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a b s t r a c t

Today’s high performance computing systems are typically managed and operated by individual
organizations in private. Computing demand is fluctuating, however, resulting in periodswhere dedicated
resources are either underutilized or overloaded. A cloud-based Infrastructure-as-a-Service (IaaS)
approach for high performance computing applications promises cost savings and more flexibility. In
this model virtualized and elastic resources are utilized on-demand from large cloud computing service
providers to construct virtual clusters exactly matching a customer’s specific requirements.

This paper gives an overview on the current state of high performance cloud computing technology
and we describe the underlying virtualization techniques and management methods. Furthermore, we
present a novel approach to use high speed cluster interconnects like InfiniBand in a high performance
cloud computing environment.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

High Performance Computing (HPC) is one of the leading
edge disciplines in information technology with a wide range of
demanding applications in economy, science, and engineering.

Due to specific requirements regarding performance or compli-
ance it is common to commission and operate HPC resources in
private. In this context, the execution environment for tasks is usu-
ally well-defined: It depends on specific libraries, applications, job
schedulers and operating systems. Users of the services are thus
limited to implement certain application scenarios. In such a con-
text, modifications or extensions of the runtime or development
environment can only be realized in cooperation with the system
management and the corresponding operator teams. Furthermore,
access to the HPC resources is very often restricted and jobs have
to wait in a queue for execution. Conversely, it may happen that
physical machines are under-utilized, depending on the varying
demand within the particular institution.

A High Performance Cloud Computing (HPC2)3 model might
offer a solution that overcomes most of the aforementioned
limitations. HPC2 applies the concept of cloud computing to
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contemporary HPC resources, resulting in an Infrastructure-as-a-
Service (IaaS) delivery model [1,2]. The cloud computing approach
promises increased flexibility and efficiency in terms of cost and
energy consumption. Large providers with massive amounts of
resources are able to gain an excellent economy of scale leading to
affordable prices. In addition, public IaaS resources usually may on
average be better utilized than private computing resourceswithin
institutes or companies.

Suitable management methods for elastic virtual clusters may
provide the capacity and environment exactly matching actual
demand and workload without the need to purchase and operate
own hardware and software. The use of virtual machines (VM)
allows users to securely gain administrative privileges within the
guest operating system and customize the runtime environment
according to their specific requirements. Due to the continuous
availability and scalability of a cloud service, jobs no longer have
to wait in a queue for hours or days (or even wait for months for
the initial commissioning of a new cluster). Thereby, the wall clock
time to get the job done may improve even if the execution speed
of a virtual cluster environment is somewhat lower than that of a
physical infrastructure.

In the following Section 2, we introduce the HPC2 model and
discuss challenges and approaches concerning the realization.
Therebywe focus on the integration of the InfiniBand interconnect
technology which promises high network performance and a low
latency, respectively. Furthermore, InfiniBand is highly prominent
in the domain of HPC clusters. In Section 3 we compare current
public HPC services to our private cloud approach based on
InfiniBand. In this respect we will have a look at Amazon Web
Services with its cluster compute instance offering. In comparison,
we present a comprehensive architecture for an HPC2model based
on the three design goals:
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• multi-tenancy:
Isolation enforcement of multiple work loads within the same
physical computing and networking infrastructure.

• dynamic provisioning:
Fully automated allocation, deployment and configuration of
virtual clusters without any intervention of system administra-
tors.

• service level agreements:
Guaranteed network performance and quality of service (QoS)
definition.

Besides an architectural description, we present workload
measurements which illustrate the benefits of using a high speed
interconnect as compared to 10 GE in virtualized environments.
Section 4 deals with potential future prospects of HPC2 like live
migration of virtual nodes and checkpointing. The paper concludes
with a summary and an outlook in Section 5.

2. Challenges and benefits of an HPC2 model

Despite its promises, the HPC2 model faces several challenges:
Very often the data and applications represent intellectual
property that a company may not want to move to shared
infrastructures. As a solution to this requirement, several cloud
providers have started to offer special multi-tenant environments
(so-called virtual private clouds) that are hosted by the provider
but fully under control of a customer [3]. Some services offerings
even go for shared-nothing resources to be exclusively used by a
critical application [4].

