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Particle swarm optimization (PSO) has been widely used in optimization problems. If an identification
problem can be transformed into an optimization problem, PSO can be used to identify the unknown
parameters in a nonlinear model that is used to describe a system. Currently, most PSO based identifica-
tion or optimization solutions can only be implemented offline. The difficulties of online implementation
mainly come from the unavoidable lengthy simulation time to evaluate a candidate solution. In this paper,
eywords:
article swarm optimization
arameter identification
eal-time implementation
ermanent magnet synchronous motor

a technique for faster than real-time simulation is introduced and implementation details of PSO based
identification algorithm is presented. Performance of the proposed technique is demonstrated through
application to parameters identification of permanent magnet synchronous machine control system. The
algorithm is implemented in Matlab/Simulink with the most fundamental blocks and Embedded Matlab
Functions. Thus the program can be compiled to C/C++ code through Real-time Workshop and be able
to run on hardware controllers like dSPACE. The proposed techniques can also be applied to many other

optim
online identification and

. Introduction

System parameters can be identified indirectly from measure-
ents if it is hard or expensive to measure the parameters directly.

arameter identification is very important for state estimation,
ault detection and diagnosis, controller design, etc. Many tradi-
ional parameter identification algorithms have been proposed in
he past. However, accurate and efficient identification of complex
onlinear systems is still a challenging problem. Computational

ntelligence is the study of adaptive mechanisms to enable or facil-
tate intelligent behavior in complex and changing environments.
t has been demonstrated that applications of computation intelli-
ence techniques can bring about better performance or improved
esigns. Unlike traditional identification algorithms whose appli-
ations are limited by model structures, computational intelligence
ased algorithms do not have special requirements on model struc-

ures. As long as system model performs differently for different
arameters, which is almost always true, computational intelli-
ence will be able to identify the unknown parameters in the
odels. There are numerous researches on the applications of com-
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ization problems.
© 2010 Elsevier B.V. All rights reserved.

putational intelligence techniques to parameters identification and
control system design, such as [1–10].

PSO is a population based stochastic search algorithm [11–13].
Because of its simplicity and computational efficiency, PSO has been
widely used to solve a broad range of optimization problems. In
additional to optimization problems, PSO can also be applied to
identification problems provided that the identification problems
can be transformed into optimization problems. There have been
numerous applications that apply PSO to parameter tuning or iden-
tification problems, such as [14–16]. However, most of existing PSO
based model parameter identifications were only implemented
offline. During the optimization/identification process, to evaluate
a candidate solution, system model has to be simulated with the
candidate solutions/parameters under the same inputs and initial
conditions as the measurement. PSO algorithm requires a number
of iterations to obtain a satisfactory solution. For every iteration,
the system model has to be simulated once. Thus, the model needs
to be simulated a number of times to identify parameters from each
measurement. Because of the unavoidable simulation time needed
to evaluate the candidate solutions, unless the simulations can be

finished faster than real-time, successful identification cannot be
accomplished within the time used for measurement.

In this paper, the “real time” objective is to achieve good iden-
tification within the time used to measure system outputs. To
implement PSO algorithm in real time, two possible solutions can
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e explored. The first is to design a compact algorithm to save
emory and improve computational efficiency, such as the com-

act genetic algorithm in [17,5]. The second solution is to realize
aster than real-time simulation so as to speed up the performance
valuation process. This paper chooses to explore the possibility of
he second method. By modifying the time constants of the original

odel, the modified model can run n-times faster. Besides, to min-
mize simulation time, only a small part of the system model that
omprises the parameters to be identified is simulated. By doing
hat, the simulation time required for parameter evaluation can be
remendously reduced. The saved time can be used to complete
redefined number of iterations. By properly adjusting the sample
ime, step size, and numbers of samples and iterations, it is possible
o a predefined number of iterations within the same time used for

easurement.
The real-time implementation of PSO based identification

lgorithm is much more difficult compared to the offline imple-
entation. There are a lot of issues to be considered, such as the

nitialization, flow control, and simulation synchronization. This
aper describes all the details of implementation using hardware
ontroller. Since the dSPACE® controller can run Simulink®/Real-
ime Workshop® generated C code seamlessly, implementation is

ade easy. The implementation techniques with dSPACE controller
an be directly applied to other hardware controllers with similar
unctions.

