).

The quality of the selection processes has been checked by
analyzing the expression profiles of the best identified genes for
the opposite classes. Fig. 2 illustrates the exemplary expression
levels of the patients for the most important gene selected by
the Fisher and SVM-RFE methods. As we can see in both cases
the mean value of the observations belonging to the autism class
differs significantly from the reference class. At the same time we
observe large variability of the gene expressions for the subse-
quent observations.

In the case of the Fisher method (Fig. 2(a)) we got the mean
equal 232.41 ± 140.38 (autism) and 144.59 ± 97.81 (control group).
The difference of the mean values is 87.82. For the best gene in
SVM-RFE method (Fig. 2(b)) we got 390.06 ± 128.21 (autism) and
342.23 ± 67.36 (control group). The difference of the mean values
in this case is 47.83. For comparison, the differences measured
for the least significant gene were equal 1.20 in Fisher and 0.89
in SVM-RFE method.

The next step is fusing the results of the individual methods
into one common outcome. To find the best genes which are the
most representative for all analyzed methods we have assigned
the global weight w(f) to each gene according to the formula (6).
Analyzing the contents of all sets selected by different methods
we have found 501 different genes among the first 100 selected
in each method.



Fig. 2. Expression levels for the best genes selected by: (a) Fisher method, (b) the SVM-RFE method.

Fig. 3. Total purity index of clustered space versus number of the most significant
genes.
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3.4. Clusterization of gene space

Good way for assessing the quality of the selected genes is to
cluster the data in a multidimensional space. The optimal set of
genes should provide the clusters of highest purity with respect
to the class membership. Different approaches to clustering are
possible: K-means, fuzzy c-means or expectation maximization
algorithm (Tan, Steinbach, & Kumar, 2006). In this work we applied
the simplest K-means. It is a method of vector quantization that
aims to partition n observations into K clusters (K < n). Each
N-dimensional observation belongs to the cluster with the nearest
mean (centroid) which serves as a prototype of the cluster.

This aim is achieved by minimizing the squared sum distances
between centroids and the vectors within each cluster (Tan et al.,
2006). K-means can be developed in two approaches: off-line
and on-line. We use the off-line Matlab version with batch
updates. Each iteration consists of reassigning all points to their
nearest clusters, followed by recalculation of the cluster centroids.

In our problem the number of clusters is equal two (K = 2), the
same as the number of investigated classes. The K-means will be
used by us to find the number of the most significant genes, which
provide the highest class purity of the clustered space. The proce-
dure consists of repeating the K-means algorithm at varying num-
ber of genes. In each step we increase this number by one. The
clusters are assessed by comparing their purity index (Tan et al.,
2006), defined as follows

pi ¼max
nij

ni
ð7Þ

In this definition nij is a number of observations of jth class
inside of ith cluster and ni is a number of observations forming
the ith cluster (i, j = 1, 2). In the next step the total purity index p
of the clustered space is determined

p ¼
XK

i¼1

ni

n
pi ð8Þ

where K is the number of clusters. In this way we can calculate the
total purity of the clustered space at varying dimension (number of
the most significant genes) of the representative vectors. According
to the results presented in Table 1 the TT and COR methods have
produced the same results. Therefore, to avoid their domination,
only one of them has been taken into account in a fusion process.

Fig. 3 presents the change of the total purity index versus the
number of the most relevant genes found in the final fusion proce-
dure. We can observe that the best purity is obtained for the top 32
features. Its value in our experiments was equal 0.83.

The best result obtained at application of the fusion approach
has been compared to the outcomes of 8 individual selection meth-
ods. Table 2 presents the highest values of the total purity index for
all investigated selection methods and the population of genes at
which these maxima happened.

We can notice that total purity of the clustered space at appli-
cation of the investigated methods differs significantly. Moreover,
the highest purity is obtained at different number of genes. For
instance, in the ReliefF method the best purity occurs for 13 the
most significant genes, whereas in the Fisher algorithm for 68
(the highest number). The best purity of clusterization corresponds
to the fusion approach at presence of 30 the best genes. However,
the same purity value has been obtained for TT/COR methods.
Comparing the contents of TT/COR and fusion results we have
found 22 identical genes. It seems that this selection method dom-
inated in fusion.