However, the performance issue in a cloud context remains
critical: In contrast to typical server workloads, HPC applications
have a much higher demand for resource guarantees and timely
delivery of results. It is hard to match these conditions within
virtualized environments due to the higher I/O overhead and
jitter of CPU cycles. In addition, HPC jobs are typically CPU-bound
and often require synchronization of threads during execution.
Therefore, both the placement strategy as well as the connectivity
of clustered CPU resources are crucial to achieve adequate
performance. Several essential requirements must be met to
successfully implement an HPC2 model in a computing cluster:

• Dynamic provisioning requires automated deployment and
managed allocation of virtual machines including the configu-
ration of the cluster network.

• Multi-tenancy demands the isolation of each individual user or
workload in the cluster interconnect network.

• Quality of Servicewith respect to network performance has to be
guaranteed at all times, even when multiple users are sharing
specific infrastructure parts at the same time.

It is difficult to meet all requirements in a virtualized environ-
ment at the same time and it is the task of a cloud service manage-
ment towork out the best trade-offs suiting the specific application
requirements.

Former research by Evangelinos and Hill [5] respectively Gupta
and Milojicic [6] concerning the execution of HPC applications in
contemporary non-HPC IaaS environments has identified network
quality of service (QoS) as the primary hindrance to implement
HPC2 clusters. Regola and Ducom [7] have found that providing
virtual machines with a high-speed cluster interconnect such
as InfiniBand [8] may improve performance significantly. Our
studies and prototype evaluation show that multi-tenant virtual
clusters based on the InfiniBand interconnect can be realized with
considerable benefits concerning network latencies as compared
to IaaS solutions based on Ethernet.
2.1. Dynamic provisioning

Cloud computing provisioning heavily relies on virtualization
techniques, with the main goal to get an abstract view of physical
resources retaining their interfaces. Smith and Nair presented an
overview of system-level virtualization [9]. In fact, virtualization
may offer several benefits for HPC, as has been pointed out in
former research by Figueirede et al. [10], Huang et al. [11] and
Mergen et al. [12]:

• Virtualization allows to use highly customized environments
for HPC jobs, ranging from libraries down to the operating
system. The concomitant isolation enables the simultaneous
coexistence of different runtime environments on the same
physical infrastructure.

• VMs allow to preserve binary-compatible runtime environ-
ments for legacy applications, without putting constraints on
other applications or on the use of physical resources.

• Customized runtime environments are much easier to manage
and faster to start and stop in a VM than on a physical host
because hardware re-initialization is avoided.

Further advantages affect isolation, productivity and fault
tolerance, amongst others:

• Isolation is ensured by the hypervisor in a protection layer be-
low the guest OS. In that case users can be granted adminis-
trative privileges within their VMs, without breaking isolation
between separate VMs or compromising host integrity.

• VMs implicitly form a resource principal that covers all the
resource utilization inside the guest, explicitly including OS
activity.

• Virtual system setups for testing and debugging of parallel
applications can easily provide as many virtual nodes to detect
scalability problems as required.

• In addition, virtualized resources can be debugged and moni-
tored from outside the VMwithout integrating debugging code
into the OS or application under test.

• Software reliability can be improved with checkpoint/restart
schemes for VMs. At the same time, the hypervisor can shield
VMs against (some) hardware failures on the system level
and thereby reduce the need to implement fault tolerance
mechanisms inside a guest OS.

2.1.1. Node virtualization
A virtual HPC2 system is usually instantiated as a collection of

VMs grouped into virtual clusters by application of a placement
strategy. The hypervisor on the physical nodes manages the
allocation of the infrastructure resources such as CPU, memory,
network, and disk storage. The most prominent hypervisors in the
HPC environment are currently Xen [13] and KVM [14], compatible
to Linux respectively the POSIX standard. Ferreira et al. [15] and
Petrini et al. [16] found that the two alternatives, timesharing
and memory overcommitment, would lead to preemption of HPC
jobs, paging activity, and ultimately jitter in the execution speed
of HPC workflows. For this reason usually a single physical CPU-
core is mapped to a virtual core in order to minimize background
activity resulting from the virtualization layer. In addition, it is best
practice to match the complete virtual memory assigned to VMs
with physical random access memory.

