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In this paper we present a novel grouping genetic algorithm for clustering problems. Though there have
been different approaches that have analyzed the performance of several genetic and evolutionary algo-
rithms in clustering, the grouping-based approach has not been, to our knowledge, tested in this problem
yet. In this paper we fully describe the grouping genetic algorithm for clustering, starting with the pro-
posed encoding, different modifications of crossover and mutation operators, and also the description of a
local search and an island model included in the algorithm, to improve the algorithm’s performance in
the problem. We test the proposed grouping genetic algorithm in several experiments in synthetic and
real data from public repositories, and compare its results with that of classical clustering approaches,
such as K-means and DBSCAN algorithms, obtaining excellent results that confirm the goodness of the
proposed grouping-based methodology.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Clustering is an important subgroup of unsupervised learning
techniques consisting in grouping data objects into disjoint groups
of clusters (Jain, Murty, & Flynn, 1999; Liao, 2005; Lingras & Huang,
2005; Xu & Wunsch, 2005). The classification into clusters is usu-
ally defined in such a way that objects in the same cluster are sim-
ilar in terms of a given measure, and different from the objects in
the other clusters, with respect to the same measure.

Clustering has been applied to a wide variety of problems in
many different fields such as pattern recognition, bio-engineering,
image quantization, renewable energy prediction, etc. (Gomez-
Muñoz & Porta-Gándara, 2002; Mitra & Banka, 2006; Scheunders,
1997). In Chang, Zhang, and Zheng (2009), four major types of clus-
tering algorithms are identified: first, algorithms based on the idea
that neighbor data should share the same cluster. Classical cluster-
ing algorithms such as density-based approaches (Ester, Kriegel, &
Sander, 1996) belong to this first group. As pointed out in Chang
et al. (2009), this kind of algorithms are robust to detect clusters
of any shape, but they fail to locate clusters when there is small
spatial separation between clusters. The second set of clustering
algorithms is formed by those approaches which consider intra-
clusters variation (intra-clusters points or centroids) to form the fi-
nal solution. This category of algorithms includes the well known
ll rights reserved.
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K-means (Chang et al., 2009; Kanungo et al., 2002; Likas, Vlassis,
& Verbeek, 2003), and other approaches such as model-based clus-
tering (Mclachlan & Basford, 1988). Following (Chang et al., 2009),
the third category includes a simultaneous row-column clustering
known as bi-clustering algorithms (Madeira & Oliveira, 2004). Fi-
nally, the fourth group of clustering algorithms includes ap-
proaches that optimize different characteristics of the data set.
This group includes the multi-objective clustering algorithms
(Dehuri, Ghosh, & Mall, 2006; Mitra & Banka, 2006) and also clus-
tering ensembles approaches (Hong, Kwong, Chang, & Ren, 2008).

In the last few years, evolutionary computing algorithms (EAs)
have been widely applied to clustering problems, due to their capac-
ity to be applied to very different problems with very few changes,
and also because these algorithms are able to manage constraints in
an efficient way. Some recent work in the direct application of EAs to
clustering problems can be found in Hruschka and Ebecken (2003),
where a genetic algorithm is applied to a clustering problem. In this
work, a simple encoding scheme with constant-length individuals is
used. The objective function maximizes both the homogeneity
within each cluster and the heterogeneity among clusters, and this
approach also finds the right number of clusters according to an
external measure (the average silhouette width criterion). In Chang,
Zhao, Zheng, and Zhang (2012) an evolutionary algorithm for clus-
tering is described, where the objective function is constructed
through a message-based similarity function, which simulates mes-
saging between objects and optimal centroids of the clusters. The
performance of the approach is shown in different synthetic
examples and also in real datasets from UCI repository (Asuncion
& Newman, 2007). In Liu, Wu, and Shen (2011) a real-encoding
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evolutionary algorithm with a special division-absorption mutation
operator and a fitness function based on the Davis–Bouldin index
(Davies & Bouldin, 1997) is presented. The authors show the good
performance of the approach in different synthetic problems and
in the well-known Breast Cancer dataset. In Deng, He, and Xu
(2010) a genetic clustering algorithm is presented, which is based
on a measure of mutual information between objects in the different
clusters. EAs have also been applied to improve the K-means ap-
proach in the literature, for example in Krishna and Murty (1999),
obtaining the genetic K-means algorithm, which is known to be more
effective that the K-means in hard clustering problems. Other works
dealing with evolutionary K-means algorithms are (Xiao, Yan, Zhang,
& Tang, 2010; Zahraie & Roozbahani, 2011). Similar approaches have
been used in different applications, such as color quantization
(Scheunders, 1997) or bio-engineering (Chang et al., 2009). EAs have
also been applied to other clustering problems (Murthy & Chowdhu-
ry, 1996; Tseng & Yang, 2001), and also recently to bi-clustering
problems (Divina & Aguilar-Ruiz, 2006; Mitra & Banka, 2006). There
are different types of evolutionary approaches that have been studied
in clustering problems, such as evolutionary programing (Sarkar,
Yegnanarayana, & Khemani, 1997), particle swarm optimization
(Cura, 2012; Das, Abraham, & Konar, 2008; Yang, Sun, & Zhang,
2009), Ant Colony algorithms (Jiang, Yi, Li, Yang, & Hu, 2010) or Arti-
ficial Bee Colony algorithms (Zhang, Ouyang, & Ning, 2010).

