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a b s t r a c t

In this paper, we present an alternate algorithm for detecting overlapping community
structures in the complex network. Two concepts named the maximal sub-graph and the
clustering coefficient between two neighboring communities are introduced. First, all the
maximal sub-graphs are extracted from the original networks and then merge them by
considering the clustering coefficient of two neighboring maximal sub-graphs. And a new
extendedmodularity is proposed to quantify this algorithm. The other advantage of this al-
gorithm is that the overlapping vertex can be detected. The effectiveness of our algorithm
is tested on some real networks. Finally, we compare the computational complexity of this
algorithmwith selected close related algorithms. The results show that this algorithmgives
satisfactory results.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Many real-world systems in nature and society can be described as complex networks or graphs [1–3]. The entities of
the system are represented by the nodes (vertices) and the interactions between the entities are represented by the edges.
Examples include social relationships, spreading of viruses and diseases, and the Internet and the World Wide Web [4–9],
etc. The research of complex networks is important to understand the structure of the networks and the interaction of the
entities in the networks. In the past decade, a lot of features about the complex networks could be obtained from studying
the complex networks. One common feature is the community structure [10,11], where the nodes within a community are
higher connected to each other than the nodes among communities.

The detection of community structures has attracted much attention from various real networks. Many methods have
been proposed to detect the community structures of complex networks and applied successfully to some real complex
networks [12–22]. On the basis of the process, results, and other features, these methods can be roughly classified into two
categories. One category is the graph partitioningmethod,where each vertex belongs to only one community. Different from
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Fig. 1. A schematic network represented by four different colors.

classical graphpartitioning problem, for example, Kernighan–Lin algorithm [23] and the spectral bisection algorithm [24,25],
the number of communities and the size of each community are known before detecting the communities in the complex
networks. Unfortunately, there is no commonly accepted standard to evaluate the detection of communities.

The other category is the hierarchical clustering method based on discovering the high connected vertices. And this
category can be divided into the agglomerative method and divisive method by adding or removing edges [26]. In this
kind, some vertices may belong to more than one community, so overlapping structure can exist. In 2002, Newman and
Girvan [10] proposed the modularity (represented by a Q function) to evaluate the goodness of the partition. Then some
detecting community methods have been proposed based on the optimizing modularity [27–29]. This kind of methods is
useful to understand the community structures of networks, especially for the small networks. However, the optimization of
the modularity has a resolution limit problem [30,31]. And the methods based on the modularity cannot detect overlapping
vertices.

In this paper, ACC algorithm (based on the Clustering Coefficient of two neighboring maximal sub-graphs) is proposed
to detect the overlapping community structures in complex networks. And an extended modularity based on the clustering
coefficient between two neighboring maximal sub-graphs is proposed to quantify ACC algorithm. The first step of this
algorithm is to extract all themaximal sub-graphs from a given complex network. Then calculate the clustering coefficient of
two neighboring maximal sub-graphs to obtain the community structures. The other advantage of this algorithm is that the
overlapping vertices can be found accurately. In Section 2 we explain the maximal sub-graphs and propose ACC algorithm
in detail. We give a number of tests of this algorithm on some real-world networks in Section 3. In Section 4, the conclusions
are given.

2. The algorithm

Actually overlapping and hierarchical exist at the same time in the some real networks. Overlapping means that some
vertices do not belong to only one community, that is to say, they may belong to more than one community. Hierarchical
means that communities can be detected into some smaller communities or some communitiesmay bemerged into a larger
community. In this paper, we devote to detection overlapping and hierarchical community structures.

2.1. The maximal sub-graphs

As to the network in Fig. 1, the overlapping community structures can be distinctly represented by four different colors,
that are {1, 2, 3, 4, 5, 6}, {7, 8, 9, 10, 11, 12}, {12, 13, 14, 15, 16} and {16, 17, 18, 19, 20, 21}. The vertex {1, 2, 3, 4, 5, 6}
consists of the highest connective community than the rest in the complex network. We call such a complete sub graph
as the maximal sub-graph., which is not a subset of any other communities in a complex network. In Table.1, we employ
the algorithm proposed in Ref. [32] to extract all the maximal sub-graphs from Fig. 1, which is an important step during
detecting the community structures in the complex networks.

2.2. The clustering g coefficient of two neighboring communities

The traditional definition of clustering coefficient has global algorithm and local algorithm. The global algorithms base
on computing the density of triplet, but the local algorithms concern to compute the density of vertices. In a network, vertex
i has ki edges directly connecting to other ki vertices, that is to say, ki vertices are the neighboring vertices of vertex i. These
are at most ki(ki − 1)/2 edges among these ki vertices. Let Ei be the number of the actual edges existing among these ki
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Table 1
All the maximal sub-graphs of Fig. 1 with 21 vertices.

