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a b s t r a c t

Phasor measurement unit (PMU) plays an important role in operation, protection, and control of modern
power systems. PMU provides real time, synchronized measurements of bus voltage and branch current
phasors. It is neither economical nor possible to place all the buses of the system with PMUs because of
their high cost and communication facilities. Attaining the minimal number of PMUs to access an
observable power system is the main objective of optimal PMU placement (OPP) problem, which is solved
by utilizing different techniques. Graph theoretic and mathematical programming procedures have been
first introduced to solve OPP problem, aiming to access power system observability. Heuristic method as
an experience-based technique is defined as a quick method for obtaining solutions for optimization
problems, in which optimal solutions are not achievable using mathematical methods in finite time. This
paper provided the literature review on different heuristic optimization methods to solve the OPP
problem. Then, the available methods were classified and compared with different points of views. Results
from the tests of researches on heuristic algorithms with and without the consideration of zero-injection
buses were compared and superiorities of the introduced heuristic concepts were demonstrated with
relative to each other.

& 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

State estimation (SE) is an imperative process for monitoring
power system and ensuring the system security considering con-
tingency experiments and optimal power flow [1]. Previously, remote
terminal units (RTUs) were responsible for collecting measurements
like real/reactive power flows, power injections, and magnitude of
bus voltages and branch currents for supervisory control and data
acquisition (SCADA) system as the source provider of SE [2]. Syn-
chronized phasor measurements (SPM) are introduced as an efficient
tool to operate, protect, and control the power system [3]. Phasor
measurement unit (PMU) was introduced in the 1990s utilizing in
wide area monitory systems (WAMS) for producing synchronized
measurements of bus voltage and branch current phasors in real-time
[1,2]. Employing a synchronized signal obtained by global positioning
system (GPS) with the accuracy of better than 1 ms provides synchro-
nized measurements by PMU usage. A high value of sampling for
PMUs and obtaining linear state estimators by PMU measurements
ensures high speed of voltage control system compared to conven-
tional SCADA/EMS systems [4].

At the beginning, local measurements were utilized to control
power system until real-time phasor measurement technology was
introduced. Phasor measurements enable the control of power
system using remote measurements. Advantages of remote mea-
surements include imputing measurements to the controlled device
at high speed and being utilized as a feed-back signal in the
controller [3]. Local signals, local measurements, and a mathema-
tical model of the external world such as external equivalents were
the base of control process. Processing phasor measurements in the
0.2–2.0 Hz range, in which the time tagged phasor data make the
capability of providing actual state of the system control a short
time in the past. To motivate the control process of the power
system, 15–60 Hz frequency is required for the measurements [5].
Synchrophasors have the strength of monitoring angles to discover
probable instabilities and discrete switching controls in order to
militate against these events in the control of power system [6,7].
Early applications with continuous feedback aimed at the problems
in which the control objective was global in nature: for example, an
HVDC controller may be called upon to damp electromechanical
oscillations between two widely separated areas of a power system
[5]. A model based on PMU data was presented in [8] for small
signal stability analysis of power systems. A prony analysis based
method was used in [9] for online inter-area oscillation monitoring.
Application of wavelet transform and Hilbert–Huang transform for
identifying the inter-area modes utilizing PMU data was also
studied in [10]. Some other applications of PMUs in power system
include power system state estimation [4,11], wide area control and
monitoring [12,13], fault location and detection [14,15], wide area
protection [16], transient stability analysis and prediction [17],
thermal monitoring of transmission lines [18], and online steady
state angle stability monitoring [19].

A PMU installed in a bus can provide synchronized measurement
value of voltage phase of that bus and also current phasors of some or
all the adjacent and connected lines to that bus. Reaching an
observable system needs enough measurements of state estimations,
which makes the placement problem [20]. The system is completely
and directly observable if all the buses are PMU installed; but, it is
neither economical nor possible due to the high cost of PMUs [2].
Therefore, obtaining the optimum number of PMUs and their

configuration in the system is propounded as a considerable chal-
lenge called optimal PMU placement (OPP) problem.

To solve the OPP problem, different optimization techniques have
been presented in the literature which can be generally divided into
two main groups of conventional techniques and heuristic algorithms.
Linear programming (LP), non-linear programming (NLP), dynamic
programming, and combinational optimization are themain employed
methods of the first group. Advanced heuristic algorithms, not only
analyze the system observability, but also dominate some difficulties
of conventional methods such as PMU failure or branch outage.
Sensitivity constraint [21], lack of communication in substation con-
straint [22], critical measurements [23,24], fault observability [25], and
mean square error (MSE) [26,27] are other objects that have been
considered by heuristic optimization algorithms.

This paper reviewed the most popular heuristic optimization
tools for solving the OPP problem. Section 2 describes the
formulation of the OPP problem. Section 3 provides an explanation
for the heuristic methods utilized to solve OPP problem and a
multi-dimension comparison between the presented algorithms. A
comprehensive comparison from different aspects is provided in
Section 4. And, Section 5 exhibits the conclusion of this paper.

2. Formulation of optimal PMU placement problem

Numerical and topological observability are two major techniques
for analyzing system observability. The former suffers from high
matrix calculation difficulty; therefore, it is not greatly employed for
the observability analysis of systems. A system is called topologically
observable when a full rank of spanning tree is obtained. There are
some efficient rules which can simplify and improve topological
analysis. These rules are illustrated in the following.

1. Voltage phasor of a PMU-equipped bus and current phasors of
all joint lines are available as illustrated in Fig. 1. These
measurements are called direct measurements. In Fig. 1, bus-
1 is a PMU installed bus; so, the voltage phasor of bus-1 and
current phasors of joint branches are known following rule 1.

2. Knowing both voltage and current phasors at one end of a line
ensures the observability of the other end by providing voltage
phasor, as presented in Fig. 2. These measurements are called
pseudo-measurements. In Fig. 2, voltage phasor of bus-1 and
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Fig. 1. PMU placement rule 1: observability with direct measurements.
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current phasor of the line between bus-1 and bus-3 are
calculated; so, by utilizing rule 2, voltage phasor of bus-3 can
be obtained.

3. Considering a line with the known voltage phasors for both
ends, the current phasor of this line can be calculated as shown
in Fig. 3. These types of measurements are also called pseudo-
measurements. In Fig. 2, voltage phasors of bus-2 and bus-3 are
known; so, following rule 3 current phasor of the branch
between bus-2 and bus-3 will be available.

4. Considering a zero-injection bus, if current phasors of all joint
lines are known, except one, the current phasor of the unknown
line can be calculated utilizing KCL equations. This situation is
illustrated in Fig. 4. In this figure, bus-3 is zero-injection bus and
current phasors of the line between bus-3, and bus-1, and also
current phasor of the line between bus 3, and bus-2 is available.
So by using rule 4 current phasor of the line between bus-3 and
bus-4 will be known as mentioned in the fourth rule of
observability rules.

5. Considering a zero-injection bus with unknown voltage phasor,
if voltage phasors of all adjacent buses are known, by utilizing
node equations, the voltage phasor of zero-injection bus can be
obtained as presented in Fig. 5. In this figure, bus-3 is a zero-
injection bus and voltage phasors of three adjacent buses
including bus-1, bus-2 and, bus-4 are available. By utilizing
node equations, voltage phasor of bus-3 is known.

6. Considering a group of adjacent zero-injection buses with
unknown voltage phasors in which the voltage phasor of all
the adjacent buses to the group are known, the zero-injection
buses are observable utilizing both KCL and KVL equations. This

condition is presented in Fig. 6, in which a group of zero-
injection buses including bus-3 and bus-4 has unknown
voltage phasor; but, the voltage phasors of adjacent buses to
the mentioned group which includes bus-1, bus-2, bus-5 and,
bus-6 are known. Following rule 6, the voltage phasors of bus-3
and bus-4 will be available.

Considering different objective functions for investigating the
system observability, optimal placement of PMUs in power system
has been presented in many works in this area. The objective
functions which have been handled by utilizing heuristic algorithms
include minimizing number of PMUs, maximizing measurement
redundancy, handling contingency constraint such as one PMU/line
outage or failure of one PMU and, one line outages in the system.
Definition of each objective function that could be considered in
solving OPP problem is given in the following section.

