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Abstract 

We consider the problem of deciding the best action time when observations are made sequentially. Specifically we 
address a special type of optimal stopping problem where observations are made from state-contingent distributions and 
there exists uncertainty on the state. In this paper, the decision-maker's belief on state is revised sequentially based on the 
previous observations. By using the independence property of the observations from a given distribution, the sequential 
Bayesian belief revision process is represented as a simple recursive form. The methodology developed in this paper 
provides a new theoretical framework for addressing the uncertainty on state in the action-timing problem context. By 
conducting a simulation analysis, we demonstrate the value of applying Bayesian strategy which uses sequential belief 
revision process. In addition, we evaluate the value of perfect information to gain more insight on the effects of using 
Bayesian strategy in the problem. © 1998 Elsevier Science B.V. 
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1. Introduct ion 

We consider the problem of  deciding the best time to act when observations are made sequentially. More 
precisely, we analyze a special type of  optimal stopping problem, called the action-t iming problem.  In the 
action-timing problem, observations are made sequentially from a certain distribution. Fol lowing the observa- 
tion, the decision maker makes an irrevocable decision whether to take the observation under consideration or 
reject it for another observation. I f  the decision maker takes the observation, the decision-making process ends 
with the observation. If  the decision maker rejects it, the same recursive decision-making process will continue 
with one less decision opportunity. For  a decision made too early, a chance of  better observation can be lost in 
the later time. For a decision made too late, a better observation could have been lost already. Therefore, 
decision maker  has to choose the best action time while balancing the cost and benefit of  acting now versus 

later. 
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Howard formulated and solved the action-timing problem using a dynamic programming framework 
(Howard, 1966). Navarro analyzed it with multiple stopping opportunities using a decision-analytic framework, 
and applied it to evaluate R & D investment opportunities (Navarro, 1987). Ahn extended the decision-analytic 
framework using a Markov process to analyze a situation where decision prospects change over time (Ahn, 
1993) and applied it to the medical decision problem (Ahn and Hornberger, 1996). Unlike the secretary 

problem (Freeman, 1983; Samuels, 1991) which seeks to maximize the probability of selecting the best 
candidate by using ordinal measure, the action-timing problem seeks to maximize the expected utility by using 
cardinal measure. 

In the action-timing problem, it is normally assumed that the distribution where observations are made is 
known with certainty. However, we often find that in reality we don't have the exact information on the 
distribution where observations are made. To illustrate the uncertainty involved in the decision environment, 
let's consider an entrepreneur who has a technology to sell. 

An entrepreneur believes that he has a technology which can be applied usefully in a specific industry. 
Believing in the possibility of applying the technology usefully, the entrepreneur plans to sell the technology. 
Because the technology has certain proprietary characteristics, the entrepreneur approaches potential buyers 
sequentially and gives them the exclusive privilege for a specific time to evaluate the technology. After the 
evaluation time expires, a potential buyer offers a certain price for the technology and the entrepreneur decides 
whether to accept or reject the offer. The technology could either revolutionize the way products are produced 
or only have a marginal benefit. But, the entrepreneur faces information asymmetry: he does not know exactly 
how much cost saving can be achieved by applying the technology. But, actual manufacturers know their cost 
structures and potential savings. 

In the above case, the offers made by potential buyers to the entrepreneur reveals some information about 
how well the technology is perceived by buyers. If an entrepreneur observes high offers, then the entrepreneur 
would believe that the technology may indeed be revolutionary. Conversely, if an entrepreneur observes low 
offers, then the entrepreneur would believe that the technology would have only a marginal benefit. But the 
entrepreneur doesn't know for certain how well the technology is perceived: he can only conjecture how well 
the technology is perceived. That is one source of uncertainty rooted in the information asymmetry between 
entrepreneur and potential buyers. Another source of uncertainty is the random observations from a specific 
distribution. Even though potential buyers have the same perception to the quality of the technology, their offers 
may be significantly different from each other because people value the same thing in different ways depending 
on their preferences. 

