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Abstract

In the last few decades, several papers were published on heat exchanger network synthesis. Most of

them present techniques using mathematical programming for the synthesis and optimisation tasks. Recent

developments in heat exchanger networks synthesis present some heurist methods, such as genetic algo-

rithm (GA) and simulated annealing. In this paper, a strategy for the synthesis and optimisation of heat

exchanger networks was developed using GA. First of all, the DTmin is optimised using GA jointly with
the problem table, from the Pinch Analysis. By using the optimum DTmin, found in the previous stage,

the problem is divided in two different regions, below and above the pinch. Thus, using GA, the optimal

networks above and below the pinch are obtained, considering stream splitting as well. Some examples

from the literature were solved with the proposed systematic, and results show heat exchanger networks

with lower costs than those ones presented in the literature for the cases studied.
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1. Introduction

One of the most frequent problems in industrial plants is the excessive energy consumption. It
represents the most important contribution to the composition of the global cost of industrialised
products. Although heat recovery systems are frequently studied in synthesis problems, great
attention was drawn after the first energetic world crisis, during the seventies. Therefore, the study
of alternatives to minimize the consumption of energy produced by burnt combustibles has
increased.

In industrial processes there are streams that need heating and streams that need cooling, usu-
ally achieved by using hot and cold utilities, respectively. Heat exchanger network (HEN) synthe-
sis is a mean to obtain heating and cooling by process streams energetic integration, by using heat
streams to heat cold streams and cold streams to cool hot streams. In this way, it is possible to
reduce the amount of hot and cold utilities. Besides the utilities consumption reduction, it is
important to use a small number of heat transfer equipment, decreasing the fixed cost of the final
network.

According to Ravagnani et al. [1], several kinds of studies were done aiming to develop meth-
odologies to obtain optimal HEN, to reach these goals. Research was concentrated in two impor-
tant areas, Pinch Analysis, which uses thermodynamic concepts and heuristics and Mathematical
Programming, as Linear, Non-Linear and Mixed Integer Linear and Non-Linear Programming.
Recently heuristic methods of optimisation have also been used to solve linear and non-linear
models.

Essentially, the HEN synthesis task consists of finding a practical sequence of equipment com-
bining pairs of streams, in a way that the network is optimal in relation to the global cost. The
great complexity of the problem is its combinatorial nature. For a fixed number of streams, there
are a great number of possibilities of combinations. Nevertheless, the number of HEN configura-
tions that satisfies the minimum utilities consumption is smaller than the total number of possible
configurations. The satisfaction of this restriction implies in finding a HEN with the minimum
utilities consumption to a given minimum temperature of approach (DTmin). The presented meth-
ods to the HEN synthesis aims to find the optimum or near optimum among all the network
configurations.

The first stage of heat exchanger network synthesis is to find the minimum utility demand, the
minimum number of heat transfer equipment, the minimum heat transfer area and the minimum
global annual cost. This stage is known as pre-analysis. To achieve this goal, it is necessary to find
the optimum DTmin for each case in study. During the second stage, heat exchangers are allocated
and the practical sequence between the equipment is found, aiming the goals fixed in the first
stage.

Most of papers published in literature present the heat exchanger network synthesis without
taking into account DTmin optimisation. This step is essential to the network optimisation. Bad
choices to the DTmin can bring bad heat exchanger networks, considering the aspects of energy
consumption and equipment costs.

Thus, the objectives of this paper are to synthesize optimal heat exchangers networks, relative
to energy consumption, minimum number of heat transfer equipment and minimum global
annual cost, considering the DTmin optimisation stage. The proposed methodology uses Pinch
Analysis, together with genetic algorithms.
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2. Pinch analysis

As can be seen in Ravagnani [2], to obtain an optimal heat exchanger network using Pinch
Analysis, three steps must be followed. The first one consists of finding the minimum energy
demand, the minimum number of heat exchangers and the minimum global annual cost. The sec-
ond step consists of the heat exchangers network synthesis, or the definition of the streams that
must exchange heat, as well as the best sequence of the equipments, to achieve the objectives
defined in the first stage. In the third step, the network is evolved by identifying and breaking loops.