To evaluate its performance, the proposed technique is applied
o identify two parameters in a Permanent Magnet Synchronous

otor (PMSM) control system, i.e. the stator resistance Rs and
isturbed load torque Tld. The implementation details will help
he understanding of the proposed techniques. Simulation results
emonstrate that the real-time PSO based technique is able to iden-
ify both time-invariant and time-varying parameters accurately. In
ddition to this PMSM application, the techniques described in this
aper can also be applied to many other online identification and
ptimization problems.

The rest of this paper is organized as follows: Section 2 provides
brief introduction to the PSO based identification techniques.

ection 3 introduces faster than real-time simulation. Section 4
escribes the details of real-time implementation. Its application
o parameter identification of PMSM control system is presented
n Section 5 and concluding remarks are given in Section 6.

. Background

.1. Particle swarm optimization

Particle swarm optimization (PSO) is a population based
tochastic search algorithm. It was first introduced by Kennedy
nd Eberhart [11]. Since then, it has been widely used to solve
broad range of optimization problems. The algorithm was pre-

ented as simulating animals’ social activities, e.g. insects, birds,
tc. It attempts to mimic the natural process of group commu-
ication to share individual knowledge when such swarms flock,
igrate, or hunt. If one member sees a desirable path to go, the

est of this swarm will follow quickly [12,13]. In PSO, this behav-
or of animals is imitated by particles with certain positions and
elocities in a searching space, wherein the population is called a
warm, and each member of the swarm is called a particle. Start-
ng with a randomly initialized population, each particle in PSO
ies through the searching space and remembers the best position

t has seen. Members of a swarm communicate good positions to

ach other and dynamically adjust their own position and velocity
ased on these good positions. The velocity adjustment is based
pon the historical behaviors of the particles themselves as well as
heir neighbors. In this way, the particles tend to fly towards bet-
er and better searching areas over the searching process [11]. The
PSO based identifier

Fig. 1. Block diagram of the PSO based identification approach.

searching procedure based on this concept can be described by (1).

vi = w · vi + c1 · rand1 · (xp − xi) + c2 · rand2 · (xg − xi)
xi = xi + vi

(1)

where w, c1, and c2 are the inertia weight, cognitive acceleration
and social acceleration constants respectively; rand1 and rand2 are
two random numbers; xi represents the location of the ith particle;
xp represents the best solution (fitness) the particle has achieved
so far (pbest); xg represents the overall best location obtained so far
by all particles in the population (gbest); vi represents the velocity
of the particle with vmin

i
≤ vi ≤ vmax

i
.

vmax
i

determines the resolution, or fitness, with which regions
between the present position and target position are searched.
The constants c1 and c2 represent the weighting of the stochastic
acceleration terms that pull each particle toward pbest and gbest
positions. According to past experience, vmax

i
is often set at 10–20%

of the dynamic range of the variable on each dimension, and w, c1,
and c2 are often set to 0.8, 2, and 2.

From the updating rules and flow chart that can be found in
many PSO related papers, it can be seen that PSO is very simple
in concept and easy in realization. Thus, PSO has gained popu-
larity in recent years and many researchers from different fields
have attempted to improve the performance of the original PSO.
Newer versions and the choices of proper values of the parameters
to improve the performances of PSO are discussed in [18–26]. Both
performance and execution time of PSO are improved in these mod-
ifications. Recently, a simple and efficient way of tuning the PSO
parameters was presented by Pedersen et al. [27,28]. The best per-
forming PSO parameters were found to be contrary to guidelines
in the literature and often yield satisfactory optimization perfor-
mance for simple PSO variants. Recent survey of PSO can be found
in [29–33], where [32,33] focused on power system applications.

2.2. PSO based parameter identification

The block diagram of the PSO based parameter identification
approach can be illustrated with Fig. 1.