Albright addressed a model updating parameters through Bayesian updating scheme for a single distribution 
function (Albright, 1977), but information asymmetry is not addressed in earlier models (Howard, 1966; 
Navarro, 1987; Ahn, 1993). In this paper, we develop a methodology which can addresses information 
asymmetry as well random observations. To address the information asymmetry issue, we introduce states and 

use a sequential Bayesian belief revision process to update our belief on state based on the previous 
observations. The uncertainty related to the random observations is represented for each state as a distribution 
where observations are made. 

The rest of the paper is organized as follows. In Section 2, we develop an action-timing model with 
sequential Bayesian belief revision process and derive the explicit optimal solution. In Section 3, we walk 
through the decision-making process with the actual Bayesian belief revision process. In Section 4, we 
demonstrate the value of the sequential Bayesian belief revision process and value of perfect information. 
Finally, Section 5 provides concluding remarks. 

2. Model with sequential Bayesian belief revision process 

Let X~, X 2 . . . . .  be sequentially observed random variables from a probability density function f (x) .  
Suppose that x~ be the kth observation already made sequentially from f (x) ,  where k _> 1. So x I would be the 



120 J.-H. Ahn, J.J. Kim / European Journal of Operational Research 105 (1998) 118-129 

first observation, x 2 would be the second observation and so on. Decision will be made whether the decision 
maker takes the kth (k >_ l) observed value x k or rejects it in a sequential manner. Suppose that n number of 
decision stages are given (n >_ 1). In each stage, the decision maker makes one observation. Therefore, at most 
n observations can be made. If the decision maker decides to take the observed value, then the observation is the 
final value which the decision maker will take. If the decision maker rejects the value, then it is discarded and 
another observation is made to continue the process. The whole process ends when the decision maker either 
takes an observed value or runs out of all the decision stages. 

Consider a strategy, with n remaining decision stages, such that the decision maker takes the observed value 
x k if the value is grater than or equal to d ( n )  and rejects it if x k is less than d(n) .  That is: 

Accept x~ i f x  k_>d(n) 

Reject x k i f x  k < d ( n ) .  ( 1 )  

If the decision maker rejects the value x k, then another observation is made with n -  1 remaining decision 
stages. Therefore, the problem is to find d* (n), the optimal strategy with n remaining decision stages, which 
maximizes the expected utility from this decision process. Because rejected value is discarded and there is 
usually finite decision stages, decision maker has to balance the risk and benefit of rejecting the observed value. 

2.1. Sequen t ia l  B a y e s i a n  b e l i e f  rev i s ion  p r o c e s s  

Suppose a situation where observations are made from a distribution which is dependent on certain state. 
That is, depending on state, the decision maker observes values from different probability density functions. For 
example, offers for the exclusive technology license may be dependent on the degree of the innovation of the 
technology. Observations on stock prices may be dependent on the state of the specific company or economy. 
Sequential medical test results may be dependent on the state of health (existence of cancer or not) in medicine. 
Therefore, we will assume that probability density function f(x) ,  where observations are made, is different state 
by state. 

Let's assume that there are m states. For each state S i (i = 1 . . . . .  m), suppose a corresponding probability 
density function f~(x), where f/(x) > 0 for Vx ~ R. When observations are made sequentially, it is not known 
to the decision maker from which distribution they are made. 

The uncertainty on the probability distribution function itself makes the problem more complex. The decision 
maker has to consider not only the uncertainty related to the random observations from a distribution, but some 
inference on the probability density function itself. Even though there is no information on density function 
itself, the idea is that we can use the prior observations to make inferences on the density function. Because 
there is one probability density function corresponding to each state, inference on the density function itself 
would be same as the inference on the state. The process of using prior observations sequentially to revise the 
belief on state would be called the sequen t ia l  B a y e s i a n  b e l i e f  rev i s ion  process .  