In spite of this massive application of evolutionary techniques,
to our knowledge, grouping genetic algorithms have not been
tested in clustering problems yet. Intuitively, the grouping genetic
algorithm should perform really well in clustering, since its struc-
ture is adaptive to manage groups of items. The problem is to find
the appropriate evolution operators and fitness function to obtain a
robust algorithm for clustering, which offers good performance in
different scenarios. In this paper, we present a contribution to clar-
ify the performance of the grouping genetic algorithm in clustering
problem. In fact, we describe a new grouping genetic algorithm for
clustering that includes the traditional encoding structure of
grouping algorithms, and also novel crossover and mutation oper-
ators. We study the performance of the algorithm when using dif-
ferent fitness functions, and an island model in order to parallelize
the algorithm’s evolution. Experiments in synthetic and real data
from public repositories complete our study on the grouping ge-
netic algorithm for clustering problems.

The rest of the paper has been structured as follows: next sec-
tion summarizes some important definitions on clustering and
clustering measures and distances, needed to fully understand
the rest of the paper. Section 3 presents the grouping genetic algo-
rithm proposed in this paper for clustering problems. Section 4
contains the experimental part of the paper, where the perfor-
mance of the proposed grouping approach is evaluated. Section 5
closes the paper by giving some final remarks and conclusions.

 

 

2. Clustering problems: definitions and evaluation measures

Mathematically, a clustering problem is composed of the fol-
lowing elements: let X = {x1, . . . ,xN} be a set of N vectors in a given
feature space S. The objective of a clustering problem is to find an
optimal partition of X;U� ¼ fC�1; . . . ;C�kg;Ci

T
Cj ¼ ;, where C�i

stands for the ith cluster of partition U⁄, in such a way that the pat-
terns belonging to the same cluster are similar whereas patterns
belonging to different clusters are as different as possible, in terms
of a given measure function m(U).
2.1. Measure of distances in clustering problems

The measure of distances is one of the key elements when deal-
ing with clustering problems, since usually the similarity between
two different vectors xi and xj is related to a measure of distance in
the feature space S. In traditional clustering problems, the most
commonly used distance is given by a norm defined by a symmet-
ric and positive matrix A:

d2ðxi; xjÞ ¼ kxi � xjkA ¼ ðxi � xjÞ � A � ðxi � xjÞT ; ð1Þ

where T stands for the transpose operation. Note that matrix A
determines the shape and size of the set of vectors sited at a dis-
tance of a given vector under study xi. The most popular form of a
norm A distance is the simplest case when A ¼ I, i.e., the identity
matrix. In this case, the distance generated is the Euclidean dis-
tance, defined as:

d2
Eðxi; xjÞ ¼ kxi � xjk2 ¼ ðxi � xjÞ � ðxi � xjÞT ; ð2Þ

There are alternative distances for cases in which not all the clusters
are ellipsoids with the same orientation and size. Specifically, the
Mahalanobis distance takes care of these cases, by defining the fol-
lowing distance:

d2
Mðxi;xjÞ ¼ kxi � xjkR�1 ¼ ðxi � xjÞ � R�1 � ðxi � xjÞT ð3Þ

where R stands for the covariance matrix. Note that Mahalanobis
distance considers correlation between the different features of
the vectors involved in the distance. This way it is easy to consider
different associations between variables in order to define orienta-
tion and size of the different clusters.