Minimum number of PMUs: The main objective of the OPP
problem is to determine the minimum number of PMUs and
their appropriate placements to ensure full observability of
power system. The constraint of the problem is in accessing a
completely observable power network. So, the main objective
function can be mathematically presented as follows:

Min
XNbus
j

Sij

0
@

1
A

s:t: A:SZ I

I ¼ ½1 1 1 ⋯ 1�TN�1 ð1Þ

SðiÞ ¼
1; if bus i is a PMU equiped bus
0; otherwise

( )
ð2Þ

Aði; jÞ ¼
1; if i¼ j

1; if buses i and j are connected
0; other wise

8><
>:

9>=
>; ð3Þ

Measurement redundancy: Another aspect of solving the OPP
problem is measurement redundancy which has been consid-
ered as objective function in some works. Typically, the number
of redundant measurement of each bus or the number of times
each bus is observed, either directly or indirectly, is defined as
measurement redundancy. So, to ensure full observability of
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Fig. 4. PMU placement rule 4, observability of ZI buses using KCL equations.
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Fig. 2. PMU placement rule 2, observability of bus voltage using pseudo
measurements.
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Fig. 3. PMU placement rule 3, observability of line current using pseudo
measurements.
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power system, measurement redundancy value for each bus of
the system should be at least one. Thus, another objective
function could be defined as maximizing measurement redun-
dancy in the electric network.
Contingency constraints: Different kinds of contingencies could
occur in the power system. Power system instability usually
occurs after contingencies. So, it is essential to analyze the
system observability in these conditions which include line
outage and PMU failure. To find the minimum number of PMUs
and their configuration, while tolerating one line outage or one
PMU failure in power system, several heuristic concepts have
been utilized [28].

3. Heuristic algorithms applied to the OPP problem

3.1. Genetic algorithm (GA)

Modeling natural selection is the base of genetic algorithm (GA)
which does not need any secondary functions such as derivatives
computation. Some positive characteristics of GA which make it
more usable in optimization problems are as follows:
(a) probability of local minimum trapping is decreased,
(b) computations of going from one state to another is declined,
and (c) evaluation of the fitness of each string guides the search
[29].

Pareto-optimal solutions obtained by a non-dominated sorting
genetic-based algorithm (NSGA) which is a combination of graph-
theoretical concept and GAwas adapted in [30] to reach the minimum
number of PMUs installed in a power system. The proposed method
considered two competing objectives including minimizing the num-
ber of PMUs and maximizing the measurement redundancy in the
OPP solution. Unlike most of the applied procedures, the entire Pareto-
optimal solutions exist for the OPP problem, instead of a single point
solution. Important steps including crossover, mutation, and popula-
tion are mentioned to be problem-dependent, where crossover values
are in high probable value; regardless of mutation probability, cross-
over would be a good choice for NSGA parameters. Different crossover
and mutation probabilities are applied to reach several and common
Pareto-optimal fronts. Repairing infeasible solutions which confront
computation analysis with difficulty narrows the application of this
method in plenty of optimization problems.

In [31], formulation of the OPP problem was taken by a topology-
based algorithm and GA was used as a solution for this problem. This

method considered zero-injection buses in a power network for
solving the OPP problem. A comparison of the results between
utilized method and earlier applied solutions was also made. Achiev-
ing completely observable power system utilizing GA algorithm was
presented in [32], which could successfully provide a solution for the
OPP problem considering two important objectives including (i) one
PMU/branch outage and (ii) maximum redundancy in the system
observability. Crossover and mutation were applied as two operators
of GA method to cause the accurate number of PMUs for solving the
OPP problem. Observing maximized redundancy in the number of
buses was the result of optimum location of PMU determination.
There was an increase in the number of PMUs which was needed to
make the system observable when it had branch/PMU failure.

A solution for the OPP problem using genetic algorithm-based
procedure was presented in [33]to make the system observable for
utilizing in linear state estimation. A new generation with fitness
evaluation for a new population, started by opting crossover and
mutation of individuals from the old population.

3.2. Particle swarm optimization (PSO)

A similar method to GA in which a population of random
solutions is initially given to the system is particle swarm optimi-
zation (PSO). Particles remark the individuals that are flown
through the multi-dimensional space. The best position for each
particle is obtained by the best solution (fitness) faced by itself and
its neighbors. As mentioned, the process of this algorithm starts
with an initial position and velocity for each particle, in which the
velocities are bounded due to not flying in unusable fields and also
overflowing forbiddance [34].

A new concept for solving the OPP problem and reaching a
completely observable network which satisfies the constraints of
PMU loss or a transmission line outage was presented in [35], which
was marked utilizing a modified binary particle swarm optimization
(BPSO) method. BPSO algorithm is a discrete binary version of PSO in
which variables can only take 0 and 1 values. The rules presented in
topological observability in the majority of papers have been com-
pleted in the presented paper by developing the new rule based on
analyzing the observability of a group of zero-injection buses to reach
maximum usage of the existing data. As mentioned in the formulation
of the OPP problem in the present paper, this rule ensures the
observability of zero-injection buses whose adjacent buses had known
values. Results of the presented method and different algorithms were
compared in different situations including normal condition and a
PMU/branch outage.

Difference in the cost of different PMU installation in a power
system and the dependent factors including line adjacency num-
bers at the bus and communication conditions was introduced in
[36]. In this paper, the latter factor was introduced in the presented
optimization tool to find the best solution and prove that this tool

Zero -
injection

V

V

V

V

1

23

4

Fig. 5. PMU placement rule 5, observability of a zero-injection bus with unknown
voltage phasor.
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Fig. 6. PMU placement rule 6, observability of adjacent zero-injection buses with
unknown voltage phasors.
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was better than the conventional methods. So, this paper not only
found the maximum number of PMUs, but also computed the cost
of different installations of the minimum number of PMUs and
opted the best one with minimum installation cost.

An observability analysis considering PMU loss based on con-
trol reconfigurability criterion was introduced in [37], which
employed the PSO method to reach the minimum number of
additional PMUs installed in a power network. Control reconfigur-
ability method that formulates fault-tolerant PMU installation
problem in a power system at the given numbers of PMUs, utilized
this method as a constraint to install PMUs in the network. A
rectification version of BPSO was used to solve the OPP problem as
a higher optimization tool.

Solving the OPP problem for making a power system totally
observable and maximizing measurement redundancy at the
buses of the system was accomplished by a BPSO in [38]. This
method was presented considering measurements with and with-
out injections such as zero-injection or measured injections; also,
flow measurements were considered in another phase.

3.3. Simulated annealing (SA)

Simulated annealing (SA) is a procedure for solving compli-
cated combinatorial optimization in which the current solution is
randomly altered. The new solution is the worse alteration with
the probability that is reduced as the computation proceeds. An
optimal solution for a large combinatorial optimization problem
needs a fit perturbation mechanism, cost function, solution space,
and cooling schedule to be solved by SA. Sufficiency of SA can be
found by searching a large-scale system and obtaining good speed
in terms of finding an optimal or near-optimal solution [29].

A solution for pragmatic communication-constrained PMU
placement problem is SA method which is utilized to solve the
OPP problem based on incomplete observability in [39]. Optimal
locations of PMUs based on a desired depth of unobservability and
impact of depth of unobservability on the number of PMUs were
presented in this paper. There was a relationship between the
certitude of state estimation of unobserved buses and a given
unobservability depth. Lower depths of unobservability caused a
particulate state estimation. This method provided optimal PMU
installation for estimation with available communication facilities
and certified that the unobserved buses were far from the
observed buses.

To detect bad data in a power network which turns the
measurement to critical measurement (CM), utilizing PMU instal-
lation is considered. Any bad data detection incidentally needs a
critical measurement free. To identify critical measurement, sev-
eral methods have been proposed; this paper used residual
analysis to identify critical measurement. The absence of critical
measurement means a power system that loses single measure-
ment. A solution for the OPP problem to make a power system
topologically observable, considering bad data revelation using SA,
was presented in [23].

A similar method as a stochastic concept of simulated anneal-
ing (SSA) was introduced in [24]. A hybrid genetic algorithm and
simulated annealing (HGS) was used as a solution for the OPP
problem and a comparison organ with the results of SSA method.
Difference between a system in its normal situation and with
critical measurement free is observable, when for the second
system, losing any single branch does not impact the observability
of the power system.

Better usage of specific PMU measurement values and acces-
sing highly sensitive system data were considered in [21] to
optimally install PMUs for making power network completely
observable. Reaching initial PMU configuration to have a system
with full observability was analyzed by an observability topology

algorithm based on incidence matrix. Sensitivity constrained OPP
detection and completely observable power systemwere solved by
applying simulated annealing (SA) method. Dynamic character of a
network could be better defined by the data with high sensitivity.