To show how the Bayesian belief revision process works, let's represent the observation vector as O k = { x 1 , 

x2 . . . . .  x k -  1, Xk} with prior observations x 1, x 2 . . . . .  Xk-  1, and current observation x~. The interpretation of 
these observations from non-Bayesian (or conventional statistical) approach is significantly different from 
Bayesian approach. Non-Bayesian approach would consider the observation vector O k_ 1 (k _> 1) mere statistical 
realizations of values from a distribution which is unknown. On the other hand, Bayesian approach would use 
Ok-1  to infer the distribution where observation vetor are made. Following the Bayesian approach, we will 
demonstrate how we can use the prior observations O k_ ~ and current observation x k to update our belief on 
each state and use the information to derive the optimal strategy. 

Suppose that we made a new observation x k. Based on the observation vector 0 k_ L and x k, we want to 
update our belief on state i. We can obtain the posterior belief on state i by performing a massive calculation of 
the impact of all previous observations on the posterior belief. But the calculation will be very complex if there 
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we combine Eq. (4) and Eq. (5) to get 

Tr(SilOk) ~r(SiIOk-l) Pr(xklSi) 
or Oa(S~lOk) = Oe(SilO k_1)L(x~lSi). (6) rr(-~ SilOk) rr(-1 S~IO~_ 1) Pr(xk[~  Si)' 

Here, we can derive the condition when we can support the current belief as a new observation x~ becomes 
available. From the definition of  posterior odds, rr(Si]O k) is represented in terms of Od(Si]O k) as 

o (silo,) 
7r(SilOk) = 1 + Od(SilOk) " 

Because 7r(SilO k) is the increasing function of  Od(SilOk), 7r(SilO k) > 7r(SilO k_ 1) if and only if Od(SilO k) > 
Od(Si[Ok- l)" From Eq. (6), it means that upon the arrival of  the new information x k, 7r(SilO k) > ~r(SilO k_ 1) if 
and only if L(xklS i) > 1. On the other hand, our prior belief on state i decreases upon the arrival of  the new 
observation x k, if the likelihood ratio L(xk[S ) is less than 1. If L(xk]S i) is 1, then the new observation x k 
doesn't  change our prior belief on the state. Thus, Eq. (6) shows in a very simple term how the belief revision 
process is related to the likelihood ratio. 

2.2. Action-timing problem with sequential Bayesian belief revision 

With the above framework of incorporating prior observations into the process of updating posterior belief on 
the state, we develop a model for the action-timing problem. Let 's  assume that we made an observation x k 
(k > 1) at decision stage n. Index k implies that there exists k - 1 prior observations. Now, we have to derive 
the optimal decision criteria whether to accept the observation x~ or not. When the observation is rejected, 
another observation will be made in the next decision stage with cost C (C > O) and the value in the next 
decision stage will be discounted with unit period time preference a (0 < o~ _< 1). Note that even though the 
new observations may become available in the future and our belief on the state i would be updated based on 
them, rr(Si[O k) is the only and the best information we have. So, we use posterior belief 7r(SilO k) to derive 
strategies in the later stages. 

The expected value at decision stage n is calculated by taking the expectation weighted by the belief on each 
state. If  we apply arbitrary decision criterion d(n) at decision stage n, then the expected value will be 
represented as 

~ Tr(SilOk)[Pri(X,>d(n))Ei(XnlX,>d(n))+cePri(X,<d(n))( m~lTr(SjlOk)Vj(n-1) - C ) ]  • 
i = 1  J =  

(7) 

Note that Vi(n) is the expected value if decision maker is in state i and follows the optimal strategies from 
decision stage n - 1 and it is represented as 

O~ d * ( n -  Vi(n-1)= fa.(._l)xfj(x)dx+ / '  ' ) f j ( x )dx (V j (n -2 ) -C) .  (8) 