First, system response under input u is measured for identifica-
tion. Then, system model with tentative parameters (p̂) is simulated
under the same initial condition and inputs as the system. The out-
puts of the simulated model (ŷ) and measurement (y) of system
are input to a performance evaluator for comparison. The perfor-
mance evaluator calculates the fitness C(p̂) of the tentative solution
according to a cost/fitness function. The commonly used cost func-
tion can be defined as a weighted quadratic function as in [5,6].
Once all of the candidate solutions (particles) have been evaluated,
the PSO based identifier can update candidate solutions according
to the updating rules to provide a better set of candidate solutions.
The new candidate solutions with updated p̂will be used to update

the system model for next iteration of optimization till a preset
number of iterations has been accomplished or the preset maxi-
mum allowable cost/fitness C(p̂) has been met. More details on the
above identification process can be found in related literature, such
as in [5,6].
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. Faster than real-time simulation

The requirement or definition of “real-time” is different for dif-
erent applications. In this paper, the objective is to achieve good
dentification within the time used to measure system outputs. For
xample, if 1000 samples are measured at a sample time of 10−4 s,
hich means it takes 0.1 s to measure the dataset of 1000 sam-
les, then the PSO based algorithm is required to identify system
arameters within 0.1 s.

According to Section 2, PSO usually needs a number of itera-
ions to identify parameters according to a measured dataset. For
very iteration, the system model needs to be simulated once for
ach candidate solution. If there are n particles, which means n
andidate solutions, the system model needs to be simulated n
imes for each iteration. Even if all the particles can be simulated
n parallel, the optimization has to be done iteration after iteration.
hus, the major problem for real-time implementation is to com-
lete predefined number of simulations in a limited time. To realize
he “real-time” objective described above, faster than real-time
imulation is necessary. Instead of using hardware with power-
ul computing capability, the simulation time can be minimized by

odifying original system model. This idea can be illustrated using
he following equations.

˙ 1 = F(X1) + G(X1,U1) (2)

˙ 2 = n ∗ [F(X2) + G(X2,U2)] (3)

Eq. (2) describes the dynamics of the original system and (3)
escribes the modified system. In (3), n is a positive number that

s larger than 1 and the definitions of F(.) and G(.) in (2) and (3)
re the same. Since the time constant of (3) is 1/n that of (2), the
ystem response of (3) is n-times faster than (2). Given the same
nitial conditions and n-times faster input, (3) can provide n-times
aster response compared with (2). If both systems are running in
eal-time and the simulated system (3) is measured n-times faster,
nly 1/n of the time for measurement is needed to obtain the same
et of samples.

The idea can be illustrated using a practical example as shown in
ig. 2. The only difference between the two systems is the time con-
tants. Since time constant of System 2 is 10 times smaller, System

responds 10 times faster than System 1. To obtain the same num-
er of samples for System 1, System 2 only needs to be simulated
or 0.1 s.

Now, let’s consider another practical example illustrated in
ig. 3. If 1000 samples are measured from the original system at a

Fig. 3. Running of the PSO based
time in seconds

Fig. 2. Comparison of system response with different time constants.

sample time of 10−4 s, it will take 0.1 s to obtain the 1000 samples.
If we modify the system model by making it running 10 times faster
and measure the modified system at a sample time of 10−5 s, it will
only take 0.01 s to obtain the 1000 samples for the modified system.
Even though their time stamps are different, the quantities of the
two 1000-samples will be the same. According to the PSO based
identification algorithm, 5 particles in a swarm can be simulated in
parallel. Thus, we can nearly finish 10 iterations within 0.1 s. Since
it takes time to update the parameters according to PSO algorithm,
we can choose to run the optimization for 5 times/iterations in our
implementation. In doing so, we can realize faster identification,
which means the interval for updating identified parameters (just
a little longer than 0.05 s if considering the updating process of PSO)
is less than the measurement time (0.1 s).

It should be noted that the above-mentioned examples assume
that the modified system can be simulated in real-time. During
implementation, the actual simulation time is mainly determined
by the capability of the controller’s hardware and the complexity of
the model. If the modified model can be simulated in real-time or
even faster, the real-time implementation of the PSO based iden-
tification will have no problem. In the following discussion, we
will consider the situation when the modified model cannot be
simulated in real-time. What can we do if we have to overcome
the problem by tuning the algorithm rather than upgrading the

controller hardware?