2.1.2. I/O virtualization
HPC systems are usually built around high performance

network interconnects and it would be interesting to include these
into the virtualized environment. The application of commodity
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Fig. 1. OS-bypass access to an InfiniBand HCA. An application directly triggers send
and receive operations. Transfer buffers are managed as shared memory between
device and application (setup by OS to ensure isolation).

network technologies like Ethernet would reduce performance
as all network traffic has to flow through the protocol stack
of the guest and host OS. Cluster interconnect technologies like
InfiniBand [8] or Myrinet [17] rely on protocol offload and
OS-bypass to achieve high bandwidth and low latency.

Compared to more traditional network technologies, such as
Ethernet, InfiniBand gains a performance advantage by aggressive
protocol offloading (up to transport layer handled completely
in network adapters) and by directly interfacing applications to
the network hardware. The OS is only involved in establishing
connections and registering memory buffers with the InfiniBand
adapter to ensure protection. Then, applications can bypass the
OS and trigger actual communication operations and poll for their
completion directly by accessing device memory, see Fig. 1. As
a result, an application can handle complete send/receive cycles
independently and without latency from intervention by the OS.

The following three virtualization concepts for I/O devices pro-
vide an acceptable performancewithin a virtualized environment:

• PCI Passthrough.
This concept grants a VM direct access to a dedicated PCI I/O
device. It requires an I/O Memory Mapping Unit (IOMMU) to
ensurememory protection between different VMs, as described
by Yassour et al. [18]. The number of VMs per host is restricted
to the number of I/O devices built in, because each physical
adapter card is used exclusively by a single OS. With PCI
passthrough, a guest OS may use regular device drivers.

• Para-Virtualization.
This virtualization technology provides a software interface
that is similar but not identical to the actual hardware. The OS
must be ported to be executed on the virtualmachine. However,
the porting simplifies the structure of the virtual machine and
can achieve higher performance compared to a contemporary
software virtualization approach.
Liu et al. [19] have proposed VMM-bypass I/O, a para-
virtualization approach for InfiniBand on Xen [13]. It does
not need an IOMMU. However, this solution requires ongoing
modifications of drivers (in host and guest) with respect to
changes of the underlying hardware and OS. The available
source code is outdated and difficult to adapt.
Fig. 2. Virtualized I/O device access with Single-Root I/O Virtualization (SR-IOV).
The PCI device supports virtualization and presents itself as several virtual functions.
Each VM gets access to one virtual function via PCI-passthrough, requiring an
IOMMU.

• Single Root I/O Virtualization (SR-IOV).
SR-IOV [20] is a new specification for virtualization support by
hardware devices. It allows a PCI Express device to appear as
multiple, separate devices, called Virtual Functions (VF). Each
guest may gain exclusive access to one VF by PCI passthrough.
The Physical Function includes the SR-IOV capability. It is an
anchor for creating VFs and reporting errors and events that
cannot be attributed to a single VF. Fig. 2 provides an overview
of the SR-IOV structure of an I/O PCI device.

Setting up I/O devices via PCI passthrough for VMs works
independent of the actual device. The device access is restricted
to a single VM (even the host OS is debarred). In contrast,
para-virtualization would support multiple VMs, but it is highly
device-dependent and requires to adapt and maintain drivers
for different OSs and hypervisors. However, SR-IOV depends on
manufacturer support to add appropriate functionality to the I/O
device hardware and to provide specifications and/or drivers.

With respect to the InfiniBand interconnect, in all three cases
an application can circumvent all layers of the system software, OS
and hypervisor, when accessing the host channel adapter directly,
just as in the native case. Hence, communication operations suffer
no virtualization overhead in the command path between user-
level application and InfiniBand interface. The SR-IOV concept
currently provides the most sustainable virtualization solution for
the InfiniBand interconnect technology. InfiniBand vendors such
as QLogic [21] and Mellanox [22] have announced first officially
supported solutions for productive environments to be available
in 2012.

2.2. Multi-tenancy

Multi-tenancy is one of the essential attributes of Cloud
Computing to concurrently support different customers and
applications in a secure fashion, referring to access policies,
application deployment, and data access and protection. The
architecture of the cloud system has to be designed in such a way
that it allows resources to be apportioned and shared efficiently
between multiple tenants. A special emphasis is on networks
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Fig. 3. SPMDModel. Tasks are split and run simultaneously onmultiple processors for parallel execution. Each process alternates between computation and synchronization.
where in an Ethernet environment, usually a VLAN technique is
employed in the switches and adapters to shield the traffic of each
individual customer. High performance networks like InfiniBand
on the other hand have specific challenges if they have to be
implemented in a multi-tenant architecture.