Some tools were developed, based in the First and in the Second Laws of Thermodynamics, to
establish the objectives in the first stage. One of these tools is the Problem Table Algorithm,
according to Smith [3]. This algorithm allows finding the minimum hot and cold utilities demand
and the location of the pinch point, for a given DTmin. It is based in the division of the problem in
temperature intervals. For each interval, energy balances has to be done. A cascade of energy is
built, and the values of minimum energy demand and the pinch point are identified. The pinch
point represents the degree of heat integration in the process, and acts as a bottleneck of energy.
Thus, the problem is divided in two different regions, above and below the pinch. Above the
pinch, just hot utilities are allowed and below, only cold utilities.

2.1. DTmin optimisation

The behaviour of energy consumption as function of DTmin is well known. As DTmin is
increased, energy demand is increased too. However, heat exchange area decreases. The global
cost is obtained by summing the two curves in a diagram, Cost X DTmin.

The cost of heat exchange area is related to DTmin in a non-linear way, and the energy cost in a
linear way. To find the optimum value of DTmin a trade off between energy, area and their costs
must be done.

2.2. Heat exchangers network synthesis

To achieve the minimum global cost in a heat exchangers network, energy and capital costs
must be decreased. The number of equipment in the network influences the capital cost. It is be-
cause the cost of each heat exchanger involves also founding, piping, valves, etc.

The Minimum number of equipment is obtained by the N � 1 rule, where N is the number of
hot and cold streams, including hot and cold utilities.

For the synthesis task, Linnhoff and Hindmarsh [4] presented the Pinch Design Method. It
guarantees to obtain heat exchangers networks with the minimum energy demand, as calculated
in the Problem Table Algorithm, by using some heuristics proposed in the method to choose the
streams that must be matched.
3. Optimisation

Optimisation is an area of computational science whose main objective is to find the best solu-
tion for problems in which the quality of the response can be measured by a number. To solve
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problems like these, it is important to consider two components. The first one to be considered is
the search space. In this space, all the possibilities of solution are considered. The second one is
the objective function, which is a mathematical function that associates each point in the solutions
space to a real number, making possible to evaluate all the members of the search space.

The solution of problems with a high degree of computational complexities has been a constant
challenge. Problems with combinatorial nature, whose optimal solution in many cases is very dif-
ficult to find, are very common in Engineering. Traditional methods of exact optimisation are
characterised by the stiffness of its mathematical models, making the representation of real situ-
ations difficult, more and more dynamic and complex. The introduction of optimisation tech-
niques based in Artificial Intelligence, as the heuristic search based ones, associated to the
conventional optimisation techniques, reduced the problem of stiffness.

3.1. Heuristic methods of optimisation

Heuristic rules can be defined as practical rules, derived from the experience and observation of
behaviour tendencies of the system in analysis. They are applicable to all kinds of problems, as in
the day by day actions and decisions as well as in the optimisation of problems that presents sit-
uations of uncertainty, as well as in the necessity of decisions based in insufficient information,
situations with a great number of alternatives, reducing the number of attempts, in problems
of great dimensions or large number of restrictions, reducing the amount of calculus.

During the 50s, by using analogies with nature, some heuristic algorithms were proposed, trying
to simulate biological phenomena. These algorithms, called Natural Optimisation Methods, have
some features in common. The most important thing is their random characteristic, trying to sim-
ulate the fortune that apparently governs distinct processes in nature, from the evolution of spe-
cies to the social behaviour of animals.

During the 80s, with the crescent use of computers, the use of these algorithms to the optimi-
sation of functions and processes became viable, when traditional methods were not successful,
such as problems of combinatorial optimisation, problems where the objective function cannot
be expressed mathematically or problems with a great number of local minima.