3.4. Differential evolution (DE)

Differential evolution (DE) concept employs N-dimensional
element vectors to minimize ongoing space functions. Mutation,
crossover, and selection are the principle operators utilized to
carry out the global optimization. This heuristic method could be
widely used in different cost function problems such as non-
differentiable, non-linear and, multi-modal functions. Parallel
computations, easy usage, and good convergence properties are
other benefits of this approach [40].

In [41], the authors presented multi-objective OPP using a non-
dominated sorting differential evolution (NSDE) algorithm which
is an organic integration of Pareto non-dominated sorting opera-
tion and differential evolution algorithm (NSDE). In addition to
solving the OPP problem this concept considered maximum
measurement redundancy and voluntary PMU failure to reach a
completely observable network. Usage of DE algorithm obtained
from GA led to proposing NSDE algorithm procedure. Achieving
particular and complete Pareto front and finding many Pareto-
optimal solutions were mentioned as the betterment of this
procedure.

A minimal PMU placement method by DE was presented in [25],
which analyzed network fault observability. Reaching the minimum
number of PMUs required for system observability was discussed by
utilizing integer linear programming (ILP), which provided an
optimal solution by DE method. Three operators containing muta-
tion, recombination, and selection process were functioned in this
concept until the stopping criteria was accessed. Finally, solutions
for the OPP problem considering fault observability were given
considering the system with and without zero-injection.

A DE concept for optimally placing PMU to access state estima-
tion with minimum mean square error (MSE) was discussed in [26],
which considered the power systemwith and without conventional
measurements. Utilizing conventional measurements moreover
than PMU usage in the system, is to reach lower cost and also, get
more accurate state estimation. This presented algorithm optimally
provided a global solution in test systems which were benchmarked
by state estimation. Also, the best solution was opted using the
formulated procedure.

The presented DE procedure in [27] provided a method for
minimal PMUs and their configuration in the power system to
analyze the observability of the system. Reaching minimum MSE
for the system was also considered by DE method, which
employed mutation, recombination, and selection as main opera-
tors. Results of the proposed model were compared with other
methods to show the minimal reached number of PMUs compared
to others.

3.5. Tabu search (TS)

Tabu search (TS) is an adaptive algorithm that utilizes many
other methods such as linear programming algorithms and heur-
istic concepts. This procedure is presented to solve the combina-
tional optimization problems in scheduling and covering. Tabu list
which is one of the main elements of TS consists of the number of
recently visited states plus a number of unwanted states. Other
main elements of TS are aspiration, diversification, and definition
of a state and the surrounding area. There is a reset in TS when it is
not converging [42].

A Solution for the OPP problem solution in terms of reaching a
completely observable power system and enough redundancy
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using TS based on the linear state estimator model of a systemwas
presented in [43]. This fast method of topologically observability
analysis needed loss computation function based on incidence
matrix for solving the OPP problem and was highly robust.
Comfortableness and high speed of accessing an observable power
system by the manipulation of integer numbers is also concerned
by this method.

Most of the observability analysis techniques utilize topological
method, while a combination of a numerical method with tabu
search (TS), called recursive tabu search (RTS), was presented to
reach a completely observable network with maximum redun-
dancy in [44]. This optimization method found the best solution of
the executions where the initial solution always obtained from
greedy algorithm was utilized as executed recursively. This proce-
dure considered the methods including MTS approach to reach the
minimum number of PMUs as a solution for the OPP problem. The
simulation results on IEEE networks held out that RTS was more
empirical than MTS. A comparison of this solution with others was
also made.

A new parallel tabu search (TS) for solving the OPP problem
providing a shorter process time was presented in [22], which
introduced four parallel spaces created by state division. Each of
the newly obtained spaces was analyzed by Tabu list. In this
method, a graph theory concept was utilized to reach an initial
configuration for power system. Considering a constraint called
lack of communication in substations was another phase of this
paper. Two other methods called “Step Elite Solution” and “PMU
Site Selector” were operated to calculate the functioned energy.
Finally, an optimal solution for the OPP problem was obtained for
the system considering the system with and without constraint.

The objective in [45] was to solve the OPP problem using
different methods to reach the minimal PMUs while analyzing
complete observability of a power system by considering of
observability constraints. Moreover than TS, PSAT software was
utilized to compare different results of each method. Different
algorithms have been applied in PSAT to analyze the system
observability and obtain the minimum number of PMUs, which
have illustrated the efficiency of the proposed method.

3.6. Ant colony optimization (ACO)

Another concept utilized for presenting a solution to optimiza-
tion problems is ant colony optimization (ACO) which initially uses
a population of ants. Role of the colony of ants is to move through
adjacent states of the problem by applying a stochastic local
decision optimal controller (policy), which results in the solution
for the optimization problem. Pheromone trail evaporation and
daemon actions are other processes in ACO. Computational pro-
blems can be reduced using ACO to find good paths through
graphs [46].

In [47], optimal PMU placement problem for obtaining an
observable power system with the minimum number of PMUs
and considering maximum measurement redundancy was solved
by utilizing an improved ACO. Depth first search as a graph
theoretic method was applied to build a measurement tree so
that the network observability could be analyzed. Efficient calcu-
lation and equivalency between the exploration of new solution
and that of aggregated problem learnt were mentioned as char-
acteristics of ant colony system (ACS). Development of ACS by an
adaptive stochastic perturbing ACS (ASPACS) was proposed in this
paper to adaptively conduct the pheromone trail persistence
coefficient (PTPC) and stochastic perturbing progress (SPP).

Providing the OPP solutions containing approximate solutions and
global solutions considering maximum measurement redundancy in
a power system was presented in [48] using a recursive method. An
adaptive clonal concept (CLONALG) utilized recombination which

could increase process velocity is presented. Feasible solutions scope
was propagated by proposing a function which simplified an
extended scheme access for engineers. Finally, a comparison was
made between results of this method and adaptive GA and SGA.

3.7. Mutual information (MI)

An information-theoretic approach for solving OPP problem
considering, not only accessing a completely observable network,
but also modeling the uncertainties in the system states, which
used mutual information (MI) between the PMU measurement
values and network states was presented in [49]. DC model was
assumed in this paper, since the analytical DC model of the power
system was the base of MI criterion. Analyzing the power system
with and without conventional measurements and PMU loss was
also considered in this paper.

3.8. Iterated local search (ILS)

Searching a smaller subspace defined by the solutions which
are local optima, instead of the whole space of solution, is the
main viewpoint of iterated local search (ILS). By utilizing an
embedded heuristic, a sequence of solutions is provided in which
the best solution is obtained if one were to utilize repeated
random trials of that heuristic [50].

Optimal PMU placement concept presented in [51] has two steps
including an initial PMU dispensation to access an observable system
by utilizing an iterated local search (ILS) to find the minimum
number of PMUs needed to make a network completely observable.
In this method, page Rank placement algorithm (PPA) is used to
evaluate the importance of each node. To denote an initial config-
uration for network and then the OPP problem, a repeated process
introduced in which removing one of the PMUs maintains full
observability to access the minimized number of PMUs. In another
phase, a greedy algorithm which has high performance, low com-
plexity, and easy usage in large-scale networks is presented.

3.9. Immune genetic algorithm (IGA)

Immune genetic algorithm (IGA) was used in [52] to solve the
optimal PMU installation using three impactful vaccines to make a
power network topologically observable. Vaccination and immune
options are the two steps that appear in an IA method to protect
against bacteria and viruses. The incorporation of local knowledge
and prior information of OPP problem is the base of vaccination.
IGA which is used to make the results more optimal considers two
operators including crossover and mutation. A remarkable growth
in converging speed via this algorithm and its efficiency was
displayed when familial reproduction was prevented by studying
a new effect in the algorithm.

3.10. Imperialistic competition algorithm (ICA)

Imperialistic competition algorithm (ICA) is a newly developed
method for solving different optimization problems. Similar to
other heuristic algorithms, ICA starts with an initial population
which is called country and is in two kinds of colonies and
imperialistic. Competition between these countries results in the
minima of the problem. Ability of ICA in usage in a wide scale of
optimization problems has been confirmed by testing on different
benchmark functions [53].