2.2.1. Architecture
An InfiniBand network consists of a processor and I/O nodes

connected through a fabric made up of cascaded switches and
routers. I/O units can range in complexity from a single device
to a large, memory-rich redundant array of independent disks
(RAID) subsystem. The network can be subdivided into subnets
interconnected by routers. A subnet consists of end nodes and
switches and forms an administrative domain for InfiniBand
network management. All transmissions begin or end at a channel
adapter (CA). Each processor contains a host channel adapter (HCA)
and each peripheral has a target channel adapter (TCA). CAs appear
as nodes to the fabric and provide one or more ports to which the
data is sent.

Send requests and receive buffers are posted to pairs of work
queues for send and receive. These so-called queue pairs (QPs) form
communication endpoints. Each of the ports may include multiple
such QPs. From the point of view of data transfer the QP number is
part of the address.

InfiniBand supports four transport types: connection- and
datagram-oriented, each in a reliable and an unreliable variant.
All connection-oriented as well as the reliable datagram trans-
port types form an association between two queue pairs, before
data transfer can occur. In addition to send and receive primi-
tives, the specific InfiniBand transport protocol supports remote
DMA (RDMA) operations, thereby providing asynchronous remote
shared memory semantics.

2.2.2. Addressing
The InfiniBand architecture distinguishes two scopes for ad-

dressing, and thus two types of addresses. Global identifiers (GID),
using the format of IPv6 [23] addresses, are used by layer-3 routers
at a potentially global scale, while local identifiers (LID), compris-
ing of 16 bits, are used by layer-2 switches. LIDs and GIDs are
assigned dynamically by the subnet management software. Each
InfiniBand adapter has a static, manufacturer-assigned unique
identifier, called a globally unique ID (GUID), that serves to identify
nodes independent of the network configuration.
2.2.3. Management
The InfiniBand architecture defines uniform management in-

terfaces and protocols that are used to configure, for example, the
isolation based on partitioning and QoS mechanisms. These pro-
tocols utilize a special type of network packet, called management
datagrams (MAD). Such packets have to be sent from special queue
pairs (numbered 0 and 1) to be considered valid. Using these spe-
cial queue pairs is a privileged operation typically reserved to the
(host) OS. All InfiniBand devices (e.g., HCAs, switches, and routers)
have to support a basic set of management protocols. The most
important one is the subnet management protocol, which a sub-
net manager uses to assign node addresses, amongst others. As
a consequence, all advanced configuration options of InfiniBand
are available using a standardized interface, independent from the
hardware actually used. In contrast, advanced mechanisms of Eth-
ernet, such as VLAN support, have to be configured with vendor-
specific protocols.

2.3. Quality of service

It is a non-trivial task to construct a virtual cluster on the basis
of virtual machines and achieve a well-defined quality of service.
Many HPC applications match the bulk-synchronous single-
program multiple-data (SPMD) application model, described by
Dusseau et al. [24] and Jones et al. [25], and can be seen simpli-
fied as cycling through two phases (see Fig. 3): Purely local com-
putation alternates with synchronization and communication. A
parallel job consists of several processes (a static number) that
run concurrently, each on a separate processor, and execute the
same binary program. Processes exchange data and synchronize
via message passing. A popular, standardized framework for exe-
cuting such parallel computing tasks is the message passing inter-
face (MPI) [26]. A lot of HPC applications are using MPI and heavily
rely on synchronous and fast communication. Latencies and jitter
that are introduced by the virtualization layer may thus hamper
operation at a good and continuous performance.

2.3.1. Partitioning and traffic-shaping
The InfiniBand architecture provides mechanisms to configure

partitions and shape the network traffic. Groups of nodes
called partitions are formed by isolation mechanisms with
restricted communication relations. Isolation is implemented by
the InfiniBand transport layer protocol with partition identifiers in
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each packet.4 Management software configures each node to be a
member of one ormultiple partitions by storing amembership table
in each node.5 Each adapter accepts or drops packets based on that
table. Switches can filter packets based on partition identifiers, for
each switch port separately, and thereby allow to enforce isolation.