Some heuristic methods seemed motivated by these algorithms, as Simulated Annealing, Swarm
Algorithms, Ant Colony Optimisation an genetic algorithms.

3.2. Genetic algorithms

Genetic algorithms are relatively recent methods. They do not use any information of derivate,
and because of this, present good chances of escape from local minimum. Their application in
practical problems generally brings to global optimal, or, at least, to solutions more satisfactory
than those ones obtained by other methods.

They use a direct analogy of the evolution phenomena in nature, in such a way that each indi-
vidual represents a possible solution to a given problem. The individuals are randomly determined
from the search space. The �fitness� of the solutions, which is the result of the variable that is to be
optimised, is determined subsequently from the fitness function. The individual that generates the
best fitness within the population has the highest chance to return in the next generation, with the
opportunity to reproduce by crossover, with another individual, producing decedents with both
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characteristics. If a genetic algorithm is developed correctly, the population (group of possible
solutions) will converge to an optimal solution for the proposed problem. The processes that have
more contribution to the evolution are the crossover, based in the selection and reproduction and
the mutation.

Genetic algorithms are different from the traditional methods of search and optimisation, spe-
cially because they work with a codification of the group of parameters and not with the param-
eters, and they use a population, and not just a point.

Fig. 1 shows the beginning of the algorithm and the genetic operations necessary for each
iteration.

Besides of genetic operators, it is also important to analyse the influence of some parameters in
the behaviour and in the performance of the genetic algorithm, to establish them according to the
problem necessities and the available resources. The influence of each parameter in the algorithm
performance depends on the class of problems that is being treated. Thus, the determination of an
optimised group of values to these parameters will depend on a great number of experiments and
tests.

The principal genetic parameters are the size of the population that affects the global perform-
ance and the efficiency of the genetic algorithm, the mutation rate that avoids that a given position
remains stationary in a value, or that the search becomes essentially random.
4. Methodology

The methodology employed in this paper consists of two distinct stages.
In the first stage, DTmin is optimised using a genetic algorithm. The concepts related to the first

step from the Pinch Analysis are used as described in Section 2. With the optimum DTmin the hot
and cold utilities demand is calculated and the pinch point is found. Pinch location is used to split
the problem into two distinct regions, above and below it. For each region, the optimal configu-
ration of the heat exchangers network will be determined in the second stage.
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In the next stage, the objective function is proposed, with its restrictions. Being a non-linear
function, another genetic algorithm will be used to optimise the objective function, including some
thermodynamic concepts to find the best heat exchanger network. The two optimal networks, ob-
tained for the two regions, below and above the pinch must be connected. The final network is
optimal relative to the minimum utility demand and to the minimum global annual cost.

4.1. DTmin optimisation

As presented in Section 2, to find the optimal DTmin the function global cost is obtained by
summing the annual cost of energy and the capital cost. In this stage, the heat exchangers network
is not yet synthesised. In this way, the heat transfer area to be used in the cost function is the min-
imum possible heat transfer area, to the network to be synthesised. This area is found, after the
DTmin optimisation, to a group of heat and cold streams by plotting the composite curves in a
diagram Temperature X Enthalpy (TH). This diagram is divided in Enthalpy intervals. The min-
imum area is found in Eq. (1), proposed in Towsend and Linnhoff [5].
Amin ¼
Xintervals
j

1

DT LMj

�
Xstreams

i

qi
hi

 !
j

ð1Þ
In this equation, j represents the enthalpy intervals and i the process streams present in each
interval. DTLM represents the logarithm mean temperature difference to the stream i in the interval
j, qi and hi are the heat available or necessary and the individual heat transfer coefficient for the
stream i in the interval j, respectively.

For each DTmin fixed, a different value for Amin and for hot and cold utilities are found. Con-
sequently, for the function global cost, which depends on these variables, different values will be
obtained.