2.2. Clustering evaluation

Validation or evaluation of the resulting clustering allows ana-
lyzing the result in terms of objective measures (Halkidi, Batistakis,
& Vazirgiannis, 2001). Depending on the information available, we
can evaluate the clustering result in terms of unsupervised or
supervised measures:

2.2.1. Unsupervised measures
This type of evaluation tries to determine the quality of a given

obtained partition of the data without any external information
available. This is why this unsupervised measure are sometimes
called as internal measures. We describe some of the most useful
ones:

� Sum of quadratic errors (SSE): This is probably the most
straightforward and popular evaluation distance in the litera-
ture. It only considers cohesion of clusters in order to evaluate
the quality of a given partition data.
SSEðUÞ ¼
Xk

i¼1

X
x2Ci

d2ðx;liÞ ð4Þ
where k stands for the number of clusters in the partition and
d(x,li) is the distance from observed vector x to the centroid of
the cluster i, represented by the symbol li.
� Davis–Bouldin Index (DB): The idea of the Davis–Boudin index

(Davies & Bouldin, 1997) is to minimize the intra-cluster dis-
tances, and at the same time, maximize the distances among
the different clusters.
DBðUÞ ¼ 1
k

Xk

i¼1

max
i–j

P
x2Ci

d2ðx;liÞ þ
P

x2Cj
d2ðx;ljÞ

d2ðli;ljÞ

8<
:

9=
; ð5Þ
note that, due to the definition, small values of the DB index corre-
spond to compact and well separated clusters. Note that this index
does not present a monotonic behavior with k, so the DB index al-
lows also validating the optimal number of clusters for a given data
set.
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� Silhouette coefficient(S): This is a measure that has been quite
often used in clustering problems since it allows evaluating
the quality of a particular solution, and also the quality of each
of the clusters that conform that solution, even more, it allows
evaluating a given assignment for each particular observation
vector xi. Thus, the silhouette coefficient is defined for the jth
observation (xj),

 

 

sj ¼
aj � bj

maxðaj; bjÞ
; ð6Þ
where the parameters aj and bj stand for the average distance be-
tween observation xj and the other vectors in its and different clus-
ters, respectively. Note that for bj, the average distance is taken as
the minimum distance obtained for all clusters different that the
one assigned to xj. We can define the silhouette coefficient for a gi-
ven cluster Cj, in the following way:
Sj ¼
X
xj2Cj

sj; ð7Þ
and thus, the silhouette coefficient for a given partition U of the data
is:
SðUÞ ¼ 1
k

Xk

j¼1

Sj: ð8Þ
Note that with this definition, S(U) is in the interval [�1,1], and the
objective for a good partition is to maximize S.

2.2.2. Supervised measures
Sometimes there are available external (known) results for the clus-

tering problem, that can help to evaluate the quality of a given algo-
rithm’s result. Supervised measures are sometimes called external
measures. Let us define two of the most used in clustering literature.

� Rand index (R): Rand index (Rand, 1971) calculates the similar-
ity between the obtained partition and the known optimal solu-
tion, i.e it is a measure of the percentage of correct decisions
taken by the algorithm.
RðUÞ ¼ TP þ TN
TP þ FP þ TN þ FN

ð9Þ
where TP and FP are the number of correct and incorrect assign-
ments, respectively, when the decision consists of assigning two
elements to the same cluster, and TN and FN are the number of cor-
rect and incorrect assignments, respectively, when the decision
consists of assigning two elements to different clusters. Note that
R is in the interval [0,1], and values of R closer to 1 indicate a better
quality of the solution tested.
� Jaccard index (J): Jaccard index is quite similar to Rand index, but

this measure does not consider the number of correct assign-
ments when two elements are assigned to different clusters.
JðUÞ ¼ TP
TP þ FP þ FN