The InfiniBand specifications define a flexible QoS mechanism
that is implemented in each outgoing network port (i.e., in adapters
as well as switches). QoS mechanisms allow scheduling network
bandwidth in a flexible way by differentiating between up to 15
traffic classes, called service levels. In each port, packets to be sent
are sorted into up to 15 send queues, so-called virtual lanes, based
on their traffic class. The outgoing link demultiplexes the send
queues based on a configurable weighted round-robin schedule.6
The scheduling policy can be configured at two stages:

1. Packets are sorted into a send queue based on their traffic class
and a configurable table. Instead of queuing packets, they can
be filtered based on their traffic class.

2. The outgoing link is multiplexed between the send queues
based on a configurable weighted round-robin schedule.

2.3.2. Jitter
Operating system processes and handling of asynchronous

events constitute performance noise or jitter perceived by an
application. Various studies demonstrate the effects of jitter for
HPC applications [27,28]. In order to avoid jitter it is common
to deploy specialized lightweight operating systems on the
compute nodes. This idea could be followed as well for the
hypervisors and it would be interesting to deploy Linux systems
with lightweight kernels such as Kitten or Palacios. Vendors of
commercial virtualization products also work along this line: An
example is VMware vCloud where very lean virtualization kernels
are implemented on the virtualization nodes that are managed by
the central vCenter console process. However, at the time being
there are only few studies about OS jitter and its impact on the
performance in large virtualized HPC clusters.

3. Architecture and implementation

At the time being there are only a few public cloud services that
follow the HPC2 model. These offerings are however all based on
Ethernet interconnects. For this reason we have implemented a
small testbed to study the functional properties of virtual clusters
using a fast InfiniBand network. In the following we compare the
properties of public HPC2 services with the private InfiniBand
based solution.

3.1. Public cloud

Public cloud providers offer a multitude of services at different
performance levels that match different application requirements.
The Amazon Web Services for instance currently comprise twelve
instance types with variable amount of memory, storage and
networking capacity. The relative processing performance is given
in Elastic Compute Units (ECU) where one ECU corresponds
roughly to the equivalent CPU capacity of a 1.0–1.2 GHz 2007
Opteron or 2007 Xeon processor. The smallest machine can be

4 Partition identifiers comprise 16 bits and allow to distinguish 65535 partitions.
The identifier 0xff is reserved and means any partition.
5 Full access of an InfiniBand adapter allows to modify the local partition

membership table. However, switch partition filtering will prevent eavesdropping
from foreign partitions.
6 Two round-robin schedules are used, one prioritized strictly higher than the

other (with possible exceptions that we omit for brevity).
Table 1
Single node performance of AWS instance types.

AWS type ECU/Core/RAM N/NB/P/Q GFlops

m1.large 4/2/7.5 4k/128/1/2 9.1
m1.xlarge 8/4/15 8k/128/2/2 27.9
m2.2Xlarge 13/4/34.2 16k/128/2/2 37.2
cc1.4Xlarge 33.5/8/23 16k/128/2/4 75.9
cc1.8Xlarge 88/16/60.5 16k/128/4/4 227.8

instantiated with 1.7 GB RAM and Gbit Ethernet and has a
single virtual core with a compute power of 1 ECU; the largest
machine offers 60 GB RAM, 10 Gbit Ethernet and 88 ECUs,
based on the actual dual eight-core Intel Xeon CPU systems.
The largest instances are cluster compute instances (CCI) that are
specifically useful to support HPC applications. In contrast to
the smaller instances they are using the hardware virtualization
technology that is built into modern CPUs. Furthermore, they are
equipped with a high performance Ethernet networking interface
that is directly supported by the virtual machine hypervisor.
Amazon offers a placement strategy that allows grouping nodes
in physical neighborhood and combining them into clusters with
low communication latency. Tools like StarHPC [29] or MIT
StarCluster [30] provide sophisticated mechanisms for cluster
setup on top of these offerings.

In order to get an impression of the single node virtual machine
performance, the High Performance Linpack (HPL) [31] benchmark
has been deployed on various virtual machine instances. The tests
have been performed using the Intel C++ compiler, the Intel MKL
library, and the Intel MPI implementation. The results look very
promising and are given in Table 1. It seems that the performance
penalty introduced by the virtualization layer is quite bearable in
single node operation. When the nodes are combined into virtual
clusters, additional communication latencies might play a role.