The label All the maximal sub-graphs

a {1, 2, 3, 4, 5, 6}
b {7, 8, 9, 10}
c {7, 8, 10, 11}
d {12, 13, 14, 15}
e {14, 15, 16}
f {16, 17, 18}
g {17, 18, 19, 21}
h {17, 19, 20, 21}

Table 2
The clustering coefficient of two neighboring maximal sub-graphs [Cc ] in the network with 21 vertices.

a b c d e f g h

a 1 0.511 0.489 0 0 0 0.489 0.489
b 0.511 1 0.9 0.5 0.476 0 0 0
c 0.489 0.9 1 0.5 0.476 0 0 0
d 0 0.5 0.5 1 0.8 0.534 0 0
e 0 0.476 0.476 0.8 1 0.6 0.534 0.476
f 0 0 0 0.534 0.6 1 0.8 0.733
g 0.489 0 0 0 0.534 0.8 1 0.9
h 0.489 0 0 0 0.476 0.733 0.9 1

0.8

0.6

0.8

Fig. 2. The clustering coefficient of four neighboring maximal sub-graphs.

vertices. Then, the ratio of the existing and the possible numbers of edges among ki nodes is defined to be the clustering
coefficient of vertex i, denoted Ci [33]; namely,

Ci =
2Ei

ki(ki − 1)
. (1)

However, in this paper, the clustering coefficient of two neighboring communities [Cc] is proposed to whether to merge
two neighboring communities into a new larger community. If the total number of two communities is nc , these nc vertices
will have nc(nc − 1)/2 edges as a complete graph and they may have Fc edges in fact. Then, the clustering coefficient of two
neighboring communities [Cc] is defined as follows

Cc =
2Fc

nc(nc − 1)
. (2)

After all the maximal sub-graphs are extracted, each maximal sub-graph is as an independent community. Then we will
calculate the clustering coefficient of two neighboring communities [Cc] whether or not be combined into a new larger
community. For clarification, consider the network of 21 vertices in Fig. 1. First, 8 maximal sub-graphs are extracted in
Table 1 and each one will be given a new label. We calculate the clustering coefficient of two neighboring communities [Cc]

in Table 2. We introduce the symmetric matrices actually in Table 2. The maximum value of the Cc in Table 2 is Cc max = 1,
which is the clustering coefficient of the maximal sub-community and itself.

However, it can be seen that there is no constraint to have priority to combine two communities into a larger community.
To overcome this, we can consider a threshold value δ for the clustering coefficient of two neighboring communities [Cc].
For 0.476 ≤ δ ≤ 0.534, the two neighboring maximal sub-graphs cannot be merged into a new larger community. On the
contrary, the two neighboring maximal sub-graphs can be merged into a new larger community for 0.6 ≤ δ ≤ 0.9.

There is a kind of special cases. In Fig. 2, e can be merged with d and f , and the clustering coefficient between e and dis
higher than the clustering coefficient between e and f , so e and dwill be preferentially merged into a new community. In the
same way, f and g will be preferentially merged into a new community. And the common vertices between e and f are the
overlapping vertices. So vertex 6 is the overlapping vertex in the small network with 21 vertices. In short, for 0.6 ≤ δ < 1,
the two maximal sub-graphs can be merged into a new larger community. For δ < 0.6, all the maximal sub-graphs cannot
be merged into one cluster. Here there is only one community, i.e. the network itself.
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2.3. Extended modularity

As well known, the modularity defined by Newman and Girvan [13] was used to measure the quality of detection
community structures in the unweighted networks. But an extended modularity was proposed by Newman to measure
the goodness of a partition of weighted networks. Nicosia et al. [34] proposed another modularity to evaluate the quality of
overlapped community structures. In this paper, given an unweighted and undirected network, the modularity based the
clustering coefficient of all the maximal sub-graphs [Cc] can be formalized as

QC =
1
2m


ij


AG
ij −

EGiEGj
2m


Cc(Gi,Gj), (3)

where AG
ij represents an adjacency matrix with the clustering coefficient of all the maximal sub-graphs between i and j, EGi

is the number of edges in a maximal sub-graph i,m is the total number of edges in the network. Cc

Gi,Gj


is the clustering

coefficient of two maximal sub-graphs.

2.4. ACC algorithm

Our ACC algorithm based on the clustering coefficient of two neighboring maximal sub-graphs can be summarized as
follows:

(a) initially, use the algorithm [32] to extract all the maximal sub-graphs from given complex networks with the new label;
(b) then, calculate the number of edges in each maximal sub-graph;
(c) find all neighbors of each maximal sub-graph, and calculate the clustering coefficient [Cc];
(d) consider a threshold value δ whether to combine two communities into a new community and to determine the

overlapping vertices. Then calculate the modularity [QC ];
(e) repeat steps (c) and (d);
(f) quit the repetition and get a proper community structure.