The annual costs of energy, capital and global are represented by Eqs. (2)–(4), respectively.
CEnergy ¼ CHU �HUþ CCU � CU ð2Þ
t

CCapital ¼ ðaþ b � Ac
minÞ �

ð1þ iÞ
t

ð3Þ
CGlobal ¼ CEnergy þ CCapital ð4Þ
where CHU is the cost of hot utility in $/kW/year; CCU is the cost of cold utility in $/kW/year; HU
is the hot utility demand, in kW; CU is the cold utility demand, in kW; a, b and c are constants
that depends of the kind of the equipment; i is the interest rate; t is the plant lifetime, in years. The
costs are in $/year.

The value of optimum DTmin is obtained by finding the minimum of Eq. (4), that is the mini-
mum cost of the heat exchangers network. This is, therefore, the objective function to be mini-
mised in the first stage in this work. A genetic algorithm is used to the minimisation of this
non-linear function.
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The genetic operators used in this stage are initialisation, that is the generation of a randomly
initial population (parents), being the individuals represented by the value of the variable in study,
in this case the DTmin; the aptitude calculus, that is the objective function calculus for each indi-
vidual in the population, in this case the global cost; the crossover, that in this stage was obtained
by a linear combination between two parents, as presented in Tang and Wang [6], showed in
Eq. (5); the mutation, that was achieved by a linear combination between a child generated in
the crossover and a random number, as can be observed in Eq. (6); and the selection, that is
the choice of the best individuals to be passed to the next generation.
F i ¼ a � P j þ ð1� aÞ � Pk ð5Þ

Mi ¼ b � F j þ ð1� bÞ � R ð6Þ
In Eq. (5) F represents each child generated, i represents the individuals, a is a random number
between 0 and 1, P represents the individual parent used to generate the child, j and k are the par-
ents positions in the randomly population. In an analogous way, in Eq. (6) M represents the mu-
tated individual, i represents the individuals, b is a random number between 0 and 1, F represents
the individual child to be mutated, j is the child position and R is a random number in the same
order of magnitude than F.

The choice of the two parents that will generate a child is made by the selection by roulette
procedure.

During the mutation stage, not all the children are chose to be mutated. To determine if a child

will or will not be mutated, a random number to each child is generated. If this number is less or
equal the mutation rate, this child will be mutated. If it is greater than the mutation rate, it will be
not mutated.
4.2. Synthesis of the optimal HEN

The minimum utilities cost in the HEN is obtained by finding the hot and cold utilities demand,
obtained in the step of pre-analysis, to the DTmin optimised. The minimum capital cost is obtained
by finding the matches between streams process that uses heat transfer equipment (heat exchang-
ers, heaters and coolers) with the minor heat exchange area.

To achieve the optimal HEN, four restrictions must be obeyed, as showed below.

(i) Heat is only transferred from a hot stream to a cold stream, and the hot stream temperature
must be hotter than the cold stream temperature, according to Eq. (8).

(ii) DTmin value must not be violated in both hot and cold ends of any heat transfer equipment in
the network, according to Eq. (9).

(iii) The minimum utilities demand, fixed in the first step must be assured, according to Eq. (10).
(iv) The minimum heat transfer equipment must be maintained in each one of the sub-networks

of the problem, according to Eq. (11).

The objective function is non-linear and the restrictions are combinations of equalities and ine-
qualities, as shown in (7) to (11).
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Minimize:
CGLOBAL ¼ ðCHU �HUþ CCU � CUÞ þ ð1þ iÞt