In such situations, the following two methods can be adopted
one after another. The first method is to decrease sampling fre-
quency, the number of samples, and number of iterations. If this

identification algorithm.
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Fig. 4. Block diagram of real-ti

ethod works, there is no impact on the performance and the
real-time” objective. If the first method does not work, we can
ry the second method. The second method is to decrease n,
hich will definitely make it work. However, the expectation

n performance has to be lowered. Detailed analyses are given
elow.

By decreasing sampling frequency, the simulation can be
ocused on less fixed data points. In this way, the computational
urden on controller hardware and I/O module can be alleviated.
owever, according to Shannon sampling theorem, the sample

ime cannot be too large. Otherwise, the measurement will miss
ome important details in measurement. If decreasing sampling
requency start to result some identification error, we need to keep
he minimum working sampling frequency and try other methods.
he second method is to use fewer samples, which mean simu-
ating the system for a shorter time. As mentioned before, the PSO
ased identification algorithm need different signature for different
arameters. If the samples are not enough to demonstrate enough
ifference, it will make identification very difficult. Again, if using
ewer samples does not work, we can try the last method that
ill not impact the “real-time” performance, which is to reduce

he number of iterations for each measured dataset. Less iteration
eans more simulation time for each iteration provided the total

ime for identification is fixed. In this way, a more complicated sim-

lation can be finished. However, PSO may need several iterations
o find a good solution. Thus, the method of decreasing number of
terations may not work for complex problem. In this worse case,
f all of the above mentioned three methods fail, we have to resort
o the last method that is to decrease n.
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rdware in the loop simulation.

Decreasing n will result slower simulation, then the prede-
fined number of iterations may not be finished within the time
for measurement. To provide accurate identification, the prede-
fined number of iterations has to be maintained. Thus, the interval
for updating identified parameters has to be increased. This will
limit the applications to problems whose parameters do not change
severely. This situation may be unavoidable and is constrained by
the capability of controller hardware. However, by adjusting n and
the above-mentioned related parameters, we can achieve the best
possible performance out of an existing hardware controller. Any-
way, this problem does not hinder the applications of the proposed
techniques to systems where their parameters of system do not
change rapidly. With the development of computer techniques,
the improved hardware will extend the real-time implementa-
tion techniques to a wider range of applications. In addition to the
above-mentioned possible problems, there are many other issues
to be considered during implementation. For example, the PSO gen-
erated solutions may make the model running unstable, thus the
program should be able to terminate unstable simulations and re-
generate a new stable one. Details of the real-time implementation
of the PSO based identification algorithm are provided in Section 4.

4. Details on real-time implementation of PSO
Compared to offline implementation, real-time implementation
is much more difficult. There are a lot of issues to be considered. For
realtime controller hardware in the loop simulation, we choose to
use dSPACE® controller and Real-Time Digital Simulator® (RTDS).
dSPACE controller enables us to implement our real-time PSO
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Table 1
Functions of the modules in Fig. 5.

Name Function

Init Initialize simulation model before “FC” takes over the flow
control

FC Control the flowing of data by generating triggering signals
DS Down sample the measured data by n-times
HD Hold the output of DS (measured dataset) for identification
Vec2Str Convert vector (measured dataset) to streams of control

inputs
MM1∼5 Simulate the modified model
Str2Vec Save the outputs of MM1∼5 (samples) to vector for

comparison
CalCost Evaluate particles by comparing measured and simulated

datasets
UpdPb Update the peer best particles
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this work. In general, PMSM’s dynamics can be partitioned into two
UpdGb Update the global best particle
UpdXV Update the position and velocity vectors
P1∼5 Store particles in memory for read/write

ased identification algorithms using in Simulink®. The Simulink
ode can be converted to C code through Real-time Workshop
RTW). Thus, the time-consuming C programming can be avoided.
TDS allow us to test our hardware controller in real-time and
nder customizable simulation environment. Through controller
ardware-In-the-Loop simulation, the proposed algorithm can be

ully tested just like through experimental studies. The experimen-
al setup is shown in Fig. 4.

The basic idea of the implementation is to use the same step size
nd sampling time for both measurement and simulations. In this
ay, the identification interval (the time used to identify param-

ters form a measured dataset) is fully under control. Since the
odified model is supposed to simulate n times faster than the

riginal system, the measurement needs to be down sampled by n
imes to match the simulated data as illustrated in Fig. 2.