The first expression in Eq. (7) is the conditional expected value when X n is greater than or equal to d(n) and 
the second expression is the conditional expected value when X n is less than d(n). Eq. (7) can be represented 
again as 

[: ( )] ~'Tl"(Si]Ok) (n)Xfi(x)dx+~fd~'~(x)dx E  (SjIOk)V,(n-I)-C (9) 
i = 1  - j = l  
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The explicit derivation of the solution as shown in Eq. (12) was possible because of the simplicity of the 
exponential distribution. Derivations for normal and gamma distributions are equally possible. For general 
distribution functions, we can use numerical integration if it is difficult to derive the explicit solutions 
(Wolfram, 1994). 

3. Decision-making process with sequential Bayesian belief revision 

The typical decision-making process with sequential Bayesian belief revision is as following [Fig. 1]. 
Step 1: Observation: An observation is made from a distribution which the decision maker doesn't know during 

the whole decision-making process. 
Step 2: Bayesian belief revision: Using the observation x k (k  > 1), prior belief on state i, 7r(SilO k_ ~) is 

revised to get the posterior belief on state i, 7r(S~lO k) as described in Eq. (3). 
Step 3: Calculation of d*(n): We calculate d* (n) as shown in Eq. (12). 
Step 4: Decision: If x k > d" (n)  at decision stage n, x k is accepted and the whole decision process ends. If not, 

it is rejected for another observation. Then, k becomes k + 1, n becomes n - 1 and the process goes 
back to step 1. 

To demonstrate how the whole decision-making process works with sequential Bayesian belief revision, we 
simulate the events of making observations from an exponential distribution. For simulations, we use uniform 
random generator and use inverse transformation technique (Hiller and Lieberman, 1995) to generate random 
numbers for exponential distribution. 

Example. Let's consider an example of two states; state 1 and state 2. Suppose that state 1 and 2 follow 
exponential distributions with parameters A 1 --- 0.1, A 2 = 0.2, respectively. So, the probability density functions 
from which we make observations are represented as 

= [0.1e 0.1x x > 0 ,  f2(x  ) :  [0.2e 0.2x, x > 0 ,  
f l ( x )  

0, otherwise ~ 0, otherwise 

Distribution ~, 
function 

k---> k+l 
n ---> n-1 

Reject 
if x.< d*(n) 

Observation (x~) I 

Bayesian belief 
revision process 

Calculation 
of d*(n) 

End I 

Accept 
if xk> d*(n) 

Fig. 1. Decision-making process with sequential Bayesian belief revision. 
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Let 's  assume that the unit period time preference a = 0.99, the observation cost C = 0.5, salvage value 
V~(0) = V2(0) = 0 and the number of remaining decision stages n = 15. For convenience, we assume that the 

I probability of  being in state 1 or state 2 is equally likely. So, ~(S l lO k_ ~) = 7r($210 k_ l) = 5, k = 1. With those 
assumptions, decision-making process proceeds as following. In the very beginning of the process, we start with 
k =  1 and n = 1 5 .  

Step 1: From the random number generation module, make an observation which happens to be 11.5709 (in 
this case, state 1 was selected and all the rest observations will also be made from state 1). 

Step 2: From Eq. (3), posterior belief on state 1 is given as 

7r(SllOk_ 1)0.1e - ° i x ,  

7r(S, lOk) = Pr(S = StIx k , O k_ ,) = 7r( S, lOk - , )0.1e_0 ,x ' + 7r( S2lOk - 1 ) 0 . 2 e _ 0 . 2 x  . (15) 

Because the observed value x k is 11.5709, it is substituted in Eq. (15) and 7r(S~lO k) is updated from 0.5 to 
0.6139. 