ð10Þ
3. Proposed grouping genetic algorithm

The grouping genetic algorithm (GGA) is a class of evolutionary
algorithm especially modified to tackle grouping problems, i.e.,
problems in which a number of items must be assigned to a set
of predefined groups. It was first proposed by Falkenauer (1992,
1998), who realized that traditional genetic algorithms had
difficulties when they were applied to grouping problems. Thus,
in the GGA, the encoding, crossover and mutation operators of
traditional GAs are modified to obtain a compact algorithm, with
a high performance in grouping-based problems.
In spite of its good performance in very different applications
(Agustı́n-Blas, Salcedo-Sanz, Ortiz-Garcı́a, Portilla-Figueras, &
Pérez-Bellido, 2009; Agustín-Blas, Salcedo-Sanz, Vidales, Urueta,
& Portilla-Figueras, 2011; Brown & Sumichrast, 2003, 2004, 2005;
Hung, Sumichrast, & Brown, 2003; James, Vroblefski, & Notting-
ham, 2007; James, Brown, & Keeling, 2007; Kreng & Lee, 2004;
De Lit, Falkenauer, & Delchambre, 2000), to our knowledge GGAs
have not been tested in clustering problems. In this paper we de-
velop an efficient GGA for clustering problems in which we include
different improvements over the standard GGA version of Falk-
enauer. We also discuss the performance of the proposed algo-
rithm including different objective functions, characterized by
different distance definitions, as shown in Section 2. In the next
subsections, we show the main characteristics of the hybrid GGA
that we propose. Special attention will be paid to the encoding, ge-
netic operators, implementation of a local search to improve the
quality of solutions, and finally, the parallelization of the algorithm
by including an island model of evolution.

3.1. Problem encoding

The proposed GGA for clustering follows the classical grouping
encoding initially proposed by Falkenauer, i.e. it is a variable-length
genetic algorithm. The encoding is carried out by separating each
individual in the algorithm into two parts: c = [ljg], the first part is
the element section, whereas the second part is called the group sec-
tion of the individual. As an example, following our notation, in a
solution for a clustering problem with N elements (observations)
and k clusters, the individual will have the following aspect:

l1; l2; . . . ; lN jg1; g2; . . . ; gk

Note that lj represents the cluster to which jth observation is as-
signed, whereas group section keeps a list of tags associated to each
of the clusters of the solution. In a formal way:

lj ¼ gi () xj 2 Ci: ð11Þ

Note also that the length of the element section is fixed for a given
problem (equals N), but the group section’s length is not fixed, it
varies from one individual to another. Thus the GGA does not need
as input parameter the number of clusters, but it searches for the
best k in terms of the objective function.

As an example to fully clarify the GGA encoding in clustering, let
us suppose the following individual:

1 3 2 1 4 1 1 2 3 2 1 3 4 2 1 j 1 2 3 4

This individual represents a solution with 4 clusters, and the follow-
ing partition of the input data: {x1,x4,x6,x7,x11,x15}, {x3,x8,x10,x14},
{x2,x9,x12} and {x5,x13}.

3.2. Selection operator

In this paper we use a rank-based wheel selection mechanism,
similar to the one described in James et al. (2007). First, the indi-
viduals are sorted in a list based on their quality. The position of
the individuals in the list is called rank of the individual, and de-
noted Ri, i = 1, . . . ,n, with n number of individuals in the population
of the GGA. We consider a rank in which the best individual x is as-
signed Rx = n, the second best y, Ry = n � 1, and so on. A fitness value
associated to each individual is then defined, as follows:

fi ¼
2 � Ri

n � ðnþ 1Þ ð12Þ

Note that these values are normalized between 0 and 1, depending
on the position of the individual in the ranking list. It is important to
note that this rank-based selection mechanism is static, in the sense
that probabilities of survival (given by fi) do not depend on the gen-



9698 L.E. Agustı́n-Blas et al. / Expert Systems with Applications 39 (2012) 9695–9703 
eration, but on the position of the individual in the list. As a small
example, consider a population formed by 5 individuals, in which
individual 1 is the best quality one (R1 = 5), individual 2 the second
best (R2 = 4), and so on. In this case, the fitness associated to the
individuals are {0.33,0.26,0.2,0.13,0.06}, and the associated inter-
vals for the roulette wheel are {0 � 0.33,0.34 � 0.6,0.61 � 0.8,
0.81 � 0.93,0.94 � 1}.

The process carried out in our algorithm consists of selecting
the parents for crossover using this selection mechanism. This pro-
cess is performed with replacement, i.e., a given individual can be
selected several times as one of the parents, however, individuals
in the crossover operator must be different.