The block diagram of the PSO based identification algorithm
unning in dSPACE controller is shown in Fig. 5. In the figure,
ve particles are used to identify parameters from measurements.
he simulations of the five particles are conducted in parallel and
ynchronized by the flow control module. The difficulties of this
mplementation include reproducing measured control signal, syn-
hronizing the simulations of modified models, and implementing
he PSO algorithms step by step. Definitions of modules are pro-
ided in Table 1.

The “Init” module initializes the identification algorithm before
he “FC” takes over the flow control. The “Init” block has three out-
uts. The first output is the “enable” signal, which will enable the
FC” block after a preset delay. The delay is used to restrain the
dentification algorithm from running during start up transient. The
econd output ‘Trigger 0’ initializes particles (P1–P5) before using
hem to simulate the modified models. The third output ‘Trigger 1’
s the triggering signal, which can trigger the “HD” block once the
ery first m samples have been measured after startup transient.

The “FC” module ensures desired operating sequence of the PSO
ased identification algorithm. The only input signal is from “Init”
odule. The “FC” module will be enabled once initialization process

s done. The first output is ‘index’, which is input to both “Vec2Str”
nd “Str2Vec” modules. In this way, the outputs in response to the
orresponding inputs can be measured. Among the 6 triggering sig-
als, Trigger 2 is used to initialize the modified system model in
M1∼5. Trigger 3 is used to trigger ‘CalCost’ module after all sim-

lated data have been measured. Triggers 4–6 are used to ensure a
ight PSO updating sequence. The triggering process of correspond-

ng modules is repeated for preset number of iterations. After the
dentification of one measured dataset has been completed, the
FC” module will trigger “HD” module with ‘trigger 7’ to hold a
ew set of measurement for identification.
ting 11 (2011) 2556–2564

The data measured from RTDS is input to “DS” block for down
sampling. The measurement is down-sampled by n times continu-
ously and only the most recent m down-sampled data are recorded
for future usage. Once the “HD” block is triggered, the output of
the down sampling model is held fixed for the PSO algorithm to
identify from which. Besides holding the input and output vectors,
the “HD” block also initiates the simulation of “MM1∼5” modules
and provides measured data to “CalCost” module to compare with
simulated data.

The “Vec2Str” module is used to reproduce the sampled control
signals one after another based on index received from the “FC”
module. The control signal is then applied to “MM1∼5”. The same
index is also input to the “Str2Vec” block, which will record simula-
tion results for evaluation. Since the “index” inputs of “Vec2Str” and
“Str2Vec” are the same, the measured and simulated data can be
synchronized. Once all the m samples have been obtained from all
of the “MM1∼5”, the “FC” module will generate a triggering signal
for “CalCost” module. Then, the “CalCost” module will evaluate the
performance of the particles according to the defined cost/fitness
function.

The “MM1∼5” modules take four inputs. The first input signal
is the initial condition provided by the “HD” module. The second
input is the control signals generated from the “Vec2Str” module.
These two inputs are necessary to simulate the same operating con-
dition as the system. The third input is the reset signal (trigger 5
generated by “FC”), which will initialize the modified simulation
model before a new round of simulation. Once triggered, all the
internal states of the MM modules will be set to the same initial
condition. And the fourth signal is the particles (parameters) to be
evaluated. The output of the “MM1∼5” modules will be measured
and compared with system measurements. During simulation, the
whole control system model should try to be avoided to minimize
simulation time. This can be done by simulating only the small-
est independent module where inputs and internal states can be
measured.

After all samples have been measured for “MM1∼5”, the
“FC” block will trigger the “CalCost” block, which will calculate
cost/fitness of the corresponding particle. Based on the cost/fitness,
the peer best solutions and the global best solution will be updated
in “UpdPb” and “UpdGb” modules respectively. After that, the
“UpdXV” module will update particle information and the above
evaluation process will be repeated until the terminating condi-
tions have been met.

The “global best” is updated periodically and two sets of values
can be displayed, one is the identified parameters, and the other is
the corresponding cost. By observing the cost, we can track the
running of the PSO algorithm and get an idea of how good the
identification is.