Two competitive objectives including different placement solu-
tions to find the minimum number of PMUs to access an
observable power system and providing maximum redundancy
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of the system that provides more accurate measurement values
was presented by the new method based on binary imperialistic
competition algorithm (BICA) as the OPP problem solving concept.
This method considered different cautionary situations such as
single branch outage or PMU disturbance and also considerations
such as zero-injection buses. In this paper, an additional rule was
proposed to topological observability rules such as [23], which
ensures the observability of a zero-injection buses group in which
the phasor of adjacent buses are observed and this rule results in
the lesser number of PMUs needed for accessing the observable
network. Fast isotropy, small running time, and zero standard
deviation were mentioned as the advantages of the proposed
method [28].

3.11. Biogeography based optimization (BBO)

Biogeography based optimization (BBO) mathematically mod-
els the migration quality of species from one island that is
technically called habitat to another, arising and extinction cir-
cumstance of species. This procedure is utilized to solve the
optimization problems by dynamic fitness landscapes and also
introduce emigration and immigration quality of species within
the habitat. This method works under two operators of migration
and mutation [54].

A multi-objective method which tries to minimize the number
of PMUs to reach a completely observable system and maximize
the measurement redundancy due to state estimation was pre-
sented as a multi-objective biogeography based optimization (MO-
BBO) in [55]. Since there was no single optimal solution in this
optimization method, a non-dominated sorting and crowding
function was applied to provide Pareto-optimal solutions and a
fuzzy-based operator was used to achieve the best compromise
solutions.

A similar method was introduced in [20] considering normal
and contingency situations which included line outage and PMU
failure. Recognition of strategic locations and usage of virtual
reduction technique were mentioned to decrease the number of
system nodes.

3.12. Matrix reduction

A coverage matrix exists for all the placement problems inwhich
the coverage range is demonstrated by the matrix when a facility is
installed in different positions. Scale of the problem is obtained by
coverage size. Matrix reduction method tries to provide the optimal
solution by reducing the incidence matrix [56].

Obtaining the minimum number of PMUs to access a fully
observable network and simplify computation function by utilizing
an algorithm based on eliminating a virtual data and a matrix
reduction algorithm was presented in [56]. As mentioned, the first
step is the elimination of virtual buses because there is big
optimization on problem magnitude based on the coverage matrix
size and increase in system criterion in the essence of enormous
size of virtual buses. The OPP problem was ideally solved when a
full empty coverage matrix is obtained. Finally, PMUs were opti-
mally installed by a combination of matrix reduction algorithmwith
greedy algorithm. Lagrangian relaxationwas also utilized to demon-
strate the close relationship of the obtained minimum set with the
optimal one.

3.13. Chemical reaction optimization (CRO)

A recently established heuristic method called chemical reac-
tion optimization (CRO) based on population was introduced to
solve optimization problems. Obtaining a lower energy stable state
by simulating the action and reaction of molecules in a chemical

reaction was the main process of CRO, which aimed to reach the
minimum state of free energy. Applying the CRO to benchmarks
and practical problems showed its high efficiency [57].

Table 1
Test systems data.

Test
system

Number of
branches

Number of zero-
injection buses

Location of zero-injection buses

IEEE_14 20 1 7
IEEE_30 41 5 6–9–11–25–28
IEEE_39 46 12 1–2–5–6–9–10–11–13–14–17–

19–22
IEEE_57 78 15 4–7–11–21–22–24–26–34–36–

37–39–40–45–46–48
IEEE_118 179 10 5–9–30–37–38–63–64–68–71–

81

Table 2
Comparison between results of optimal PMU placement algorithms considerin test
systems with zero-injection buses.

Method Test systems

14-
Bus

30-
Bus

39-
Bus

57-
Bus

118-
Bus

Genetic algorithm (GA) [31] 3 7 9 12 29
Genetic algorithm (GA) [33] 3 7 – 12 29
Binary particle swarm optimization (BPSO)
[35]

3 7 8 11 28

Binary particle swarm optimization (BPSO)
[38]

3 7 – 13 29

Simulated annealing (SA) [39] 3 7 – 11 –

Recursive tabu search (RTS) [44] 3 7 8 11 28
Immune genetic algorithm (IGA) [52] 3 7 – 11 29
Binary imperialistic competition algorithm
(BICA) [28]

3 7 11 28

Matrix reduction [56] 3 8 – 12 29
Chemical reaction optimization (CRO) [58] 3 7 14 29

Table 3
Comparison between results of optimal PMU placement algorithms considering
test systems without zero-injection buses.

Method Test systems

14-
Bus

30-
Bus

39-
Bus

57-
Bus

118-
Bus

Differential evolution (DE) [27] 4 10 13 17 –

Genetic algorithm (GA) [31] 4 10 13 16 32
Binary particle swarm optimization
(BPSO) [38]

4 10 – 17 32

Iterated local search (ILS) 4 – – 17 32

Table 4
Obtained minimum number of PMUs for different test systems considering the
system with and without zero-injection buses.

Test
systems

Minimum
number of
PMUs
considering
zero-injection
buses

Percentage of
buses equipped
with PMU
considering
zero-injection
buses

Minimum
number of
PMUS without
considering
zero-injection
buses

Percentage of
buses equipped
with PMU
without
considering
zero-injection
buses

14-Bus 3 21.43 4 28.57
30-Bus 7 23.33 10 33.33
39-Bus 8 20.51 13 33.33
57-Bus 11 19.30 16 28.07
118-Bus 28 23.73 32 27.12
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OPP problem solving for reaching a fully observable power system
considering the network with and without zero-injection was dis-
cussed by utilizing a new heuristic concept called CRO and the
simplified model of CRO (SCRO). On-wall ineffective collision was
the only reaction introduced in SCRO, while four reactions were
utilized in canonical CRO. More efficiency, well adaption, simple
structure and shorter time requirement remarked as SCRO priority
over CRO. Only approximate solution generation was obtained by an
operator in SCRO, while infeasible solutions might be provided by
decomposition and synthesis operations in canonical CRO method
[58].

3.14. Bacterial foraging algorithm (BFO)

Tendency of natural selection to animal omission with poor
foraging strategies which function to locate, handle, and ingest
food and propagation of the genes of successes animal in foraging
strategies since they are more likely to reproductive success
enjoyment. Poor foraging strategies are either eliminated or
redesigned after many generations. Chemotaxis, swarming, repro-
duction, and elimination and dispersal are four operators used in
the proposed bacterial foraging optimization (BFO) [61].

Ref. [2] formulated OPP problem by utilizing a mathematical
procedure called integer linear programming (ILP) and a new optimi-
zation concept based on BFOwhich analyzed complete observability of
a power system. This method considers the system with and without
conventional measurements such as zero-injections or flows and
reaches a high measurement redundant value. Only one installation
solution is exhibited per studied case obtained between several
solutions to compare the results with those of other methods.

3.15. Artificial bee colony (ABC)

The basis of artificial bee colony (ABC) algorithm is to examine
the behaviors of real bees in terms of finding nectar and sharing
the information of food resources to the bees through waggle
dance in the hive. Three essential components of this method
include food sources, employed foragers and, unemployed fora-
gers. The basic motivation factors of CLA algorithm are direction of
food resources, distance of food resources, and information about
the quality of food resources. The proposed algorithm in [62] could
be utilized to solve uni-modal and multi-modal numerical opti-
mization problems.

A multi-objective OPP (MOPP) algorithm, named as binary
coded ABC, was proposed in [59] to solve OPP problem and
achieve the minimum number of PMUs and maximum redun-
dancy of the system. Contingency constraint situation such as
single branch outage was taken into account and configurations of
the minimum number of required PMUs were determined.

3.16. Cellular learning automata (CLA)

Cellular learning automata (CLA) algorithm is based on the
usage of learning automata (LA) to the state transition probability
adjustment of cellular automata (CA). This method starts by
specifying the internal state of every cell. Then, the reinforcement
signal for each LA is determined on the basis of the rule of CLA.
Finally, as for supplied reinforcement signal and action chosen by
the cell, each LA updates its action probability vector. The desired
state will be reached by continuing this process [63].

Table 5
Optimal PMU placements for obtained minimum number of PMUs considering the power system with zero-injection buses.