3.3. Crossover operator

The crossover operator implemented in the grouping genetic
algorithm used in this paper is a modified version of the one ini-
tially proposed by Falkenauer (1992) to adapt it to the clustering
problem. The process follows a two parents one offspring schema,
with following steps:

a. First, two individuals are randomly selected, and two cross-
ing points are chosen in their group part.

b. Insert the elements belonging to the selected groups of the
first individual into the offspring.

c. Insert the elements belonging to the selected groups of the
second individual into the offspring, if they have not been
assigned by the first individual.

d. Randomly complete the elements not yet assigned with ele-
ments from the current groups.

e. Remove empty clusters, if any.
f. Modify the labels of the current groups in the offspring in

order to numerate them from 1 to k.

Fig. 1 shows an example of the crossover procedure implemented
in this work. The probability of crossover must be high in the first
stages of the algorithm, and moderate in the last ones in order to
properly explore the search space. Thus, we have implemented an
adaptive crossover probability, defined in the following way:

PcðjÞ ¼ Pci þ
j

TG
ðPci � Pcf Þ ð13Þ

where Pc(j) is the crossover probability used in a given generation j,
TG stands for the total number of generations of the algorithm, and
Pci and Pcf are the initial and final values of probability considered,
respectively.

 

 

(a)

(b)

(c)

(d)

(e)

Fig. 1. Example of the crossover operator implemented in the proposed grouping
genetic algorithm for clustering problems.
3.4. Mutation operator

Mutation operator includes small modifications in each individual
of the population with a low probability, in order to explore new re-
gions of the search space and also scape from local optima when the
algorithm is near convergence. In this case, we have implemented
two different mutation operators adapted to the clustering problems:

� Mutation by cluster splitting: it consists of splitting a selected
cluster into two different ones. The samples belonging to the ori-
ginal cluster are assigned to the new clusters with equal proba-
bility. Note that one of the new generated clusters will keep its
label in the group section of the individual, whereas the other
will be assigned a new label (k + 1). The selection to the initial
cluster to be split is carried out depending on the clusters’ size,
with more probability of split given to larger clusters. As an
example, we illustrate an application of this operator in the indi-
vidual used to illustrate the crossover operator (Fig. 1), in the
case when the initial cluster chosen to be split is cluster 1:
2 2 1 3 3 4 4 5 2 1 4 2 5 1 4 j 1 2 3 4 5
� Mutation by clusters merging: it consists of merging two exist-
ing clusters, randomly selected, into just one. As in mutation by
cluster splitting, the probability of choosing the clusters
depends on their size. In order to illustrate this mutation, again
an example in the individual used to illustrate the crossover
operator (Fig. 1) is given. In this case, let us suppose that the
selected clusters are clusters 2 and 4:
2 2 1 3 3 2 2 1 2 1 2 2 1 1 2 j 1 2 3
Similarly to the crossover case, we also consider an adaptive
version of the probability of applying the mutation operators de-
scribed above. Note that we apply the two mutation operators in
a serial fashion (one after the other), with independent probabili-
ties of application. In this case, probability of mutation is smaller
in the first generations of the algorithm and larger in the last ones,
in order to have more opportunities to scape from local minimums
in the last stages of the evolution:

PmðjÞ ¼ Pmi þ
j

TG
ðPmf � PmiÞ ð14Þ

where Pm(j) is the probability of mutation used in a given genera-
tion j, TG stands for the total number of generations of the algo-
rithm, and Pmf and Pmi are the final and initial values of
probability considered, respectively.

3.5. Replacement and elitism

In the proposed GGA, the population at a given generation j + 1 is
obtained by replacement of the individuals in the population at gen-
eration j, through the application of the selection, crossover, and
mutation operators described above. An elitist schema is also ap-
plied, the best individual in generation j is automatically passed onto
the population of generation j + 1, ensuring that the best solution
encountered so far in the evolution is always kept by the algorithm.

3.6. Local search

We use a local search procedure to try to find local optimums in a
close neighborhood of an individual. The local search proposed is
based on slight modifications of the current individual, as far as they
produce an increase of the associated objective function. In this
case, the implemented local search works over the element section
of the individuals. For each observation, this operator determines
the objective function variation obtained when the observation is
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Fig. 2. Data of the first synthetic clustering example: spheric data.
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assigned to the other clusters in the solution. Finally, we keep the
assignment with the largest objective function. Since this is a quite
time-consuming operation it is applied to a given individual with a
small probability, pb, that is modified between an initial and final va-
lue in the algorithm in the same way that the crossover probability.