Note that the probability statement in Eq. (3) can be also considered as probability density in the continuous 
case as shown in Eq. (15). Because, for small A x, we can approximate Pr(x k < X k < x k + A x[S~) as A x 
f(XklSj), Eq. (3) becomes 

Ti'( SilOk- , )Pr( xk < Xk <-- xk + A xlSi, Oh-1) 
"lT( SilOk ) = Pr( Si[ Xk , O k _ l )  = 

~ (  SjlOk_ l )Pr( xk < Xk < Xk + AxISj )  
j = l  

rr( S, lOk_ 1 )A xf(  xklS,) f ( xk lS , )  

~- ~. 'lT(SjlOk-l)AXf(XkISj) "rg(SilOk-I) ~ 'Tr(SjlOk l)f(Xk[Sj) 
j = l  j = l  

Step 3: d" (n) is calculated as 16.1868 from Eq. (12). 
Step 4: Because x k ( =  11.5709) < d* (15) ( =  16.1868), the decision maker rejects x k and goes back to step 

1 with one less decision stage and one more observation. We continue to iterate the process until either an 
observed value is accepted or exhaust the decision stages. 

Table 1 shows the observations, updated probabilities and the optimal decision criterion d* (n) for each 
decision stage. The first 3 observations didn't really change the belief on state 1, but the observation at n = 12 
decreased it. Observation at n = 11 supported the belief on state 1. At n = 10, we observed 24.003 which also 
supported the belief on state 1. The value observed at n = 10 was sufficiently large enough to accept it. The 
whole decision process ended with the value 24.003. The net and discounted value back to initial stage is 20.42 
which is a little bit less than the actual observation or 24.003. This is because (1) we rejected 5 times each 
costing 0.5 and (2) time preference. If there is (1) no cost for observation, (2) no time discount and (3) no 
limited number of  decision stages (n = m), then we can see that decision maker will want to wait indefinitely 
until the maximum possible value (in this case, ~)  is observed. 

Table 1 
Decision-making process 

Remaining decision stage (n) 

15 14 13 12 I1 10 

Observation ( x k) 11.5709 6.9453 7.0628 2.1033 14.3147 24.003 
Updated belief on state 1 (S I ) 0.6139 0.6143 0.6174 0.4989 0.6757 0.9540 
d ' (n) 16.1868 16.0721 15.9681 14.2716 16.3656 20.1605 
Decision reject reject reject reject reject accept 
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From the perspective of  belief updating, it is interesting to know how the new observation changes our belief 
on state. From Eq. (6), it is necessary and sufficient that we observe observation x k, satisfying 

Pr( Sj)Pr (xlSj)  
Pr( x l S i )  j ~ i  

L ( x I S i )  - P r ( x l ~  Si) > 1, t h a t i s  Pr(xlSi) >_ (16) 
1 - Pr( S i) 

In the above example of the two state case, we can calculate the intervals that increase or decrease our belief on 
s ta te  1 as 

Pr(xk]S1) Ale -~,x' 
- - -  >__ 1, A 1 < A 2. ( 1 7 )  

er(xt l -~ $1) )t2 e-'~2 xk 

By taking natural logarithm on both sides of Eq. (17), substituting values for A~ = 0.1, 3. 2 = 0.2 and rearranging 
it, we have: 

Support the belief on state 1, if x > 6.9315, 

Support the belief on state 2, if 0 < x < 6.9315, (18) 

Indifferent, if x = 6.9315. 

4. B a y e s i a n  a n d  n o n - B a y e s i a n  s t r a t e g y :  A c o m p a r a t i v e  a n a l y s i s  

Bayesian strategy is an adaptive strategy in a sense that optimal strategy and belief on the state are changed 
as the new observations become available. In Sections 2 and 3, we demonstrated how we can derive the optimal 
strategy and update belief on the state with the new observations. On the other hand, non-Bayesian strategy is a 
strategy that the optimal strategy and initial belief on the state are not changed with the arrival of the new 
observations. In this section, we will demonstrate the superiority of the Bayesian strategy which was developed 
in the previous sections. In Section 4.1, we compare Bayesian strategy and non-Bayesian strategy by simulation. 
In Section 4.2, we calculate the value of  perfect information and find their implications for Bayesian and 
non-Bayesian strategy. For comparison purposes, we use the exponential distribution case discussed in Section 
3. 

