
CloudDB AutoAdmin: Towards a Truly Elastic Cloud-Based Data Store

Sherif Sakr, Liang Zhao, Hiroshi Wada, Anna Liu
NICTA and University of New South Wales, Sydney, Australia

first.last@nicta.com.au

1 Introduction
Database-as-a-service (DaaS) is a new paradigm for data

management in which a third party service provider hosts a
database as a service [2]. The service provides data man-
agement for its customers and thus alleviates the need for
the service user to purchase expensive hardware and soft-
ware, deal with software upgrades and hire professionals
for administrative and maintenance tasks. Since using an
external database service promises reliable data storage at
a low cost, it represents a very attractive solution for com-
panies specially startups. For example, Amazon Relational
Database Service (RDS)and Microsoft SQL Azure database
system have been recently announced as cloud-based re-
lational database systems. The service level agreements
(SLA) of cloud database services are mainly focusing on
providing their customers with high availability (99.99%)
to the hosted databases. However, they are not providing
any guarantee or support on the performance and scalabil-
ity aspects. Therefore, it is on the shoulder of the consumer
applications (developers) to take care of additional respon-
sibilities and challenges to achieve the SLA requirements of
their applications in an efficient and economical way.

In this paper, we present the design and the architec-
ture of the CloudDB AutoAdmin system which aims to fill
the existing gaps between the provided cloud database ser-
vices and the requirements of the consumer applications.
In particular, it focuses on facilitating the job of the cloud
database consumers in implementing database applications
as distributed, scalable, and elastic services with a mini-
mum effort on the side of the application developer and a
limited footprint in the application code.

2 System Goals
Data replication and data partitioning are two well-

known strategies to achieve the availability, scalability and
performance improvement goals in the distributed and large
scale data management world [5]. In particular, when the
application load increases, there are two main options for
achieving scalability at the database tier and make the ap-
plication able to cope with more client requests: 1) Scaling
up: aims at allocating a bigger machine to act as a database

server. 2) Scaling out: aims at replicating and partition-
ing data across more machines. The scaling up option has
the main drawback that large machines are often very ex-
pensive and eventually a physical limit is reached where a
more powerful machine cannot be purchased at any cost.
Alternatively, it is both extensible and economical - espe-
cially in a dynamic workload environment - to scale out by
adding storage space or buying another commodity server.
Therefore, commercial cloud providers are generally rely-
ing on the scaling out model in their services as it fits well
with the pay-as-you-go pricing philosophy.

In practice, while cloud providers benefit from
economies of scale and multiplexing gains afforded by shar-
ing of resources through virtualization mechanisms, maxi-
mizing these advantages on the consumer side requires a
control framework that can orchestrate an automated cloud
resources provisioning and configuration process. There-
fore, the CloudDB AutoAdmin is designed to act as a mid-
dleware component that resides between the consumer ap-
plication and the cloud database service in order to facili-
tate adaptive and dynamic configuration of the application
data management layer. Thus, it enables automated and
transparent achievement for the application SLA require-
ments with an efficient resource consumption. Particularly,
CloudDB AutoAdmin has the following goals to achieve:

1) Declarative specification of replication management
strategies: aims to allow developers to specify declarative
rules to adaptively scale out (adding more replicas) or scale
in (removing existing replicas) the database tier in order to
meet an application-defined SLA requirements. Therefore,
the application developer will be able to achieve automated
elasticity feature for his database tier which will be also
augmented with a load balancing mechanism between the
immediately available database replicas at anytime.

2) Declarative specification of data partitioning and re-
distribution: aims to allow developers to define declarative
rules to adaptively split a specific partition, merge different
partitions or moving one partition from a specific location
to another in order to meet the requirements of any dynamic
workloads or spike situations [3] or to improve the response
times for geographically distributed users.



3) Declarative specification of consistency requirements:
The CAP theorem [1] shows that a distributed data system
can only choose two out of three properties: Consistency,
Availability and Tolerance to Partitions. It is highly im-
portant for cloud-based applications to be always avail-
able. Thus, the consistency requirement is typically com-
promised and various forms of weaker consistency (e.g.
eventual consistency [6]) are usually applied. In practice,
high consistency implies high cost per transaction and re-
duced availability but avoids penalty costs while low consis-
tency leads to lower costs per operation but might result in
higher penalty costs [4]. Therefore, application developers
should be able to declaratively specify strict consistency re-
quirements for particular type of transactions while weaker
consistency requirements of other types of transactions.