Test
system

PMU placements (Bus no.) Reference

14-Bus 2, 6, 9 [2], [20], [22], [28], [31], [35], [38], [41], [43], [44], [52],
[58], [59], [60]

30-Bus 1, 5, 10, 12, 15, 18, 29 [20]
1, 2, 10, 12, 15, 20, 27 [31]
2, 3, 10, 12, 18, 24, 27 [35], [60]
1, 7, 10, 12, 19, 24, 27 [38]
1, 5, 10, 12, 18, 23, 27 [44]
1, 5, 10, 12, 18, 24, 27 [44]
3, 5, 10, 12, 18, 23, 27 [44]
3, 5, 10, 12, 18, 24, 27 [44]
1, 5, 10, 12, 19, 24, 27 [44]
2, 4, 10, 12, 18, 24, 27 [44]
1, 2, 10, 12, 18, 24, 27 [44]
1, 5, 10, 12, 18, 24, 30 [52]
2, 4, 10, 12, 15, 19, 27 [28]
1, 7, 10, 12, 19, 23, 27 [58]

39-Bus 3, 8, 13, 16, 20, 23, 25, 29 [31]
3, 8, 12, 16, 20, 23, 25, 29 [35]

57-Bus 1, 5, 13, 19, 25, 26, 32, 38, 41, 51, 54 [31], [35]
1, 4, 13, 19, 25, 29, 32, 38, 41, 51, 54 [44]
1, 4, 13, 20, 25, 29, 32, 38, 51, 54, 56 [44], [59]
1, 6, 13, 19, 25, 29, 32, 38, 51, 54, 56 [44], [52]
1, 6, 13, 19, 25, 29, 32, 38, 41, 51, 54 [44]
1, 4, 13, 20, 25, 29, 32, 38, 41, 51, 54 [44]
1, 5, 13, 19, 25, 29, 32, 38, 41, 51, 54 [28]

118-Bus 2, 8, 11, 12, 17, 21, 25, 28, 33, 34, 40, 45, 49, 52, 56, 62, 72, 75, 77, 80, 85, 86, 90, 94, 101, 105, 110, 114 [35], [60]
3, 8, 11, 12, 17, 20, 23, 29, 34, 37, 40, 45, 49, 53, 56, 62, 73, 75, 77, 80, 85, 86, 91, 94, 101, 105, 110, 115 [44]
3, 8, 11, 12, 19, 22, 27, 31, 32, 34, 37, 40, 45, 49, 53, 56, 62, 75, 77, 80, 85, 86, 90, 94, 101, 105, 110 [44]
3, 8, 11, 12, 17, 20, 23, 29, 34, 37, 40, 45, 49, 52, 56, 62, 71, 75, 77, 80, 85, 86, 90, 94, 102, 105, 110, 115 [44]
3, 8, 11, 12, 19, 21, 27, 31, 32, 34, 37, 42, 45, 49, 52, 56, 62, 72, 75, 77, 80, 85, 86, 90, 94, 101, 105, 110 [44]
3, 8, 11, 12, 17, 21, 27, 31, 32, 34, 37, 40, 45, 49, 53, 56, 62, 72, 75, 77, 80, 85, 86, 90, 94, 102, 105, 110 [44], [59]
3, 8, 11, 12, 19, 22, 27, 31, 32, 34, 37, 40, 45, 49, 53, 56, 62, 72, 75, 77, 80, 85, 86, 90, 94, 102, 105, 110 [44]
3, 8, 11, 12, 17, 21, 25, 28, 34, 35, 40, 45, 49, 53, 56, 62, 72, 75, 77, 80, 85, 86, 90, 94, 102, 105, 110, 114 [52]
3, 8, 11, 12, 17, 21, 27, 31, 32, 34, 37, 40, 45, 49, 53, 56, 62, 72, 75, 77, 80, 85, 86, 90, 94, 102, 105, 110 [28]

M. Nazari-Heris, B. Mohammadi-Ivatloo / Renewable and Sustainable Energy Reviews 50 (2015) 214–228 221



Incorporation of two conflicting objective functions including
minimum number of PMUs and maximum measurement redun-
dancy to attain a fully observable power system was investigated
in [64] using a CLA method. This work also considered contingency
constraints including PMU/line outage plus conventional measure-
ments and zero-injection buses.

3.17. Hybrid methods

A solution for optimally installing PMUs and RTUs for a large
system or connected grids identified by a multi-area system state
estimation was presented using a developed hybrid GA and SA in
[66]. A PMU installation was added to a power system via RTU and

Table 6
Optimal PMU placements for obtained minimum number of PMUs considering the power system without zero-injection buses.

Test
system

PMU placements (Bus no.) Reference

14-Bus 2, 6, 7, 9 [20], [27], [31], [32], [38], [48], [55], [58],
[59]

2, 7, 11, 13 [27], [48], [55]
2, 7, 10, 13 [27], [48], [55]
2, 6, 8, 9 [27], [48]
2, 8, 10, 13 [27]

30-Bus 1, 5, 6, 9, 10, 12, 15, 18, 25, 29 [20]
1, 5, 6, 9, 10, 12, 15, 19, 25, 29 [4], [31]
1, 5, 8, 10, 11, 12, 19, 23, 26, 29 [27]
1, 5, 10, 11, 12, 19, 23, 25, 27, 28 [27]
1, 6, 7, 10, 11, 12, 18, 23, 26, 30 [27]
1, 7, 10, 11, 12, 19, 24, 26, 28, 30 [27]
1, 5, 9, 10, 12, 19, 23, 26, 27, 28 [27]
2, 3, 6, 9, 10, 12, 18, 23, 25, 29 [27]
1, 5, 8, 10, 11, 12, 19, 23, 26, 29 [27]
1, 7, 10, 11, 12, 18, 24, 25, 28, 30 [27]
3, 5, 9, 10, 12, 19, 24, 25, 27, 28 [27]
3, 5, 8, 10, 11, 12, 18, 23, 26, 29 [27]
3, 5, 10, 11, 12, 15, 18, 25, 27, 28 [27]
1, 5, 9, 10, 12, 19, 24, 26, 27, 28 [27]
1, 5, 8, 9, 10, 12, 18, 24, 26, 30 [27]
1, 7, 10, 11, 12, 15, 20, 25, 27, 28 [27]
1, 5, 8, 9, 10, 12, 15, 20, 25, 29 [27]
1, 5, 6, 10, 11, 12, 18, 24, 26, 27 [27]
1, 5, 8, 9, 10, 12, 19, 24, 25, 27 [27]
1, 5, 6, 9, 10, 12, 18, 24, 25, 27 [27]
1, 2, 6, 9, 10, 12, 15, 19, 25, 27 [31]
2, 4, 6, 9, 10, 12, 15, 19, 25, 27 [32]
2, 4, 6, 9, 10, 12, 15, 18, 25, 27 [38]
3, 5, 8, 9, 10, 12, 15, 19, 25, 27 [55]
2, 4, 6, 9, 10, 12, 19, 23, 25, 26 [58]

39-Bus 2, 6, 9, 10, 13, 14, 17, 19, 22, 23, 25, 29, 34 [4], [27], [31]
2, 6, 9, 12, 14, 17, 22, 23, 25, 29, 32, 33, 34 [27]
2, 6, 9, 12, 14, 17, 22, 23, 29, 32, 33, 34, 37 [27]
2, 6, 9, 10, 11, 14, 17, 22, 23, 29, 33, 34, 37 [27]
2, 6, 9, 11, 14, 17, 19, 22, 23, 29, 32, 34, 37 [27]
2, 6, 9, 10, 12, 14, 17, 22, 23, 25, 29, 33, 34 [27]
2, 6, 9, 12, 14, 17, 20, 22, 23, 25, 29, 32, 34 [27]
2, 6, 9, 12, 14, 17, 20, 22, 23, 25, 29, 32, 33 [27]
2, 6, 9, 10, 12, 14, 17, 20, 22, 23, 25, 29, 33 [27]
2, 6, 9, 10, 12, 14, 17, 19, 22, 23, 25, 29, 34 [27]
2, 6, 9, 13, 14, 17, 19, 20, 22, 23, 29, 32, 37 [27]
2, 6, 9, 11, 14, 17, 19, 22, 23, 25, 29, 32, 34 [27]
2, 6, 9, 10, 11, 14, 17, 19, 20, 22, 23, 25, 29 [31], [65]

57-Bus 1, 6, 9, 15, 19, 22, 25, 28, 32, 36, 38, 41, 47, 51, 53, 57 [31], [58]
118-Bus 3, 5, 9, 12, 25, 17, 21, 23, 28, 30, 36, 40, 44, 46, 51, 54, 57, 62, 64, 68, 71, 75, 80, 85, 86, 91, 94, 101, 105, 110, 114 [4], [31]

3, 5, 9, 12, 15, 17, 21, 23, 28, 30, 36, 40, 44, 46, 51, 54, 57, 62, 64, 68, 71, 75, 80, 85, 86, 91, 94, 101, 105, 110, 114 [31]
2, 5, 9, 12, 15, 17, 21, 25, 29, 34, 37, 42, 45, 49, 53, 56, 62, 63, 68, 70, 71, 75, 77, 80, 85, 86, 91, 94, 102, 105, 110, 114 [58]

Table 7
Optimal number and placement of PMUs using different methods aiming to reach maximum redundancy considering the system with zero-injection buses.