5. PMSM parameter identification

5.1. Problem description

To aid advanced controller design for PMSM, it is very important
to obtain an appropriate model of the motor. A good model should
not only be an accurate representation of system dynamics but also
facilitate the application of existing control techniques. Among a
variety of models presented in literature since the introduction of
PMSM, the two axis dq-model is the most widely used in variable
speed PMSM drive control applications. This model is considered in
subsystems, i.e. the electrical system and the mechanical system.
Both subsystems can be described by nonlinear differential equa-
tions. In Park’s dq-axis synchronous rotating reference frame, the
unsaturated electrical model of a sinusoidal PMSM is expressed as
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The contents and dimensions of the inputs and outputs of the

functional blocks are listed in Table 3.

Table 2
PMSM specification.

PMSM parameters Nominal values (unit)

Power rating Pr (kw) 19.8
Rated speed ωr (rpm) 1700
Current at rated speed Ir (Amps RMS) 41.56
Torque at rated speed Tr (N m) 67.27
Voltage constant ke (V s/rad) 1.33
Torque constant kt (N m/Amp) 1.629
Max bus voltage VDC (Volt) 560
Pole pairs np 4
Stator resistance R (�) 0.17
Fig. 6. Control syste

ollows [34,35].

dir
d

dt
= 1
Ld

[vrd − Rsird +ωrLqirq]

dirq
dt

= 1
Lq

[vrq − Rsirq −ωrLdird −ωr mag]
(4)

In (4), ir
d
, irq, vr

d
and vrq are the dq-components of the stator cur-

ents and voltages in synchronously rotating rotor reference frame;
r is the rotor electrical angular speed; parameters Rs, Lq, Ld and
mag are the stator resistance, d-axis and q-axis inductance, and the
ermanent magnet flux linkage, respectively.

The mechanical system of PMSM is composed of the rotor and
ts bearings of PMSM. Mechanical model is built upon the dynamics
f these motional components. The derivative of the rotor electrical
peed (r is expressed by the following motion equation:

dωr
dt

= np 1
J

[
Te − Bωr

np
− TL

]
(5)

In (5), J denotes the inertia of the rotor; np is the number of pole
airs of the machine; B is the viscous friction coefficient, and TL is
he load torque. Te is the electromechanical torque developed by
he machine. This torque can be calculated as:

e = 3
2
np[irq mag + (Ld − Lq)irqird] (6)

Eqs. (4)–(6) complete the description of system dynamics for
MSM. Taking ir

d
, irq and (r as the state variables, and vr

d
and vrq as

ontrol signals (inputs), the model is a highly coupled nonlinear
-input 3-output system in dq-axis reference frame.

In many applications, PMSM operates under various operating
onditions, where various disturbances and parameter variations
re unavoidable and unmeasurable. Often times, datasheet param-
ters only provide us a rough starting point for simulation or
ractical design purposes. They are not accurate enough for the
ntire PMSM operational range. For instance, PMSM stator resis-
ance, Rs, is directly related to motor operating temperature. Its
alue tends to fluctuate up to twice of its nominal value [15]. Likely,
he rotor inertia, J, and the frictional coefficient, B, may vary as they
re coupled with load torques of the motor. Accurate knowledge
f these parameters is important to control system performance.
herefore, it is of our interest to investigate an efficient approach
o achieve precise parameter identification.

The PSO algorithm is utilized here to track PMSM parameters
ased on the traditional dq-model (4)–(6). The model with these
stimated parameters should provide improved accuracy in model-
ng PMSM dynamics when maintaining its simplicity for controller
esigns. Specifically, this work focuses on the identification of the
tator resistance Rs and disturbed load torque TLd that is defined in

7). It is a summation of the actual load torque TL, and the distur-
ances caused by inertia and frictional coefficient variations.

Ld = TL + J̃ 1
np

dωr
dt

+ B̃ 1
np
ωr (7)
el running in RTDS.

In (7), we define J̃ = J − J0 and B̃ = B− B0. J0 and B0 denote the
nominal values of motor inertia and viscous friction coefficient
listed in PMSM datasheet.