4) Transparent execution of distributed transactions.
Due to the size limit on a single database (e.g. the maximum
size of an SQL Azure database is 50 GB) or geographical
distribution of application users, it would be common to run
transactions over multiple partitions (databases). Given an
existing setting of data partitions and replicas, the CloudDB
AutoAdmin need to transparently coordinate the execution
of any transaction (in a distributed manner, if required)
with oblivious application code and declarative application-
defined specifications of the consistency requirement.

3 System Architecture
Figure 1 illustrates the component-architecture of

CloudDB AutoAdmin. A brief description of the role of
each component is given as follows:

Metadata manager: Stores a metadata information about
the different entities such as: the data layout (e.g. number
of replicas, location of replicas, partitions), the application-
defined SLA requirements, pricing information of required
resources. These metadata information is to be utilized by
the different components in making their decisions.

Workload monitor: Logs and monitors the executed
database operations of the executed workloads.

SLA monitor: Logs and monitors the values of the
application-defined SLA metrics (e.g. the processing of any
order transaction should not exceed more than 200 ms). The
monitoring information must be very fresh and accurate to
let the system controllers take the required actions timely
and correctly in order avoid any significant disruption.

Performance modeler: Responsible of estimating the
performance of executing a specific workload given a spe-
cific data management configuration (e.g. data partitioning
and replication).

Financial cost modeler: Responsible of estimating the
financial cost of a specific workload given the pricing infor-
mation and the data management configuration.

Replication controller: Regularly track the information
provided by the SLA Monitor so that it can automatically
decide (when required) if new replicas have to be added

Cloud-Hosted 
Database(s)

Application

Load Balancer Workload 
Monitor

Replication 
Controller

Consistency 
Controller

Partitioning 
Controller

Performance 
Modeler

SLA Monitor

Financial Cost 
Modeler

Distributed 
Trans. Manager

Action 
Scheduler

Cl
ou

dD
B

Au
to

Ad
m

in

Metadata 
Manager

Declarative Specification 
of SLA RequirementsWorkload

Automated Management of 
App. SLA Requirements

Figure 1. CloudDB AutoAdmin: Component Architecture

to meet degrading SLA satisfaction or existing unnecessary
replicas can be removed in order to reduce the cost.

Consistency controller: Transparently executes and
switches between different consistency models according to
the transaction settings.

Data partitioning controller: Regularly track the infor-
mation of the Workload and SLA Monitors in order to au-
tomatically decides if new partitions have to be created to
meet the SLA performance requirements of existing hot
spots or merging existing unnecessary partitions in order to
reduce the cost of executing distributed transactions.

Load balancer: Automatically distributes the application
workload between the available data replicas and partitions.

Distributed transaction manager: Acts as the coordina-
tor of executing distributed transactions across the available
data replicas and partitions.

Action scheduler: Executing all the decision of the dif-
ferent system controllers concurrently might overwhelm the
system and reduce performance. Executing the actions
sequentially would minimize the performance impact but
would be very slow. The action scheduler is responsible of
prioritizing and scheduling the concurrent execution of all
the required actions in a way that avoids (or minimize) any
effect on achieving the application SLA requirements.

References

[1] E. Brewer. Towards robust distributed systems. In PODC,
2000.

[2] D. Agrawal et al. Database Management as a Service: Chal-
lenges and Opportunities. In ICDE, 2009.

[3] P. Bodı́k et al. Characterizing, modeling, and generating work-
load spikes for stateful services. In SoCC, 2010.

[4] T. Kraska et al. Consistency rationing in the cloud: Pay only
when it matters. PVLDB, 2(1), 2009.

[5] M. T. Özsu and P. Valduriez. Principles of Distributed
Database Systems, Second Edition. Prentice-Hall, 1999.

[6] W. Vogels. Eventually consistent. CACM, 52(1), 2009.