Test systems PMU placements (Bus no.) Average redundancy Reference

14-Bus 2, 6, 9 1.143 [28], [59], [64]
30-Bus 2, 4, 10, 12, 15, 18, 27 1.467 [64]

2, 4, 10, 12, 15, 19, 27 1.367 [28]
39-Bus 3, 8, 10, 16, 20, 23, 25, 29 1.103 [64]
57-Bus 1, 4, 13, 20, 25, 29, 32, 38, 51, 54, 56 1.105 [64]

1, 5, 13, 19, 25, 29, 32, 38, 41, 51, 54 1.035 [28]
118-Bus 3, 8, 11, 12, 17, 21, 27, 31, 32, 34, 37, 40, 49, 53, 56, 62, 72, 75, 77, 80, 85, 86, 90, 94, 102, 105, 110 1.322 [28]
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Table 8
Optimal number and placement of PMUs using different methods in one PMU failure mode considering the system with zero-injection buses.

Test
systems

Method Minimum
number of PMUs

PMU placements (Bus no.)

14-bus Biogeography based optimization
(BBO) [20]

7 1, 3, 6, 7, 9, 10, 13

Iterative method [68] 7 1, 2, 4, 6, 9, 10, 13
Binary imperialistic competition
algorithm (BICA) [28]

7 2, 4, 5, 6, 9, 10, 13

30-bus Biogeography based optimization
(BBO) [20]

15 1, 3, 5, 6, 9, 10, 12, 15, 16, 19, 21, 24, 25, 27, 29

Iterative method [68] 15 1, 2, 3, 5, 6, 10, 12, 13, 15, 1, 18, 19, 24, 27, 30
Binary imperialistic competition
algorithm (BICA) [28]

13 2, 3, 4, 7, 10, 12, 15, 17, 18, 20, 24, 27, 29

57-bus Iterative method [68] 26 1, 2, 4, 6, 9, 12, 15, 18, 19, 22, 24, 25, 27, 29, 30, 32, 33, 36, 38, 41, 47, 50, 51, 53, 54, 56
Binary imperialistic competition
algorithm (BICA) [28]

22 1, 3, 6, 9, 12, 15, 19, 20, 25, 28, 29, 30, 32, 33, 38, 41, 46, 50, 51, 53, 54, 56

Cellular learning automata (CLA)
[64]

25 1, 3, 4, 6, 9, 10, 12, 13, 15, 19, 20, 25, 27, 29, 30, 32, 33, 37, 38, 41, 49, 51, 53, 54, 56

118-bus Iterative method [68] 64 1, 2, 5, 6, 8, 9, 11, 12, 15, 17, 19, 20, 21, 23, 25, 27, 28, 29, 32, 34, 35, 37, 40, 41, 43, 45, 46, 49, 50, 51, 52, 53,
56, 59, 62, 66, 68, 70, 71, 72, 75, 76, 77, 78, 80, 83, 85, 86, 87, 89, 90, 92, 94, 96, 100, 101, 105, 106, 108, 110,
111, 112, 114, 117

Binary imperialistic competition
algorithm (BICA) [28]

61 1, 3, 7, 8, 9, 11, 12, 15, 17, 19, 21, 22, 23, 24, 27, 29, 31, 32, 34, 35, 40, 42, 44, 45, 46, 49, 51, 52, 54, 56, 57, 59,
62, 66, 68, 70, 71, 75, 76, 77, 78, 80, 83, 85, 86, 87, 89, 91, 92, 94, 96, 100, 101, 105, 106, 108, 110, 11, 112, 115,
117

Table 9
Optimal number and placement of PMUs using different methods in one line outage mode considering the system with zero-injection buses.

Test
systems

Method Minimum
number of PMUs

PMU placements (Bus no.)

14-bus Biogeography based optimization
(BBO) [20]

7 1, 3, 6, 7, 9, 10, 13

Exhaustive search [69] 7 2, 4, 5, 6, 9, 10, 13
Binary imperialistic competition
algorithm (BICA) [28]

7 2, 4, 5, 6, 9, 10, 13

30-bus Biogeography based optimization
(BBO) [20]

11 2, 3, 7, 8, 10, 12, 15, 18, 20, 24, 29

Exhaustive search [69] 10 2, 3, 5, 10, 12, 15, 17, 19, 24, 27
Binary imperialistic competition
algorithm (BICA) [28]

11 2, 3, 6, 7, 10, 12, 15, 16, 19, 24, 29
1, 4, 5, 6, 10, 12, 15, 17, 19, 24, 30

57-bus Binary imperialistic competition
algorithm (BICA) [28]

19 1, 3, 6, 12, 14, 15, 19, 27, 29, 30, 32, 33, 38, 41, 49, 51, 53, 55, 56

Cellular learning automata (CLA)
[64]

19 1, 2, 6, 12, 14, 19, 21, 27, 29, 30, 32, 33, 41, 44, 49, 51, 53, 55, 56

118-bus Binary imperialistic competition
algorithm (BICA) [28]

53 1, 6, 10, 11, 12, 15, 17, 19, 21, 23, 24, 25, 27, 29, 32, 34, 35, 40, 42, 44, 46, 49, 51, 53, 56, 57, 59, 62, 6, 70, 73,
75, 76, 78, 80, 83, 85, 87, 89, 91, 92, 94, 96, 100, 102, 105, 106, 109, 109, 111, 112, 115, 166, 117

Table 10
Optimal number and placement of PMUs using different methods in one line/PMU outage mode considering the system with zero-injection buses.

Test
systems

Method Minimum
number of PMUs

PMU placements (Bus no.)

14-bus Binary particle swarm
optimization (BPSO) [35]

7 1, 2, 4, 6, 9, 10, 13

Biogeography based
optimization (BBO) [20]

8 2, 4, 5, 6, 7, 9, 11, 13

30-bus Biogeography based
optimization (BBO) [20]

13 2, 3, 7, 10, 12, 15, 17, 19, 22, 23, 25, 27, 29

Binary particle swarm
optimization (BPSO) [35]

15 2, 3, 4, 8, 10, 12, 13, 15, 16, 18, 20, 22, 24, 27,30

39-bus Binary particle swarm
optimization (BPSO) [20]

17 3, 7, 8, 12, 13, 16, 20, 21, 23, 25, 26, 30, 34, 36, 37, 38

57-bus Binary particle swarm
optimization (BPSO) [35]

22 1, 2, 4, 9, 12, 15, 18, 19, 25, 28, 29, 30, 32, 33, 38, 41, 47, 50, 51, 53, 54, 56

Cellular learning automata
(CLA) [64]

25 1, 3, 4, 6, 9, 10, 12, 13, 15, 19, 20, 25, 29, 30, 32, 33, 37, 38, 41, 49, 51, 53, 54, 56

118-bus Binary particle swarm
optimization (BPSO) [35]

62 1, 3, 7, 8, 10, 11, 12, 15, 17, 19, 21, 22, 24, 25, 27, 28, 29, 32, 34, 35, 40, 41, 44, 45, 4, 49, 50, 51, 52, 54, 56, 59, 62,
66, 68, 72, 73, 74, 75, 76, 77, 78, 80, 83, 85, 86, 87, 89, 90, 92, 94, 96, 100, 101, 105, 107, 109, 110, 111, 112, 115,
117
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conventional measurement to make the estimated state more
certitude and decrease the cost of conventional measurements
and RTU cost. Control center of one area of a multi-area to access
the state estimates needed just one PMU installation, because the
phasor of the system bus voltage was obtained by PMU measure-
ment. The bus with maximum connected branches was a con-
sideration place for this PMU. Bad data detection was done by
considering the critical measurement of each area.