To illustrate the results in a graphical form we have presented
the expression levels of the selected genes in the form of image.
Fig. 4(a) shows the image of the expression profiles for the top
thirty-two genes selected by fusion in the form of the colormap
of hot. The vertical axis represents observations and the horizontal
– the genes arranged according to their importance. There is a vis-
ible border between 82 observations of the autism group and the
remaining 64 representing the reference one. For comparing pur-
poses the image of the expression profiles for 30 genes chosen ran-
domly from the base is presented in Fig. 4(b). There is a significant
difference between both images, which confirms good perfor-
mance of the proposed selection procedure.

3.5. Illustration of selection results using PCA

The next study is concerned with the graphical representation
of the multidimensional observation vectors using the Principal
Component Analysis (PCA). PCA is a statistical method mapping
the original vectors x from the high dimensional space to vectors
y in the space of the reduced dimension (Haykin, 2000). The trans-
formation is done through the linear relation

y ¼Wx ð9Þ

in which the transformation matrix W is formed from the chosen
number of eigenvectors corresponding to the largest eigenvalues
of the correlation matrix of the original data x.

We have mapped the multidimensional observations into
2-dimensional space formed by two the most important principal



Table 2
The highest values of the total purity index corresponding to the set of genes selected individually by different methods and after their fusion.

Method FDA RFA KST KWT SWR COR/TT SVM Fusion

Purity 0.67 0.76 0.77 0.80 0.63 0.83 0.60 0.83
Number of genes 68 13 44 23 15 24 42 30

Fig. 4. The colormap of the expression profiles for 30 most significant genes selected by the fusion procedure (a) and for 32 randomly chosen genes (b).
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components. Two cases have been investigated. In the first
approach the original vectors contained only 30 genes selected
by the fusion procedure. Fig. 5(a) depicts the case in which we
use only the best representative genes in the vectors x. For compar-
ison we have repeated PCA on the full size original 16,230 element
vectors containing all genes. The graphical results of the sample
distribution are presented in Fig. 5(b). Large bold symbols of the
circle and x represent the centroids of the data belonging to two
classes.

We can observe a significant difference in distribution of sam-
ples belonging to both classes. In the first case (Fig. 5(a)) we see
two compact regions, in which there is a domination of one class.
In the second case (Fig. 5(b)) the situation is different. The observa-
tions belonging to different classes interlace each other. It is
Fig. 5. The distribution of the two-class samples mapped on two the most
important principal components at representation of vectors x by 30 most
significant genes (a) and at application of all genes (b).
practically impossible to separate them into two regions. In both
cases we see large dispersion of information. For the best 30
selected genes the first and second principal components contain
22.7% and 19.8% of total information, respectively. In the case of
all genes these values are much smaller and equal 16.7% (the first
component) and 10% (the second component).

To characterize the dispersion of data in the numerical way the
average Euclidean distance between the observations and their
respective centroids have been computed. Table 3 shows these
values, which represent the average distances and their standard
deviations in both investigated cases, calculated for their
2-dimensional mapping provided by PCA.

The results show that the total dispersion in the first case (30
top genes forming the vectors x) is much smaller than in the sec-
ond one (application of all genes). At the same time we can observe
in Fig. 5 the significant difference of distances between the cen-
troids representing both classes of data in the 2-dimensional space.
At representation of data by 30 genes this distance related to the
maximum range of data was equal 0.226. In the second case it
was only 0.034 (both centroids occupy similar positions).
4. Classification system for autism prediction

4.1. Applied classifiers

The genes selected in the previous phase can be used for classi-
fication of the microarray data. The task in this part of research is
recognition of two classes: class 1 – autism and class 2 – control
(healthy) subjects. To get the most reliable results we apply the
ensemble of classifiers composed of the Support Vector Machine
(SVM) of Gaussian kernel (Schölkopf & Smola, 2002) supplied by
different sets of features, which were selected by various methods.
The classification results of the ensemble members will be inte-
grated by using random forest (RF) of decision trees.