t
�
Xunid
k

ðaþ b � Ac
kÞ ð7Þ
Subject to:
ðThinÞk > ðTcoutÞk
ðThoutÞk > ðTcinÞk

�
k ¼ 1; . . . ;number of heat transfer equipments ð8Þ

jðThinÞk � ðTcoutÞkj P f � DTmin

jðThoutÞk � ðTcinÞkj P f � DTmin

�
k ¼ 1; . . . ;number of heat transfer equipments ð9Þ

HU 6 HUmin

CU 6 CUmin

�
ð10Þ

Umin ¼ N � 1 ð11Þ

where CHU, CCU, HU, CU, i, t, a, b and c were defined before; k represents heat exchangers, cool-
ers and heaters; A is the heat transfer area; Thin and Thout are inlet and outlet temperatures of hot
stream in the equipment; Tcin and Tcout are inlet and outlet temperatures of cold stream in the
equipment; f is a factor to relax the DTmin restriction; HUmin and CUmin are the minimum hot
and cold utilities demand; Umin is the minimum number of heat transfer equipments; N is the
number of streams, included the utilities streams, in each sub-network.

In Eq. (9), f is a parameter used to relax the restriction of DTmin, i. e., is a measure in perceptual
terms of how much this violation can be acceptable. Besides of this violation, minimum approach
temperatures in the heat transfer equipment hot and cold ends is guaranteed. This is done to bet-
ter use of the heat transfer area, by using less heat transfer area. When DTmin values are bigger
(between 20 and 50 �C) it is possible to reduce this value in until 50% without problems in the
other restrictions. The value of f is fixed previously, and varies from 0.5 to 1. As smallest is DTmin,
the closer of 1 f is.

Eqs. (8) and (9) were presented separately to emphasize the existence of restrictions of thermo-
dynamics limits and of DTmin. However, it can be combined, according to Eq. (12).
ðThinÞk � ðTcoutÞk P DTmin

ðThoutÞk � ðTcinÞk P DTmin

k ¼ 1; . . . ;number of equipment ð12Þ
The genetic operators in this stage are the same of the preceding stage, but adapted to the new
problem. The initialisation generates a randomly initial population (parents), but the individuals,
in this case are the HEN configurations.

The choice of the parents that will generate new children is made in the same manner that in the
previous stage. However, in the crossover, that was made by a linear between two individuals par-
ents combination. In this case, a part of the HEN configuration of a parent is combined with part
of the HEN configuration of another parent it is made combining, generating 2 children. The posi-
tion where the parent networks will be divided to form the child network is determined randomly.
Figs. 2–4 show the step of crossover.
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To determine whether a child will suffer mutation or not a similar procedure to the previous
stage is followed. The big difference in this case is in the use a mutation rate that is variable in
each generation. The objective of using a variable mutation rate is that it must be dynamic along
the generations. In the first generations the difference between the maximum and the minimum
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value of the objective function is great and the mutation rate is slow, because it exists a great
diversity between the individuals. As the values of the objective function are being closer, the dif-
ferences between the individuals decrease, and to make the appearing of new individuals possible,
the mutation rate must be increased. Eq. (13) shows the behaviour of the mutation rate.

In Eq. (13), T is the mutation rate, calculated in each generation. Tmin and Tmax are the min-
imum and maximum mutation rate allowed and their values are 10% and 100%, respectively. Cn is
the value of the cost of the worst individual and C1 is the value of the cost of the best one.

The mutation step, in this stage of the study, is developed with all the existent individuals so far,
parents and children. Differently from the previous step, where mutation was made just with chil-
dren by linear combination, in this stage it occurs by inverting the positions of heat exchange in
the network configuration. An example is shown in Fig. 5.
T ¼ Tmin þ ðTmax � TminÞ � e�10�ðCn�C1Þ
Cn ð13Þ
It is necessary to observe that in all the steps of the proposed methodology in this stage, restric-
tions must be respected. So, even all parents are generated randomly, not all the children and not
all the mutated individuals are, necessarily, viable. To assure to achieve a HEN that does not vio-
late any restriction it must be saved just the viable individuals and neglected that one that is not
viable, in all the steps of the algorithm.
5. Cases studied

The first case studied is a problem presented by Frausto-Hernández et al. [7]. This problem has
2 hot and 2 cold streams process, a hot utility stream and a cold utility stream. Steam and cold
water are hot and cold utility, respectively. The DTmin proposed by the author was 10�C. Streams
data and the heat exchangers cost equation parameters are presented in Table 1. Eq. (14) presents
the cost, with C in $ and A in m2.
C ¼ 1200 � A0;57 ð14Þ

During the DTmin optimisation, as showed in Fig. 6, a value of 5 �C was found. It was necessary

for the genetic algorithm five generations, and the size of the population is 40 individuals. The
mutation rate was fixed 30%.