3.7. An island model to improve the algorithm’s performance

In order to improve the performance of the proposed GGA, an
island model is considered to parallelize it. S sub-populations (is-
lands) are taken into account, in such a way that the evolution in
each island is independent, but the migration of good individuals
between islands is allowed. We consider an elitist migration mod-
el, in which only the best individual in each island migrates, and
substitutes a randomly chosen individual in one of the other is-
lands. There is a probability of migration pe predefined in the algo-
rithm. The migration process is as follows:

1. Choose the best individual in each island.
2. Randomly choose the island toward each individual will migrate.
3. Randomly choose an individual in the destiny island and change

it by the migrating individual.

4. Experiments and results

The experimental part of the paper has been structured in two
subsections. First, we briefly describe two classical clustering algo-
rithms against we will compare the proposed GGA, i.e, the K-means
and DBSCAN algorithms. Second, we show different experiments
and results obtained in synthetic and real data problems obtained
from public repositories.

4.1. Clustering algorithms for comparison

In this section we revise two of the most used classical ap-
proaches for clustering problems, that we will use for comparison
purposes, i.e, the K-means algorithm and the DBSCAN approach.
The idea is to situate the behavior of the proposed GGA in terms
of these two classical approaches, which have obtained very good
results in many real clustering problems and applications.

4.1.1. K-means
K-means algorithm was proposed by MacQueen in McQueen

(1968), it has turned into the most popular and compared cluster-
ing algorithm. The K-means approach requires as input parameter
the number of clusters k, and then operates in the following way, in
order to obtain a partition of the data into k clusters:

Algorithm 1. K-means algorithm

Require: Initial number of clusters k.
Ensure: A partition of the data U.

1: Initialize the k centroids lð1Þ1 ; . . . ;lð1Þk .
2: Assign each observation to the closest centroid:

� � � �n o
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Fig. 3. Best clustering obtained with the proposed GGA with DB index in the first
CðtÞi ¼ x : d x;lðtÞi 6 d x;lðtÞj ; j ¼ 1; . . . ; k

3: Update the centroids from the observations assigned to
each cluster:

lðtþ1Þ
i ¼ 1

jCðtÞi j

X
x2CðtÞ

i

x

4: Repeat previous steps until a convergence criterium is
fulfilled.
The K-means algorithm is simple and easy to apply in a large

variety of problems. Note, however, that the K-means will obtain
poor results in problems in which clusters have different sizes
and densities. It also performs poorly in data with many outliers.
In addition, the K-means algorithm has a major dependency of
the initialization of the centroids, what can make that the algo-
rithm ends up in a local minimum. In our experiments, we use
the well-known elbow method to automatically set the number of
centroids in the K-means algorithm.

4.1.2. DBSCAN
An alternative clustering algorithm which is also quite common

in the literature is the so called Density Based Spatial Clustering of
Applications with Noise (DBSCAN) (Ester et al., 1996). DBSCAN re-
quires two parameters to initialize, i.e, a threshold �, and the min-
imum number of points required to form a cluster (minpts). The
clustering process is then based on the classification of the obser-
vations as core points, border points and noise points, and on the use
of density relations between points (directly density-reachable,
density-reachable, density-connected) to form the clusters. A point
xi is directly density-reachable from another point xj if the distance
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synthetic clustering problem considered.



Table 1
Comparison of the results obtained by the proposed grouping genetic algorithm with
DB and S index, DBSCAN and K-means algorithms in the first synthetic clustering
problem considered.

Algorithm # Clusters Rand index

GGA (DB index) 8 0.9814
GGA (S index) 7 0.9578
DBSCAN 7 0.9555
K-means 9 0.9493

Table 2
Comparison of the results obtained by the proposed grouping genetic algorithm with
DB and S index, DBSCAN and K-means algorithms in the second synthetic clustering
problem considered.

Algorithm # Clusters Rand index

GGA (DB index) 3 0.9177
GGA (S index) 3 0.9511
DBSCAN 1 0.3760
K-means 4 0.8755
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between them is less than the threshold �, and xj is a core point. A
point xi is density-reachable from xj if there exists a sequence of
points among them in such a way that each point is directly den-
sity-reachable from the previous one.

The algorithm starts by selecting an arbitrary point. If the se-
lected point is a core one, i.e. there are minpts points within a dis-
tance �, then a cluster is started, and all the density-reachable
points from that core are assigned to be in its cluster. The process
continues until all the points in the dataset have been processed.
The points that stay out of the formed clusters are called noise
points (not assigned), whereas the points that are not noise nor
core, are the border points.