A self-made virtual cluster of 17.024 AWS CCI cores entered
the TOP500 list of the world’s fastest supercomputers [32] in
November 2011 at rank 42 with a HPL performance of 240.09
TFlops [33], reaching 68% of its theoretical peak performance of
340.10 TFlops. Other physical clusters in the list that are equipped
with 10 Gbit Ethernet interfaces are reaching around 70% of peak
performance, whereas clusters with standard Gbit Ethernet are at
50% only. This indicates that the AWS cluster is doing quite well
as compared to its physical competitors despite the fact that it
is based on virtualization technology. It is interesting to see that
clusters of similar performance at neighboring entries to the AWS
machine based on physical nodes with the much faster InfiniBand
QDR interconnect are yielding 75% and 85% of peak performance,
respectively. As the single virtual node performance of virtual
clusters looks quite reasonable and also the virtual networking
interfaces seem to work quite well this indicates that by use of a
faster network interconnect the efficiency of virtual clusters might
be significantly increased.

3.2. Private cloud

Former studies concerning the performance figures of HPC
applications in compute clouds by Iosup et al. [34], Juve et al. [35]
and Montero et al. [36] are concentrating on Ethernet based cloud
computing infrastructures. We believe that an cloud computing
IaaS solution based on the InfiniBand interconnect could provide
an added value for HPC customers. However, in contrast to
Ethernet the InfiniBand technology is much more complex and
is not directly supported by current hypervisors. This might
explain why at the time being public cloud providers do not offer
InfiniBand as an alternative interconnect technology. We have set
up a testbed to study the use of InfiniBand in virtual clusters with
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Fig. 4. The virtualization of host and the cluster interconnect is controlled by a cloud framework to provide elastic virtual clusters.
the long-term goal to provide self-service elastic virtual compute
clusters for HPC workloads.

In contrast to physical clusters, we provide virtual clusters that
support dynamic scaling according to customer demands. The
architecture comprises three aspects: Each node of a physical
cluster is virtualized, the cluster interconnect is virtualized, and
we orchestrate node and network virtualizationwith an HPC cloud
management framework. Fig. 4 illustrates our basic architecture. A
detailed description of the underlying architectural approach has
been worked out by Hillenbrand [37].

We propose to employ GNU/Linux and the Kernel-based Virtual
Machine (KVM) hypervisor in combination with the existing
InfiniBand driver stack to set up a virtualization fundament for
our HPC cloud architecture. Currently, we turn our attention to the
InfiniBand technology, however we expect that our findings and
concepts are transferable to other cluster interconnects or future
Ethernet generations.

The underlying infrastructure to operate our prototype HPC
cloud is a 4-node cluster with an InfiniBand interconnect. Com-
puting nodes of type HP ProLiant BL460c G6 Blade Server are in use
within a HP BladeSystem c7000 Enclousure. They are each equipped
with an Intel Xeon E5520 quadcore CPU (with Hyper-Threading,
clocked at 2.26 GHz) and 6 GB of DDR2 DRAM. The test cluster In-
finiBand interconnect comprises Mellanox ConnectX-2 InfiniBand
HCAs built into each server, and an InfiniBand DDR switch inte-
grated within the blade chassis. The physical links provide a band-
width of 20 Gbit/s limited by the switch. We use an additional Gbit
Ethernet connection for remote management access via SSH. Since
SR-IOV InfiniBand drivers are not yet officially available, we revert
to using PCI passthrough and dedicate each InfiniBand HCA to a
single VM.

3.2.1. HPC cloud management prototype
As a proof of concept, we extended the cloud management

framework OpenNebula with new abstraction layers and control
Fig. 5. Allocation workflow of virtual clusters in the extended OpenNebula
framework.

mechanisms. They allow to group virtual machines into clusters
and automatically derive the partition configuration for the
opensm subnet manager to establish network isolation within
the InfiniBand fabric. The modified deployment procedure is
illustrated in Fig. 5.

The simple deployment policy of virtual machines in OpenNeb-
ula [38] was adapted and complemented with a more sophisti-
cated logic with respect to the underlying InfiniBand interconnect.
At startup, the OpenNebula core queries all hosts for specific in-
formation about their InfiniBand HCAs. The abstract topology is
determined by the globally unique identifier (GUID) of the HCAs.
The topology manager merges the associated VMs to virtual clus-
ters and sets up the corresponding partitions within the InfiniBand
fabric. The enforcement of the network isolation is realized by a
cyclic re-configuration of the opensm subnet manager. Because of
the current operation mode which allows only one single virtual
machine with direct access to a dedicated HCA, the deployment
process does not have tomanage resource sharing of physical hosts
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amongst different tenants. An operative SR-IOV configuration will
become more sophisticated in the future.