Table 1

Streams data and cost parameters for the first case studied

Stream Type Tin (�C) Tout (�C) CP (kW/�C) h (kW/m2�C)

H1 Hot 175 45 10 2.615

H2 Hot 125 65 40 1.333

C1 Cold 20 155 20 0.917

C2 Cold 40 112 15 0.166

Vapor Hot utility 180 179 – 5.000

Água Cold utility 15 25 – 2.500

Steam cost: 110$/kW/year

Water cost: 10$/kW/year
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Fig. 6. Behaviour of cost functions for the first case studied.
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In a second step, the HEN was synthesised with the optimum value of DTmin, 5 �C. The problem
was divided into two sub-problems, above and below the pinch, and two sub-networks were ob-
tained, with the maximum energy recovery. Fig. 7 shows the final HEN, and the characteristics of
each equipment are showed in Table 2. H2a and H2b are the branches resulted of the H2 stream
splitting, and C2a and C2b are the branches of the C2 stream splitting. As can be seen in Table 3,
the total cost is minor than the value presented in the literature.

It was necessary 28 generations to achieve the minimum value of the objective function, and the
value obtained for the global cost was 117.069,34$/year, with 706.45m2 of total heat transfer area.
The genetic parameters were 10 individuals as the size of the population, 80% for the maximum
mutation rate and 10% for the minimum one. Cost data were the same used in the first step, and a
value of 1 was used for the parameter f.

The second case studied is a problem presented by Ahmad [8]. The problem has 10 process
streams, being 6 hot and 4 cold, a hot utility stream and a cold stream utility. Steam and cold
water are hot and cold utility, respectively. The DTmin proposed by the author was 10�C. Streams
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Table 2

Characteristics of heat transfer equipments

Equipment Hot stream Cold stream Heat exchanged (kW) Heat transfer area (m2) Cost ($)

A1 Steam C1 200.00 8.85 4159.26

T1 H1 C1 500.00 52.78 11,508.01

T2 H2a C1 1,999.80 202.23 24,746.57

T3 H2b C2a 400.20 147.81 20,697.03

T4 H1 C2b 679.68 291.74 30,495.23

R1 H1 Water 120.32 3.04 2,260.04

Table 3

Comparison with the literature

Frausto-Hernández et al. [7] This paper

Hot utility (kW) 605.00 200.00

Cold utility (kW) 525.00 120.32

Total area (m2) 423.26 706.45

Energy cost ($/year) 71,800.00 23,203.20

Capital cost ($/year) 75,553.75 93,866.14

Global cost ($/year) 147,353.75 117,069.34
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data and the heat exchangers cost equation parameters are presented in Table 4. Eq. (15) presents
the cost equation, with C in $ and A in m2.
C ¼ 60 � A ð15Þ

The DTmin was optimised. Fig. 8 shows the behaviour of the functions energy, capital and glo-

bal cost for the case studied. It was necessary 57 generations to achieve the minimum value of the
objective function, and the optimum DTmin found was 24�C. The population size, fixed in 50 indi-
viduals and the mutation rate, fixed in 40%, are the genetic parameters used in this first stage.