The SVM belongs to the best binary classifiers. It was developed
by Vapnik is a linear machine, working in the high dimensional
Table 3
The average relative distances of samples from their centroids and their standard
deviations for the top 30 genes and all genes.

Number of genes Autism Reference group

Top 30 genes 0.08 ± 0.04 0.09 ± 0.06
All genes (16,230) 1.38 ± 0.79 1.13 ± 0.86



Fig. 6. The error rate of class recognition at changing number of genes used as the
input attributes for SVM (the results of testing on the data set not taking part in
learning). The upper curve depicts the averaged error in 10 run cross-validation
experiments at changing number of genes. The numbers below the curve represent
the moving average values of error calculated for the window of 10. The vertical
stripes at the bottom represent values of standard deviation of error for different
ranges of the number of genes.

Fig. 7. The relative importance of the selection methods in the final integration
stage of the ensemble.
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feature space formed by the non-linear mapping of the
N-dimensional input vector x into a L-dimensional feature space
(L > N) through the use of a kernel function K(x,xi). The learning
problem of SVM is formulated as the task of separating the learning
vectors into two classes of the destination values either di = 1 (one
class) or di = �1 (the opposite class), with the maximal separation
margin. The SVM of the Gaussian kernel has been used in our appli-
cation. The hyperparameters (the regularization constant C and
Gaussian kernel width) have been adjusted by repeating the learn-
ing experiments for the set of their predefined values and choosing
the best one on the validation data sets.

The Breiman random forest (Breiman, 2001) is an ensemble
learning method for classification that operates by constructing a
multitude of decision trees at training time and outputting the
class that is the mode of the classes output by individual trees.
To improve the generalization property the randomness in select-
ing the learning data is implemented. The trees are grown using
randomly selected input variable sets for each node.

Random forest will be used by us to integrate the results of 8
different classifiers into the final outcome. The output signals of
these 8 units form the input attributes for the random forest,
which is responsible for generating the final outcome.

4.2. The results of classification

The experiments of selection and classification have been
performed on the separate parts of data in order to get the most
objective results. Sixty percent of the data base (chosen randomly)
has been used in gene selection and the rest (40%) in the classifica-
tion only. This split was repeated 10 times and then followed by
the gene selection and classification stages. Such approach to the
selection and classification allows separating these two phases of
data analysis and making them data independent. Repeating these
experiments 10 times at different compositions of observations
allows drawing more objective assessment of the efficiency of
the proposed method. Moreover, thanks to 10-fold cross validation
procedure the whole data set takes parts in both phases of
experiment.

The applied selection methods have resulted in a particular
order of the genes from the most to the least significant. The
important step is to determine the optimal number of them used
as the input attributes for the classifiers. It is known fact that clas-
sification using the limited number of genes, following from the
purity of clusters, results in not satisfactory accuracy (Tan et al.,
2006; Wilinski & Osowski, 2012). The less important genes follow-
ing directly the best group, have also some positive impact on rec-
ognition accuracy. Therefore, the additional step for determining
the optimal population size of the best genes should be made.
We have done it by checking the classification accuracy achieved
by increasing step by step the number of genes used as the input
attributes.

Fig. 6 shows the exemplary results representing the error rate of
classification at increasing number of the best selected genes for
the Fisher method. The continuous curve presents the actual error
rate of class recognition, which was obtained by SVM classifier at
differing number of genes. The discrete peaks at the bottom of
the figure represent the values of standard deviation for the follow-
ing equal size ranges of the number of genes. The depicted results
refer to 10 equal size ranges extending from the first to the last
100th gene. The numbers located above these peaks show the
mean error rate in the appropriate range. The smallest mean error
rate of the value 0.21 was observed in the range corresponding to
the number of genes extending from 35 to 55. The mean of these
two numbers of genes (45) has been used in the 10-fold cross
validation of the classification experiments. Similar procedure of
determining the optimal number of genes for each selection
method has been repeated. As a result of such procedure we got
8 different sets of input attributes for the applied SVM classifiers.
In further experiments we have used them in 10-fold cross valida-
tion procedure.