A combination of minimum spanning tree (MST) algorithm
with improved GA constitutes a hybrid approach called MST-GA
proposed in [67] to reach the minimum number of PMUs needed
for making a network completely observable and considering
redundancy maximization. This method improved the operation
of mutation considering topological knowledge of grid. Unfeasible
solutions for OPP problemwere repaired as a new consideration of
this paper. Crossover and mutation were utilized as an operation
to generate new individuals as the main and side steps. Decreasing
the number of needed PMUs and diversity of solutions was the
results of new consideration of this method [67].

4. Comparison of heuristic algorithms with different points of
views

The IEEE 14-bus, 30-bus, 39-bus, 57-bus, and 118-bus test systems
are mostly utilized for observability analysis studies using different
optimization methods. Table 1 shows the data for the mentioned IEEE

test systems including line numbers and number and location of zero-
injection buses. Comparisons of the results of different heuristic
algorithms used for solving OPP problem are shown in Tables 2
and 3, respectively. To access a completely observable power system
considering zero-injection buses, the minimum number of required
PMUs obtained by several methods is represented in Table 2. Table 3
tabulates the results of the minimum number of needed PMUs to
obtain a fully observable power system without considering zero-
injection buses. Table 4 provides the minimum number of PMUs
required to access a completely observable system and percentage of
the buses equipped with PMU in both conditions of zero-injection
buses and non-zero-injection buses. Several configurations for reach-
ing the minimum number of PMUs have been exhibited in different
papers. Table 5 shows different installations of PMUs to reach a fully
observable power system considering the system with zero-injection
buses. Optimal PMU placement for the minimum number of PMUs
considering the system without zero-injection buses can be seen in
Table 6. The results of the works considering maximum redundancy in
solving OPP problem in a power system are tabulated in Table 7. This
table presents the optimal placement of PMUs for achievingmaximum
measurement redundancy and average obtained redundancy. Different
contingency constraints including one PMU failure, one branch outage,
and a PMU/line outage were handled by applying heuristic algorithms.
Tables 8–10 present the minimum number of required PMUs and their
configurations in the systems considering the mentioned constraints.
To discuss the implementation of heuristic algorithms for placing the
minimum number of PMUs in large-scale power systems by attaining

Table 11
Investigation of optimal PMU placement problem for large scale power systems.

Method Test system Minimum
number of
PMUs

Percentage of buses
equipped with PMU

Supplemental information

Simulated annealing
(SA) [70]

Italy 129-bus 35 27.13 –

Simulated annealing
(SA) [70]

WSCC 173-bus 34 19.65 –

Simulated annealing
(SA) [71]

Taiwan 199-bus 39 19.60 –

Cellular learning
automata (CLA)
[64]

Iranian 242-bus 71 29.34 PMU placements: 4, 6, 9, 16, 18, 19, 23, 28, 36, 39, 43, 45, 56, 57, 60, 61, 62, 72, 78,
88, 93, 95, 97, 98, 99, 101, 102, 106, 108, 111, 115, 117, 126, 129, 133, 134, 138, 143, 147,
153, 154, 156, 160, 163, 164, 169, 177, 179, 183, 185, 187, 188, 192, 195, 197, 198, 201,
202, 203, 206, 207, 210, 211, 212, 217, 222, 225, 228, 232, 233, 240

Sequential
elimination
algorithm (SEA)
[72]

Northern region power
grid 246-bus Indian
system

70 28.46 6, 7, 11, 24, 29, 34, 35, 40, 42, 45, 48, 54, 55, 57, 61, 62, 63, 65, 69, 73, 74, 7, 80, 83,
91, 93, 94, 95, 96, 98, 101, 106, 109, 119, 122, 125, 126, 128, 129, 132, 134, 141, 142, 14,
153, 157, 158, 160, 167, 168, 169, 174, 180, 181, 183, 185, 187, 190, 191, 194, 199, 201,
202, 203, 215, 216, 219, 234, 235, 242

Simulated annealing
(SA) [71]

Taiwan 265-bus 61 23.02 –

Non-linear iterative
technique [73]

270-Bus 90 33.33 Number of lines: 326

Chemical reaction
optimization
(CRO) [58]

300-Bus 87 29 PMU placements: 1, 2, 3, 11, 12, 15, 17, 20, 23, 24, 26, 33, 35, 39, 43, 44, 49, 55, 57,
61, 62, 63, 70, 71, 72, 74, 77, 78, 81, 86, 97, 98, 104, 105, 108, 109, 114, 119, 120, 122,
130, 132, 133, 134, 137, 139, 140, 143, 153, 154, 159, 160, 164, 166, 173, 178, 181, 184,
194, 198, 204, 208, 210, 211, 214, 217, 223, 225, 229, 231, 232, 234, 237, 238, 240,
243, 245, 249, 251, 252, 253, 254, 256, 257, 258, 259, 261

Non-linear iterative
technique [73]

444-Bus 121 27.25 Number of lines: 574

Chemical reaction
optimization
(CRO) [58]

1180-Bus 144 12.20 With considering zero-injection buses

Chemical reaction
optimization
(CRO) [58]

1180-Bus 181 15.34 Without considering zero-injection buses

Matrix reduction
[56]

Brazil 1495-bus 390 26.09 Number of lines: 1932
Number of zero-injection buses: 64

Tabu search (TS)
[44]

2383-Bus 550 23.08 Number of lines: 2896
Number of zero-injection buses: 552

Immune genetic
algorithm (IGA)
[52]

2746-Bus 609 22.18 Number of lines: 3514
Number of zero-injection buses: 705
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Table 12
Objective functions and contribution of analyzed papers.

Reference Objective function(s) and main contributions Method Year Main considerations Advantage

[30] Minimizing number of PMUs and maximizing
the measurement redundancy. Pareto-optimal
solutions are provided instead of a single
optimal solution

Non-dominated sorting
genetic algorithm (NSGA)

2003 Measurement redundancy,
Zero-injection buses

Providing Pareto-optimal front for
conflicting objectives, solution repair
(correction of infeasible solutions)

[33] Minimizing number of PMUs and finding their
geographic distribution, attaining a complete
observable power system. A GA-based method is
utilized and equipping PMUs with current
phasor measurements as the maximal number
of concurrent lines in all buses of the system is
highlighted

Genetic Algorithm (GA) 2003 Relationship between PMUs
and the number of current
phasors that must be measured

Considering required current
channels in the optimization problem

[21] Sensitivity constrained PMU placement to attain
a full observable power system has been
investigated by utilizing SA method. Obtained
placements for the PMUs by this procedure not
only ensure observability of the power system,
but also provide more valuable dynamic data of
power systems at the same time

Simulated annealing (SA) 2005 Zero-injection buses-
Placement of PMUs on buses
with higher parameter
sensitivities

Considering parameter sensitivity

[39] Minimizing number of the PMUs. Modeling
depth of observability, using spanning trees of
the power system graph

Simulated annealing (SA) 2005 Incomplete observability based
on depth of unobservability

Communication-constrained PMU
placement,

[43] Two competing objectives including minimum
number of PMUs and enough redundancy

Tabu Search (TS) 2006 Maximum measurement
redundancy- Zero-injection
buses

Solutions with high accuracy and less
computational effort

[48] Two opponent objectives which include
minimum number of PMUs and maximum
measurement redundancy of the system

An adaptive clonal
algorithm (CLONALG)

2006 Maximum measurement
redundancy

High velocity of process, Obtaining
feasible schemes

[23] Optimal placement of PMUs to enable bad data
detection. SA algorithm with stochastic new
solution generating is introduced

Simulated annealing (SA) 2007 Critical measurement
recognition

Power system observable with critical
measurement free

[4] Minimizing number of the PMUs. Monitoring
pilot buses required for secondary voltage
control

Branch and bound (B and
B)

2008 Zero-injection buses-
improvement of secondary
voltage control performance

Monitoring pilot buses for increasing
velocity of voltage control scheme

[22] Minimizing number of the PMUs. Proposing new
parallel TS algorithm

A new parallel Tabu search
(TS)

2008 Zero-injection buses,
communication constraint,
State estimation matrix
condition

Less computational time.

[24] Minimizing number of the PMUs using the
proposed SSA algorithm

Stochastic simulated
annealing (SSA)

2008 Critical measurement
recognition is included as a
penalty function.

Critical measurement recognition.