4.1. Performance comparison between Bayesian and non-Bayesian strategy 

Let 's represent the optimal expected value for Bayesian strategy as VB(n) and non-Bayesian strategy as 
VN(n). To calculate VB(n), we run 10,000 simulations. For each simulation, 15 random numbers are generated 
from a distribution which was chosen randomly with probability Pr(Si). Pr(S i) is the known probability that 
observations will be made from state i. Then, we simulate the decision-making activities following the process 
described in Section 3. At the end of  the process, we record a chosen value as the result of  the simulation. The 
same process is repeated 10,000 times. Then, we calculate VB(n) by averaging out the 10,000 simulation results. 

To calculate the expected value for non-Bayesian strategy, VN(n), we use Eq. (12) while maintaining the 
initial belief on state regardless of the observations, that is, 7r(SilO ~) = Pr(Si). Thus, we can derive VN(n) 
without doing simulations. 

Fig. 2 shows the difference between VB(n) and Vy(n), or VB(n) -- VN(n). The probability p in Figs. 2 - 4  is 
the known probability Pr(Si) with which observations will be made from state 1. For n = 1, VB(1) has no 
significant meaning. At n = 1 which is the final decision stage, we take whatever value we observe. Therefore 
VB(1) is just the expected value of 10,000 random observations from the two distributions which are also chosen 
randomly with probability 0.5 for each state. VN(1) is just the mathematical calculation of VB(1). For a 
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sufficiently large number of simulations, VB(1) and VN(1) will be the same. For n = 2, we don't see much 
difference since there is only one opportunity to materialize the value of Bayesian belief revision process. For 
n > 3, we observe that Vs(n) is greater than VN(n). We also observe that the value difference between VB(n) 
and VN(n) generally increases as n increases. For small n, there is a risk of misleading belief on states because 
of the small data set. The small data set may not be enough to update our belief sufficiently. For larger n, we 
can update our belief on states sufficiently, and we experience a greater value difference between Bayesian and 
non-Bayesian strategy. 

At the same time, Fig. 2 shows that the value difference is greater when p value is close to 0.5 and less 
when p value is close to 0 or 1. For p value close to 0 or 1, using the previous observations doesn't really help 
in many cases. However, for p value close to 0.5, better inference on the real state using Bayesian strategy 
really pays off. 

Generally, Bayesian approach will work better than non-Bayesian approach when uncertainty exists and the 
uncertainty is better understood by using previous observations. Bayesian strategy could perform poorly if prior 
observations mislead the belief on states. However, on the average, the Bayesian belief revision process updates 
the belief on the true state and helps decision maker to derive the corresponding optimal strategy better than the 
non-Bayesian approach. Fig. 2 clearly demonstrates the value of Bayesian strategy over non-Bayesian strategy 
for sufficiently a large number of simulations. 

4.2. Value of perfect information 

Value of perfect information on the state is the maximum value that a decision maker is willing to pay if he 
or she knows the exact state where observations are made. If the decision maker is certain of the state before 
observations are made, contingent strategy can be derived and exercised upon the knowledge of the state. 

Value of perfect information for the non-Bayesian strategy, VPIN(n), is calculated as the difference between 
value with perfect information on state for non-Bayesian strategy (VWPIN(n)) and value without information on 
state for non-Bayesian strategy (VN(n)) or VPIN(n)= VWPIN(n ) -  Vr~(n). VWPIN(n) can be mathematically 
calculated with the information on the exact state where observations are made. For each initial belief on state 1 
(=  p), we calculate the value difference between perfect information on state and without information. Fig. 3 
shows VPIN(n). We can see that VPIN(n) increases as n increases. We also observe that the value of 
information is greatest at Pr(S 1) = 0.5 over the whole range of Pr(S~). This is intuitive since the information on 
state is more valuable when there is greater uncertainty on the state. 