Each run of the cross validation procedure applied to 8 classifi-
ers was followed by the integration of their results into the final
outcome. This task was performed by the random forest network
(Breiman, 2001). Fig. 7 shows the statistical importance of the
applied methods in forming the final results by the random forest
integrator. Fisher and ReliefF methods have been found the most
important in taking the final classification decision by the RF inte-
grator. On the other hand the least important were Kruskal–Wallis
results.

To check the importance of genes selected in all methods we
have replaced the first 20 best genes in the set by the next 20,
while preserving the same number of genes in the input set. Addi-
tional investigations have been also done for the same number of
genes chosen in a random way from the base.

Table 4 presents the averaged class recognition accuracy of the
individual classification systems in the 10-fold cross validation
procedure. The columns represent the solutions for different selec-
tion methods. The last column presents the final accuracy achieved
after fusion, which was done by the random forest. The numbers
within the table represent the mean values and standard
deviations obtained in 10 independent runs of the selection and
classification procedures.

The final class recognition accuracy obtained by using the
random forest as an integrator is the best. The classification
accuracy has been increased from the best 70.16 ± 5.38% (FDA) to
78.43 ± 2.66% after integration. Not only the accuracy of recogni-
tion was increased but also standard deviation was reduced almost
two times.



Table 4
The averaged class recognition accuracy and the standard deviations of the SVM classifier supplied by the set of genes selected in different methods (all values in percent).

FDA RFA TT KST KWT COR SWR SVM Fusion

Optimal number of the best genes 70.16 ± 5.38 58.35 ± 7.02 59.92 ± 6.11 61.68 ± 5.61 60.22 ± 5.61 59.92 ± 6.11 60.60 ± 6.89 59.73 ± 6.87 78.43 ± 2.66
20 The best genes substituted

by the less important
68.10 ± 7.39 57.48 ± 7.13 58.74 ± 6.63 60.56 ± 5.62 58.11 ± 6.76 58.74 ± 6.63 58.84 ± 7.31 57.48 ± 5.82 76.90 ± 3.56

Random choice of genes 55.12 ± 4.65 51.36 ± 10 54.72 ± 7.15 54.19 ± 4.77 51.01 ± 3.45 55.28 ± 5.61 53.67 ± 3.59 55.22 ± 5.16 67.16 ± 2.09

Table 6
The confusion matrix of classification results by applying 10 randomly selected genes
(after integration).

Class 1 Class 2

Class 1 0.69 0.31
Class 2 0.39 0.61

Table 7
The values of the quality measures in recognition of autism cases from the healthy
ones for the best genes selected by our method and for the randomly chosen 30 genes.

TPR TNR FNR FA

Best selected genes 0.82 0.77 0.18 0.23
30 Random genes 0.70 0.62 0.30 0.38
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The results of the final recognition will be also depicted in the
form of a confusion matrix representing the average results of all
10 runs of the system (the results correspond to the testing data).
The rows represent the percentage of the real class membership of
the data and the columns the results of classification. The diagonal
entries (i = j) depict the percentage of properly recognized classes.
Each entry outside the diagonal represents the percentage of the
misclassified cases. The entry in the (i, j)th position of the matrix
means false assignment of ith class to the jth one. Table 5 presents
the average results of class recognition.

The weighted average value of the relative error of class recog-
nition was equal 20.19%. In this weighting the population sizes of
both classes have been taken into account.

To compare the importance of the gene ranking we have
repeated 10 times the classification procedure at randomly chosen
composition of 30 genes. We have used 30 genes because this
number was most often taken by our selection methods in previ-
ous experiments. The obtained results in the form of confusion
matrix are depicted in Table 6. This time the weighted averaged
misclassification rate is very high (33.90%).

It is evident that application of the best selected genes in the
representation of the samples provides the highest accuracy (the
least relative error) in all experiments.

The accuracy measure treats every class as equally important. In
medical practice it is not sufficient to assess the method in an
objective way. The important aspect is associated with the impor-
tance of recognition of autism cases (called here true positive – TP)
from the normal cases (true negative – TN). By the symbol FN we
understand the number of autism falsely recognized as healthy
and by FP the healthy cases recognized as the autism. On the basis
of these notations four quality measures are defined (Tan et al.,
2006).