Based on the output of the PMSM model, the cost function
for identification performance evaluation of the PSO algorithm is
shown in (8).

C(Rs, TLd) =
m∑
k=1

[(ia(k) − îa(k))
2 + (ib(k) − îb(k))

2 + (ic(k) − îc(k))
2

+w(ωr(k) − ω̂r(k))2] (8)

In (8), the phase currents iabc and the rotor speedωr are the mea-
surable system outputs, îabc and ω̂r are the estimated values of iabc
and ωr, which are calculated from the system model, Rs and TL are
the unknown parameters to be identified, n is the number of sam-
pled data, and the weighting factor w is defined asw =

∣∣iabc∣∣/ |ωr |.
The PMSM control system model running on RTDS is illustrated

in Fig. 6. In this diagram, the motor is applied to a variable frequency
drive system with cascaded PI-controllers. This design is widely
used in industrial motor drive applications. Nominal parameters of
the simulated PMSM are listed in Table 2. During simulation, sev-
eral parameters, i.e. the stator resistance, Rs, motor inertia, J, and
frictional coefficient, B, are defined as variables of time in order
to demonstrate PSO method’s capability to track multiple time-
varying parameters. Since the time-varying inertia and viscous
frictional coefficient can be interpreted as load torque disturbance,
the objective of identification is to identify the disturbed load
torque and stator resistance [R , T ].
s

q-Axis inductance Lq (mH) 1.9
d-Axis inductance Ld (mH) 1.9
Static friction Tf (N m) 0.1483
Damping coefficient B (N m s/rad) 0.00115
Moment of inertia J (kg m2) 0.008

Hamid
Highlight
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Table 3
Input output definitions of function modules in Fig. 5.

Name Inputs Outputs

Contents Dimension Content Dimension

Init Enable 1
Trigger0 1
Trigger1 1

FC Enable 1 Triggers2–7 (1)*6
Index 1

DS Measurement (Va , Vb , Vc , Ia , Ib , Ic , ω, �) 8*1 Samples (VA , VB , VC , IA , IB , IC ,˝,�) 8*1000
HD Samples (VA , VB , VC , IA , IB , IC ,˝,�) 8*1000 Initial condition (Id0, Iq0, �0) 3*1

Inputs (VA , VB , VC) 3*1000
Outputs1 (IA , IB , IC ,˝) 4*1000

Vec2Str Inputs (VA , VB , VC) 3*1000 Input (Va , Vb , Vc) 3*1
Index 1

MM1∼5 Trigger2 1 Output (Ia , Ib , Ic , ω) 4*1
Initial condition (Id0, Iq0, �0) 3*1
Input (Va , Vb , Vc) 3*1
p1∼5 (2*1)*5

Str2Vec Output (Ia , Ib , Ic , ω) 4*1 Outputs2 (IA , IB , IC ,˝) 4*1000
Index 1

Calcost Outputs1 (IA , IB , IC ,˝) 4*1000 Cost/fitness 1
Outputs2 (IA , IB , IC ,˝) 4*1000

UpdPb p1∼5 (2*1)*5 Pbests1∼5 (2*1)*5
UpdGb Pbests1∼5 2*1 Gbest 2*1
UpdXV Pbests1∼5 (2*1)*5 p1∼5 (2*1)*5

Gbest 2*1
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Fig. 7. Parameter identification at sample time of 10 �s.

.2. Simulation results

The real-time PSO based identification algorithm is evalu-
ted in two types of operating conditions, i.e. identification
f time-invariant parameters and identification of time-varying

arameters. Results and discussion are given in following sessions.

.2.1. Identification of time-invariant parameters
Figs. 7 and 8 show simulation results under a sample time of

0 �s. For the 10 �s sample time, the identified parameters will be
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Fig. 8. Comparison between measured data and simulated data.
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Fig. 9. Identification of the stator resistance Rs .

updated every 0.05 s (1000 samples × 10 �s sample time × 5 itera-
tions). If 100 �s sample time is used, the PSO algorithm will update
the identified parameters for every 0.5 s. The realizable updating
frequency is decided by the capability of controller hardware and
the complexity of system model.