[56] Minimizing number of PMUs. Using
preprocessing method and solving using
mathematical based methods

Matrix reduction 2008 Virtual data elimination
preprocessing method and
matrix reduction algorithm,
using Lagrangian relaxation

Reducing the size of the placement
model and the computational effort,
applied to large scale system

[74] Minimizing number of PMUs for full
observability. Proposing hybrid algorithm based
on BPSO method and immune mechanism

Binary particle swarm
optimization (BPSO)

2008 Maximum measurement
redundancy, single PMU and
multi PMU fault

High speed of process and simplified
function

[31] Minimizing number of PMUs, topological based
observability formulation

Branch and bound and
genetic algorithm (GA)

2009 Zero-injection buses Formulating as mixed integer linear
and nonlinear programming

[47] Minimizing number of PMUs. Proposing
improved ant colony algorithm

Improved ant colony
optimization

2009 Maximum measurement
redundancy,

Escaping from stagnation behavior
and high speed of process, applying a
graph-theoretic procedure based on
depth first search

[52] Minimizing number of PMUs, proposing
improved IGA which is based on utilization of
the local and prior knowledge associated with
the considered problem

Immune genetic algorithm
(IGA)

2009 Zero-injection buses,
considering three new
impactful vaccines

A remarkable growth in process
speed, applied to large scale system,
prevention from familial
reproduction

[66] Minimizing the total number of PMUs and RTUs
with critical measurement free

Hybrid Genetic algorithm
and simulated annealing
(HGS)

2009 Conventional measurement
and remote terminal unit
(RTU), bad data detection,
current measurement loss

Applicable to current power systems
monitored using RTUs.

[2] Minimizing the number of PMUs and
maximizing redundancy, considering
conventional measurement

Bacterial Foraging
algorithm (BFA)

2010 Zero-injection buses- -
Maximum measurement
redundancy

Proper for real word current power
system due to modeling conventional
measurements

[26] Minimizing mean square error (MSE) by
obtaining the minimum number of PMUs, with
or without existence of conventional
measurements

Differential evolution (DE) 2010 Conventional measurements-
Minimum square error (MSE)
of state estimation

Accurate, quick and simple process,
capability of apply in multi-objective
problems

[36] Minimizing total PMU installation cost,
modeling non-uniform cost of PMUs for
different buses

Particle swarm
optimization (PSO)

2010 Non-uniform cost of PMU
placements

Considering realistic installation cost
of PMUs, minimizing total cost
instead of number of PMUs
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a completely observable system, Table 11 can be referred to. This table
contains theminimum number of needed PMUs and percentage of the
buses equipped with PMU along with the supplemental information
of OPP available in the presented work. Finally, Table 12 determines
different objective functions and their contributions to the OPP
problem.

5. Conclusion

Optimal PMU placement (OPP) problem has been solved by
utilizing numerous optimization methods. To obtain solutions for
the OPP problem, two major techniques including conventional
methods and heuristic algorithms exist; this paper provided a

Table 12 (continued )

Reference Objective function(s) and main contributions Method Year Main considerations Advantage

[41] Minimizing number of PMUs and maximizing
measurement reliability of the power system,
multi-objective optimization using NSDE
algorithm

Non-dominated sorting
differential evolution
(NSDE)

2010 Zero-injection buses-
Maximum measurement
reliability

Accurate and complete Pareto front
achievement- flexibility, diversity and
practically of the method

[51] Minimizing total number of PMUs using page
rank placement algorithm (PPA) and ILS

Iterated local search (ILS) 2010 PMU failure Considering contingencies, easy
understanding and implementing

[20] Minimizing number of meters and PMUs
considering single branch/meter outage and
single branch/PMU outage

Biogeography based
optimization (BBO)

2011 Zero-injection buses- PMU
failure- line outage- PMU/line
outage- SCADA meter outage

Utilizing virtual bus reduction
technique for reducing the scale of
the system, robustness against the
outages

[27] Minimizing mean square error (MSE) of state
estimation by minimum number of PMUs

Differential evolution (DE) 2011 Considering continuous
changes in the power system’s
topology

Incorporating PMU placement
problem into state estimation
problem

[32] Multi objective model, minimizing number of
PMUs and maximizing measurement
redundancy

Genetic algorithm (GA) 2011 One line/one PMU outage is
considered

Very small population size and less
number of iterations

[35] Minimizing number of PMUs, proposing new
rule of topological observability of the system

Modified binary particle
swarm optimization
(BPSO)

2011 Zero-injection buses- PMU/line
outage

Introducing new rules of topological
observability assessment for reducing
number of the required PMUs

[38] Minimizing number of PMUs in presence of
conventional measurement such as injections
and flows

Binary particle swarm
optimization (BPSO)

2011 Zero-injection buses,
conventional measurement,
maximum measurement
redundancy

Modeling different types of
conventional measurements in OPP
formulation

[55] Two conflicting objectives as obtaining
minimum number of PMUs and maximizing
measurement redundancy

Multi objective
biogeography based
optimization (MO-BBO)

2012 Zero-injection buses,
measurement redundancy

The proposed MO-BBO algorithm
produces well distributed Pareto
optimal solutions than NSGA-II and
NSDE

[37] Minimizing number of PMUs, fault tolerant PMU
placement formulation

Binary particle swarm
optimization (BPSO)

2013 Control reconfigurability
criterion, modeling data loss at
a given number of PMUs

Robustness of the solution against
data loss at a given number of PMUs

[25] Minimizing number of PMUs to attain both
general and fault observability of the power
system

Differential evolution (DE) 2013 Fault observability- Zero-
injection buses

Using PMUs for power system
observability and fault observability

[44] Minimizing number of PMUs using a Recursive
tabu search

Recursive tabu search
(RTS)

2013 Zero-injection buses,
maximum measurement
redundancy

Applied to large scale power system

[49] Minimizing the number of PMUs using an
information theoretic concept, namely Mutual
information, uncertainty modeling

Mutual information (MI) 2013 Conventional measurement,
PMU failure

Modeling the uncertainties in the
system states

[28] Minimizing number of PMUs required for
complete observability and maximize
measurement redundancy. A new topological
observability rule of zero-injection buses is also
introduced

Binary imperialistic
completion algorithm
(BICA)

2013 Zero-injection buses- PMU
failure- Line outage- PMU/line
outage- Measurement
redundancy

Fast convergence, small deviation,
capability of finding global optimum
and zero standard deviation

[58] Minimum number of PMUs is obtained to reach
full observability

Chemical reaction
optimization (CRO) and
simplified version of CRO
(SCRO)

2013 Zero-injection buses, large
scale power system

Efficiency, adaptability, simple
structure and less computational
time

[64] A multi-objective optimal placement of
Minimizing number of PMUs and maximizing
measurement redundancy. PMU placement is
also investigated in presence of conventional
non-synchronous by introducing a generalized
observability function

Cellular learning automata
(CLA)

2013 PMU failure- Line outage-
PMU/line outage, maximum
measurement redundancy,
conventional measurements

Good efficiency in large scale power
systems

[67] Minimizing number of PMUs using a hybrid
method

Combination of Minimum
spanning tree algorithm
with improved genetic
algorithm (MST-GA)

2013 Maximum measurement
redundancy

This method has a capability of
repairing infeasible solutions and
well balances between efficiency of
reparation and quality of solutions

[59] ABC concept is applied to obtain minimum
number of PMUs to attain a full observable
power system, satisfying measurement
redundancy

Artificial bee colony (ABC) 2014 Zero-injection buses- Single
line outage

Feasibility and performance of the
method demonstrated by comparing
the simulation results with the earlier
works

[75] A mixed-integer programming model is applied
to solve OPP problem in ac/dc systems

Mixed-integer
programming

2014 Non-uniform cost of PMUs,
Limited PMU measurement
channels, Integration of dc
transmission lines

Considering variable-cost for
different installations of PMUs as a
function of the number and type of
measurement channels.
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comprehensive literature review on heuristic algorithms. A gen-
eral comparison of the results of introduced heuristic methods and
some specific features of the works was shown. Detailed compar-
ison of the obtained results of different methods applied to
standard test systems like IEEE 14-bus, 30-bus, 39-bus, 57-bus,
and 118-bus was also provided. The presented review of heuristic
optimization techniques could largely help researchers in terms of
employing new concepts to solve the OPP problem. Future works
will contain new heuristic optimization approaches for multi-
objective optimal PMU placement considering the constraints.
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