The first one is the true positive rate (TPR), called also sensitiv-
ity, defined as the fraction of all positive examples predicted cor-
rectly by the classifier TPR = TP/(TP + FN). The true negative rate
(TNR), called specificity, is defined as the fraction of negative exam-
ples predicted correctly by the classifier TNR = TN/(TN + FP). The
other measures include false alarm rate (FA) defined as the ratio
of the negative cases recognized by the classifier as the positive
FA = FP/(FP + TN) and the false negative rate, defined as FNR = FN/
(TP + FN). Table 7 presents the values of these quality measures
when applied to the recognition of autism cases from the healthy
ones for the genes selected by us, and for the randomly chosen
30 genes.

The sensitivity and specificity values of the proposed selection
and classification system have assumed much higher levels in
comparison to the randomly selected genes. These results confirm
the superiority of our method over the random choice of genes.
Table 5
The confusion matrix of the class recognition results at application of the best genes
after integration.

Class 1 Class 2

Class 1 0.82 0.18
Class 2 0.23 0.77
5. Conclusions

The paper has examined several data mining methods cooperat-
ing in an ensemble for selecting the most important genes in the
expression microarray of autism. The most relevant genes have
been selected using two stage approach. In the first step we apply
eight different feature selection methods working independently.
The final set is identified by fusing all obtained subsets in the sec-
ond step of the procedure.

The expression levels of the selected genes have been analyzed.
We applied different tools and methods, including the clusteriza-
tion of the data combined with the measures of its quality, princi-
pal component analysis and statistical characterization of the
clustered space.

The selected genes have been used as the input attributes for
the classifiers, which were responsible for recognition of autism
cases from the reference ones. To get the most reliable results we
have applied the ensemble of classifiers composed of SVM classifi-
cation units and random forest fulfilling the role of integrating
unit. These classifiers have been supplied by different sets of fea-
tures selected by various methods. The obtained results confirmed
good performance of such selection and classification system.

The main contribution of the paper in the research of autism is
simultaneous application of many selection methods, based on dif-
ferent principle of operation and fusing them into final system pro-
viding better recognition of autism cases from the reference class.
We have proposed special method of assessing the quality of gene,
which takes into account its ranking position in many runs of
selection.

In the second phase of study we have proposed the novel solu-
tion of two-stage classification system. In the first stage we use the
SVM classifiers supplied by the sets of genes selected by different
methods. Their results are combined together into final decision
in the second stage by random forest of decision trees. In this
way we are able to use many selection results to improve the accu-
racy of autism recognition.

The analysis of the performance of different steps of our
approach leads to the interesting observations. The individual
methods analyze the problem from different point of view and find
the optimum from this point. Usually the solutions are different
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and depend on the particular choice of observations used in the
processing. Our two-step procedure of gene selection tries to find
the genes, which have been chosen as the most significant in all
runs of different methods. In this way we increase the probability
of selecting the genes, which are the best associated with all
observations.

In the classification stage we use once again the results of indi-
vidual gene selections. This time we form many sets of the best
genes created by different methods and use them as the input
attributes in the ensemble of SVM classifiers. The results presented
in Table 4 depict the difference between the performance of the
classifiers. The individual results change a lot (the accuracy of class
recognition was changing from 58% to 70%). However, combining
them into one final result by using random forest classifier has
increase this accuracy to above 78%. The random forest classifier
has made proper use of the information delivered by different
methods of gene selection. The experiments of reducing the num-
ber of SVM classifiers by neglecting some selection methods led to.

Our study presented in this paper needs to be continued in few
directions. First, more data bases related to autism should be
examined. The important point is also to increase the number of
selection methods. Our introductory experiments have shown that
more methods result in more accurate recognition. Additional
study is needed to find the alternative methods for determining
the optimal number of input attributes (the best selected genes).
The natural candidate is application of genetic algorithm, which
was successful in selecting the optimal set of feature in some other
recognition problems (Siroic, Osowski, Markiewicz, & Siwek, 2009).
The interesting is also developing the alternative ways of assessing
the discriminative ability of the selection methods, which might be
competitive to ranging the positions, applied in this solution. The
natural candidate is using ranking by frequency, in which the order
of genes is arranged according to their frequency of appearance
within the defined set of the best genes in each run.
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