Table 4

Streams data and cost parameters for the second case studied

Stream Type Tin (�C) Tout (�C) CP (kW/�C) h (kW/m2 /�C)

H1 Hot 85 45 156.3 0.05

H2 Hot 120 40 50.0 0.05

H3 Hot 125 35 23.9 0.05

H4 Hot 56 46 1250.0 0.05

H5 Hot 90 85 1500.0 0.05

H6 Hot 225 74 50.0 0.05

C1 Cold 40 55 466.7 0.05

C2 Cold 55 65 600.0 0.05

C3 Cold 65 165 195.0 0.05

C4 Cold 10 170 81.3 0.05

Steam Hot utility 200 199 – 0.05

Water Cold utility 15 25 – 0.05

Steam cost: 100 $/kW/y

Water cost: 15$/kW/year
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Fig. 8. Behaviour of cost functions for the second case studied.
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In the second stage, a HEN was synthesised using the optimum value of DTmin found in the first
stage, 24�C. The problem was divided into two sub-problems, below and above the pinch. The
HEN synthesised is optimal relative to energy and capital costs. The HEN configuration is pre-
sented in Fig. 9 and the equipment characteristics are presented in Table 5. Table 6 shows a com-
parison between the global costs with the literature.

It was necessary eight generations to achieve the minimum value of the objective function. The
minimum cost corresponds to 5673M$/year, with total heat transfer area of 56,600.56m2. The
population size in the third stage of the proposed methodology to the second case studied was
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Fig. 9. Optimal HEN configuration for DTmin of 24 �C for the second case studied.

Table 5

Characteristics of heat transfer equipment

Equipment Hot stream Cold stream Heat exchanged (kW) Heat transfer area (m2) Cost ($)

A1 Steam C3 12,760.3 8065.75 483,945.0

A2 Steam C4 7769.0 4716.40 282,984.2

T1 H5 C3 5239.7 2390.65 143,438.9

T2 H5 C1 2260.3 2161.51 129,690.8

T3 H3 C1 1457.9 1495.40 89,724.2

T4 H2 C4 2800.0 3329.76 199,785.7

T5 H1 C1 3282.3 4311.51 258,690.6

T6 H1 C4 2439.0 3184.48 191,068.8

T7 H5 C2 6000.0 8925.74 535,544.6

R1 H1 Water 530.7 727.23 43,633.6

R2 H2 Water 1200.0 1428.16 85,689.7

R3 H3 Water 693.1 910.80 54,648.0

R4 H4 Water 12,500.0 14,953.17 897,190.4
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fixed in 20 individuals, the maximum mutation rate was 80% and the minimum was 10%. Cost
data are the same used in the previous stage, and the f factor was 0.71, for the DTmin.



Table 6

Comparison with literature

Ahmad [8] This paper

Hot utility (kW) 15,400 20,529.3

Cold utility (kW) 9796 14,923.8

Total area (m2) – 56,600.56

Energy cost ($/y) 1,686,940 2,276,787

Capital cost ($/y) 5,387,060 3,396,034

Global cost ($/y) 7,074,000 5,672,821
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6. Conclusions

This paper presented a new methodology for the optimal HEN synthesis by using Pinch Anal-
ysis together with genetic algorithms. Also, the DTmin optimisation was achieved, contrary to
most papers published in literature that consider a previously fixed value. However, a bad choice
for DTmin will result in a bad HEN, relative to energy and capital costs. In the case studied, the
value proposed by Ahmad [8] was 10�C. Using the procedure developed for the DTmin optimisa-
tion, the value found was 24�C. For the DTmin proposed in literature, Ahmad [8], the values for
the HEN are very different, as can be seen in Table 4. The minimum global cost is achieved for
DTmin of 24�C. Although the energy cost is grater than the presented in the literature, the capital
cost is minor. Because of that, the global annual cost is the minimum, as compared to literature.

In relation to the second stage, results prove the applicability of the developed methodology, in
the case studied. Merging Pinch Analysis and genetic algorithms, the procedure is automatic dur-
ing the synthesis task, and the user does not need to make choices for each match of streams. Also,
the optimal HEN is achieved.

Finally, one can conclude that the proposed approach is efficient in the first stage, during the
DTmin optimisation and during the second stage as well. As it was seen in the case studied, the final
values are better than that ones presented in literature.
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