From Fig. 7, it can be seen that the PSO algorithm is not run-
ning during the first 0.2 s to avoid the startup transient. Once it
is applied, the algorithm is able to provide good estimation of the
unknown parameters [Rs, TLd] = [0.17, 3] accurately. Since PSO ini-
tialize particles with randomly generated values, there is some
estimation error at the beginning. The estimation accuracy will
improve through time. To avoid the initial estimation error, the
initial estimated parameters can be discarded.

To demonstrate the performance of the identification algorithm,
a comparison between measurement and simulation data is pro-
vided in Fig. 8. In Fig. 8, the measured data are plotted using red
solid lines and the simulated data are plotted using blue dash-dot
lines. (For interpretation of the references to color in this text, the
reader is referred to the web version of the article.) We can see that
the two plots match very well, which means accurate identification.
5.2.2. Identification of time-varying parameters
Figs. 9 and 10 show the identification of time-varying parame-

ters. From these figures, it can be seen that the proposed technique
can identify time-varying parameters successfully. Fig. 11 shows
the entire optimization process of the PSO algorithm. For each run
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Fig. 11. Optimization process of the PSO based identification algorithm.

f the PSO based algorithm, the previously optimized parameters
re used as the initial value. In doing so, the identification pro-
ess for online applications tends to converge faster in terms of
ess number of iterations. This is especially true for systems with
lowly time-varying parameters. From Fig. 11, it can be seen that
he algorithm usually converges within 5 iterations because of a
ood initial guess. But from the figure we can also see that the ini-
ial fitness for the runs of 5, 6, 7, and 8 are not as good as others. This
s because the fitness’s sensitivity to parameter changes is differ-
nt at different operating points. Sometimes, even a small change
n the parameters will result in a large change in the fitness.

. Conclusion

In this paper, PSO based identification algorithm is implemented
nline through faster than real-time simulation and advanced
rogramming. The algorithm is implemented using the most fun-
amental Simulink blocks and Embedded Matlab Functions and the
rogram can be compiled to C code through Real-time Workshop.
he generated C code can run in most modern hardware controllers
uch as the dSPACE controller. The proposed technique is applied
o concurrently identify two parameters in PMSM control system.
imulation results show that the algorithm can successfully iden-
ify both time-invariant and time-varying parameters.

Since PSO is a random search based optimization algorithm,
here is no guarantee that the algorithm can find the optimal
olution within a given number of iterations, even for offline
mplementation. However, similar problem exists for most exist-
ng optimization algorithms. Since PSO based identification does
ot require that system model to satisfy some particular condi-
ions, PSO can solve many problems that are difficult for traditional

lgorithms to handle. If the parameters to identify do not change
everely, previously identified parameters can be used as a good
nitial guess for next round of identification. By doing this, the con-
ergence speed of the optimization process can be significantly

[

[

ting 11 (2011) 2556–2564 2563

increased. This property is very similar to the idea of continuously
online trained neural network based identifier. Simulation results
in Section 5 show that PSO based identification algorithm can pro-
vide good identifications consistently. The proposed techniques can
be implemented with most modern popular hardware controllers
and can be extended to a wide range of online identification and
optimization problems.

There are two frequently asked questions about papers related
to PSO applications. One is that why PSO is used not one of many
other computational intelligence algorithms like genetic algorithm,
ant colony, memetic algorithm, differential evolution, etc. The other
is the request to compare performance between different algo-
rithms. The comparative study between PSO and other type of
algorithms is not conducted in this paper for the following rea-
son. First, every popular type of algorithm has many new versions
and improvements, which becomes available every day. Even for
some specific version, different parameter setting and implemen-
tation will lead to different performance. If a comparative study
is conducted, the conclusion can only be that one specific ver-
sion of A algorithm performs better than another specific version
of B algorithm under specific conditions. It will be problematic and
inconvincible to claim one algorithm is better than the other algo-
rithm. Since it is impossible to cover all recent developments of
one type of algorithm, quantification study may not be as good as
qualitative analysis. Some very good comparative studies can be
found in [36–39]. In this paper, the authors chose to constrain the
scope of the paper to the real time implementation of one algorithm
(PSO) of the basic version. The implementation details can be easily
modified according to different versions of PSO and can also help
the real time implementation of other computational intelligence
algorithms.
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