Algorithm 2.DBSCAN algorithm

Require: A threshold � for defining density-reachability.
Require: The minimum number of points minpts needed to

start a cluster.
Ensure: A partition of the data U.

1: Set a counter t = 1.
2: Select an arbitrary point among the data.
3: if the selected point is a core point then
4: start the cluster t.
5: end if
6: Assign all the density-reachable points to cluster t.
7: t = t + 1
8: Process next points to locate other core points.
9: Label remaining points as noise.
Note that DBSCAN does not need to know beforehand the num-
ber of clusters for being run. It needs, however, two input param-
eters � and minpts. DBSCAN is able to recognize clusters with
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Fig. 4. Data of the second synthetic clu
different shapes and sizes, and takes into account the notion of
noise, in such a way that outlier samples do not influence the algo-
rithm’s performance. Note, however, that it will have a poor perfor-
mance in clustering problems with significant differences in
density areas.

4.2. Results

This section presents the results obtained with the proposed
GGA and the K-means and DBSCAN algorithms for comparison.
We have structured the experiments in experiments over synthetic
data, and experiments over repository (real) data, from public
repositories.

4.2.1. Synthetic data: spheric clusters
In this first experiment, we test the performance of the pro-

posed GGA in a 2-dimension clustering problem, defined by 300
objects, randomly generated using a Gaussian distribution from 8
equiprobable classes, with means: l1 = (�1,0), l2 = (�1,�1),
l3 = (�1,�3), l4 = (3,�1), l5 = (�1,1), l6 = (2,�2), l7 = (1,2),
l8 = (3,1), and the following covariance matrices:

R1 ¼ � � � ¼ R8 ¼
0:352 0
0 0:352

" #
ð15Þ

Note that this results in a problem of spheric clusters. Fig. 2 shows
the observations randomly generated following the statistical dis-
tribution considered.

Table 1 summarizes the results obtained in this instance by dif-
ferent algorithm. We show the results of the proposed GGA with
the Davies–Boulding (DB) index and the Silhouette(S) coefficient
as fitness functions. Note that the results are given in terms of
0.5 1 1.5 2 2.5

stering example: structured data.
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Fig. 5. Best clustering obtained with the proposed GGA with S index in the second
synthetic clustering problem considered.

Table 3
Comparison of the results obtained by the proposed grouping genetic algorithm with
DB and S index, DBSCAN and K-means algorithms in the third synthetic clustering
problem considered.

Algorithm # Clusters Rand index

GGA (DB index) 9 1.0000
GGA (S index) 9 0.9936
DBSCAN 8 0.9545
K-means 3 0.7809
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the Rand index, obtained considering that the best partition of the
data is the one corresponding to the original classes. Note also that
the GGA solutions improve the results of the DBSCAN and K-means
approaches. Fig. 3 shows the result of the GGA solution obtained
with the DB index.

4.2.2. Synthetic data: structured clusters
We test following the performance of the proposed GGA in a

different 2-dimension clustering problem, defined by 400 objects,
randomly generated using a Gaussian distribution from 3 classes
with probability, p1 = 0.5, p2 = 0.33 and p3 = 0.17. The means of
each classes are: l1 = (0,2), l1 = (�1,�1), l2 = (2,�1) and
l3 = (0,2), and they have the following covariance matrices:

R1 ¼
12 0
0 0:82

" #
;R2 ¼

0:62 0
0 0:42

" #
;R3 ¼

0:32 0
0 0:52

" #
; ð16Þ

It is easy to see that, in this case, the classes are not spherical, and
have different distributions. Fig. 4 displays the observations gener-
ated for this instance.
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Fig. 6. Data of the third synthetic clus
Table 2 shows the results obtained by the proposed GGA, with
DB and S indexes, and the results obtained by the DBSCAN and
K-means algorithms for comparison. In this case the best results
is obtained by the GGA with S index as fitness function, and it is
also interesting the poor result obtained by the DBSCAN approach.
Fig. 5 shows the best result obtained by the GGA with S index as
fitness function.
4.2.3. Synthetic data: unbalanced clusters
In this final synthetic experiment, we test the performance of

the proposed GGA in a 2-dimension clustering problem, defined
by 200 objects, randomly generated using a Gaussian distribution
from 9 equiprobable classes, with means: l1 = (1,�1),
l2 = (�1.5,0), l3 = (0,1), l4 = (�1,1), l5 = (2,�1), l6 = (�2,�1),
l7 = (�0.5,2), l8 = (�1,�1), l9 = (1.5,0) and the following covari-
ance matrices:

R1 ¼ � � � ¼ R8 ¼
0:22 0

0 0:22

" #
ð17Þ

Fig. 6 shows the observations randomly generated following the
statistical distribution considered. In this case, there are three
groups of clusters that form different clusters structures. The idea
is to check out that the tested algorithms are able to correctly sep-
arate all the cases.

Table 3 summarizes the results obtained in this instance by the
different algorithms considered. The proposed GGA with the DB in-
dex obtains a perfect reconstruction of the clusters (Rand index
equals 1). The GGA with the S coefficient as fitness function also
obtains an excellent clustering of the data. In this case, the DBSCAN
algorithm obtains good results, and the K-means algorithm is the
one which fails to obtain a good result since it is not able to cor-
0 1 2 3 4

tering example: unbalanced data.



Table 5
Comparison of the results obtained by the proposed grouping genetic algorithm with
DB and S index, DBSCAN and K-means algorithms in the Wine data set.

Algorithm # Clusters Rand index

GGA (DB index) 3 0.7310
GGA (S index) 3 0.7220
DBSCAN 2 0.3490
K-means 4 0.7019
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Fig. 7. Best clustering obtained with the proposed GGA with DB index in the third
synthetic clustering problem considered.
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rectly adjust the optimal number of clusters. Fig. 7 shows the best
result obtained by the GGA with DB index as fitness function.

4.2.4. Repository data: Iris and Wine databases
In a final set of experiments, we show the performance of the

proposed GGA in two different real problems, from UCI database
(Asuncion & Newman, 2007). The first experiment is carried out
in the Iris problem. This is maybe one the most known and used
problems in data mining. It is formed by 3 classes, with 50 obser-
vations each. The problem consists of separating three different Iris
plants considering characteristics of the flowers: Iris Sentosa, Iris
Viginica and Iris Versicolor. Every observation is formed by 4 fea-
tures, i.e., length and width of sepal and petal of the flower, in
centimeters.

Table 4 shows the results obtained by the different compared
algorithms. In this problem, the best result is given by the GGA
with S index. In this case, the K-means obtains a really good solu-
tion, slightly worse than the GGA with S index, but better than the
solution provided by the GGA with DB index. The DBSCAN ap-
proach is not accurate in this problem. The best solution, given
by the GGA with S index, finds a solution formed by 50, 45 and
55 objects in each class, with a value of the S coefficient of
S(U) = 0.5325.

The second instance from the UCI repository considered is the
Wine problem. Wine is formed by 3 classes, with 59, 41 and 78
data, where each observation represents a class of wine from a dif-
ferent region of Italy. Each sample is formed by 13 features, corre-
sponding to chemical analysis of the wines. Table 5 shows the
results obtained by the different compared algorithms. Again the
proposed GGA obtains the best results, outperforming K-means
and DBSCAN. In this case, the GGA with DB index obtains the best
Table 4
Comparison of the results obtained by the proposed grouping genetic algorithm with
DB and S index, DBSCAN and K-means algorithms in the Iris data set.

Algorithm # Clusters Rand index

GGA (DB index) 3 0.8731
GGA (S index) 3 0.8995
DBSCAN 2 0.7777
K-means 3 0.8805
result, selecting the correct number of clusters. Note that the
DBSCAN approach fails to locate the optimal number of clusters,
and provide a poor solution to this problem.
5. Conclusions

In this paper we have presented a new grouping genetic algo-
rithm for clustering problems. Clustering is an important class of
unsupervised learning techniques that have deserved a large
amount of research work in the last few years, including machine
learning and soft-computing approaches. The grouping evolution-
ary approach that we have described in this paper is a novel con-
tribution, which uses concepts of grouping encoding and novel
adaptations of evolutionary operators. In this work we have given
a full description of the encoding and operators, and other imple-
mentation details of the algorithm, such as a local search and a par-
allelization using an island model to improve its performance. We
have tested the proposed approach in different synthetic and real
clustering problem, obtaining very good results, that improve clas-
sical approaches such as K-means and DBSCAN algorithms.
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