From the entropy perspective, Pr(S 1) = 0.5 is the point that maximizes the entropy of the realization of state 
1. To make this point more clear, consider the realization of state 1 as random variable X with probability p. 
Then, the entropy of the random variable X (Cover and Thomas, 1991) is calculated as 

H ( X ) =  - ~ p (x ) log  2 p ( x ) =  - p l o g  2 p - ( l - p ) l o g 2 ( l - p ) .  
x~X 

(19) 

From Eq. (19), we can easily see that entropy of X is maximized at p = 0.5 and takes value 0 at p = 0 and 1. 
This analysis supports the observations in Fig. 3 that VPIN(n) takes the maximum value at p = 0.5 and 
decreases to zero when there exists no uncertainty. That is, VPIN(n) takes the maximum value when there exists 
the greatest uncertainty on state which is represented by entropy measure. 

Fig. 4 shows the difference between value with perfect information on state for non-Bayesian strategy 
(VWPIN(n)) and VB(n). We can see that there is not much difference. That is, the Bayesian strategy works as 
well as the non-Bayesian strategy with perfect information on the state. Because the Bayesian belief updating 
process in a sense provided enough information on the states even though it is not the perfect information, 
Bayesian strategy performs as good as the non-Bayesian strategy with perfect information on the state. This 
implies that perfect knowledge on states does not provide valuable information if we use Bayesian strategy. 
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From the entrepreneur's point of view who wants to sell a specific technology, the value of perfect 
information is the maximum amount of money he wants to invest to know how well the technology is perceived 
by potential buyers. If the entrepreneur sticks with non-Bayesian strategy, he would like to pay more as he is not 
sure whether the technology is revolutionary one or has a marginal benefit (as p approaches 0.5). Also, the 
entrepreneur would pay more if there are more potential buyers (as n increases). On the other hand, if the 
entrepreneur applies Bayesian strategy, perfect information on state wouldn't help much. So, the entrepreneur 
would not bother to spend money to know how the technology is perceived by the buyers. Instead, the 
entrepreneur can get the almost same quality of information on state by analyzing the prior offers. 

5. Conclusion 

In this paper, we developed an action-timing problem with sequential Bayesian belief revision process. The 
process allowed us to update belief on state by using the previous observations which become available 
sequentially. By taking advantage of the conditional independence of the observations for a given distribution, 
the belief updating process turned out to be a simple recursive form. With the sequential Bayesian belief 
revision process, the action-timing model was developed to address the information asymmetry issue and the 
explicit optimal strategy for the model was derived. 

In the following simulation analysis, we clearly demonstrated the value of the Bayesian strategy which used 
sequential belief revision process. Bayesian strategy showed a consistently higher expected value than the 
conventional non-Bayesian strategy (Fig. 2). The value difference became more substantial as decision stages 
(n) increased and entropy on state increased (13% increase of expected value when n = 15 and p = 0.5). 
Further analysis on the value of perfect information on states for non-Bayesian strategy also showed that it 
increased as decision stages (n) increased and entropy on state increased (Fig. 3). However, perfect information 
on states for Bayesian strategy turned out not to be the valuable one. Because the Bayesian belief revision 
process already used the information from the prior observations in deriving the optimal strategy, perfect 
information on states was not that useful. Therefore, we didn't need to pay for the perfect information on state if 
we apply Bayesian strategy with sequential belief revision process (Fig. 4). 

The methodology developed in this paper provides a new theoretical framework for addressing the 
information asymmetry issue in the action-timing problem context. The methodology can be applied usefully in 
the decision environment, such as in the areas of technology acquisitions, asset transactions and negotiation 
processes. The decision maker will be able to derive the optimal threshold level in his or her problem and better 
prepare for the actual transactions and negotiations. 
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