Analyzing the computational complexity of ACC algorithm, the steps of extracting all the maximal sub-groups has
computational complexity of at most O(n). When the number of the maximal sub-groups is x(x ≤ n), take O(x) to calculate
the number of edges in eachmaximal sub-graph and take O(x2) to calculate the clustering coefficient [Cc]. Finally, the worst
computing time is upper bound at most O(n2).

3. Applications and results

In this section, we implement our overlapping community detecting algorithm ACC by Java programming language
running on a PC with 2.67 GHz processor, 4 GB memory and Windows7 operating system. And extensively test it on some
real networks with known community structures.

First, a real network is Zachary’s karate club network [35], which is widely used as a benchmark for testing the methods
of detection community structures, which is an un-weighted network with 34 members of a karate club as vertices and 78
edges representing friendships amongmembers of the club. However, a dispute developed between the club’s administrator
and its principal karate teacher, which results the club eventually splits into two smaller clubs, centered at the administrator
and the teacher respectively. The communities of this network are depicted in Fig. 3. The nodes 1 and 34 represented the
administrator and the teacher respectively. Similar to many existing community detection algorithms, our ACC algorithm
detects the network into two overlapping communities represented by two circle and square. This partition corresponds to
the modularity [QC ] with the value 0.357. For 0.600 ≤ δ < 1, there are two communities and two overlapping vertices; for
0.733 ≤ δ < 1, there are three communities which are labeled by different colors in Fig. 3 and the modularity [QC ] is 0.408.
With the increasing the number of community, the modularity [QC ] continues to increase. The overlapping vertices consist
of 3 and 10, shared by two communities. Except these overlapping vertices, the result reflects the real split of this network.

Second,we also test our ACC algorithmon another real data set taken from [36],which describes the associations between
62 dolphins living in Doubtful Sound, New Zealand. For 0.627 ≤ δ < 1, two communities are naturally detected by our ACC
algorithm in Fig. 4, represented by squares and circles. This partition corresponds to themodularity [QC ]with the value 0.485.
And vertex 40 is the overlapping vertex. For 0.833 ≤ δ < 1, we detect three communities and two overlapping vertices,
represented by different colors as shown in Fig. 3. For δ < 0.6, all the maximal sub-graphs cannot combine into a larger
community and only one community is detected, the original network itself. Then we can see the hierarchical community
structures in these networks by ACC algorithm.

Then, we have also used normalized mutual information [37] to measure the detection algorithm. In Fig. 5 we plot the
performance of three algorithms testing a set of computer-generated networks presented by Girvan and Newman [10]. As
we can see from the figure, from kout = 0 to kout = 6, the natural communities are detected by both the three algorithms.
When kout > 6, the accuracy of this three algorithm begin to drop down markedly. However, ACC algorithm does perform
well than GN algorithm and EAGLE.
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Fig. 3. The overlapping communities from Zachary’s karate club study.

Fig. 4. The community structures detected by ACC algorithm from Lusseau’s network of dolphins.

As shown in Fig. 6, we compare ACC algorithm with four recently reported algorithms (GN [13], BGLL [32], Chen [21],
EAGLE [20]) testing some real world networks. That is, the friendship network from Zachary’s karate club study with 34
vertices and 78 edges [33], college football with 115 nodes and 615 edges [10], netscience network with 1589 vertices and
2742 edges [38], dolphin’s associations with 62 nodes and 159 edges [36], cond-mat-2003 with 31163 nodes and 120029
edges [39]. These networks can be downloaded from http://www-personal.umich.edu/~mejn/netdata/. The execution time
of our proposed algorithm is low in comparison with the other four algorithms.

4. Conclusions

We proposed an algorithm for detecting the community structures in the complex networks. In this algorithm, all the
maximal sub-graphs first extracted and then merged with neighboring maximal sub-graphs to obtain the communities

http://www-personal.umich.edu/~mejn/netdata/
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Fig. 5. The test on the benchmark of Girvan and Newman.
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Fig. 6. The execution time of our proposed ACC algorithm in comparison with other four existing algorithms.

using clustering coefficient of two neighboring sub-graphs. An extended modularity is proposed to quantify our algorithm.
We have tested our algorithm on some real networks. The results indicate that the overlapping vertices and hierarchical
community structures are detected. The computation cost is verified in Fig. 6. All thismake it a useful and efficient algorithm
for detecting overlapping community structures.
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