Although OpenNebula does not support device assignment
via PCI pass-through, it is possible to include raw configuration
statements for the hypervisor management in a VM definition
file. Such statements are not interpreted by OpenNebula, but are
just passed on to the libvirt API unmodified. In addition to the
InfiniBand interconnect access, the CPU affinity for VMs is also
managed in the sameway. Each logical core ismapped to a separate
physical core to enforce dedicated resource allocation which is the
preferred mode to support HPC tasks.

3.2.2. Network isolation
In order to guarantee network isolation for customers, the

HPC cloud provider has to keep the configuration of the physical
network switches under exclusive control. Therefore, everyone
besides the cloud provider must be locked out of the InfiniBand
management interfaces. In our architecture of an HPC cloud, we
employ the protection key mechanism7 to protect the network
configuration in case a user accidentally or forcefully gained access
to a HCA, and therewith had the possibility to send management
datagrams.

As a result, we achieve a protection of the management
interface and thereby also hide the physical network topology. As
long as the protection keys are kept secret, we can be sure that:

• Communication is restricted to within a virtual cluster only.
• No additional subnetmanager operated by users canmodify the

network configuration.
• The topology of the whole physical network cannot be

determined (e.g., using the OFED utility ibnetdiscover).
• Protections keys and isolation settings (partition keys) cannot

be readout, because the get requests will be discarded without
the correct key.

Practical experiments have verified that these propertieswithin
virtual environments with full access to the InfiniBand HCA are
useful. The upcoming SR-IOV implementation for the InfiniBand
interconnect promises even more configurability concerning
restriction policies.

3.2.3. HPC workload in virtualized environments
SKaMPI [39] is a synthetic MPI benchmark that we used to

examine the functional properties of our test setup. The bench-
mark sends and receives data packets of varying size between the
cluster nodes and measures the communication latency. All mea-
surements have been performed between two VMs for different
communication setups.

With regard to our prototype,we compare the native InfiniBand
DDR (20 Gbit/s) network with the introduced virtual cluster envi-
ronment based on virtualized InfiniBand by using PCI passthrough.
Furthermore we are including the corresponding figures for Ama-
zon EC2 CCI of type cc1.4XLarge that is based on 10 Gbit Ethernet.
To compare the EC2 CCI communication latency with our proto-
type network, we restrict the corresponding virtualized InfiniBand
link speed to 10 Gbit/s for an additional measurement series. The
results are given in Table 2. It turns out that the latency increases

7 In this context, we encountered a malfunction of the current opensm subnet
manager implementation (version 3.3.12). We had to modify the source code to
actually enable the protection mechanism, because the delivered version failed to
do so. Further, opensm currently supports only one protection key for all nodes. This
policy allows a malicious user who is able to extract the protection key of his HCA
to immediately get access to the configuration of all other nodes. An assignment of
unique keys would circumvent this attack strategy.
Table 2
Measured communication latencies in µs.

Message size
(B)

EC2 CCI ETH
10Gb

Virt. IB 10Gb Virt. IB 20Gb Native
IB 20Gb

4 77.5 3.4 2.2 2.0
16 77.1 3.5 2.3 2.1
64 78.3 4.7 2.5 2.3

256 80.1 4.1 3.8 3.6
1024 82.3 5.6 4.8 4.6
4096 103.8 9.9 7.7 7.6

Fig. 6. Jitter vs. message size for InfiniBand (native and virtual).

only slightly by introduction of the virtual layer, and the perfor-
mance penalty is constantly in the order of 0.1–0.2µs only, inde-
pendent of the message size. It is obvious that the communication
time of Ethernet as compared to Infiniband lasts an order of mag-
nitude longer.

The main causes for this difference are the overheads intro-
duced by network interconnects and software interfaces. In an EC2
CCI, data transfers have to pass several layers, starting from the
user applications through the TCP/IP stack of the guest OS, via a
para-virtualized Ethernet device through the hypervisor, and fi-
nally through the OS in the Xen driver domain to the physical Eth-
ernet network interface adapter. In contrast, communication over
InfiniBand uses OS-bypass access to theHCA (see Section 2.1.2) and
thereby circumvents all layers of system software for communica-
tion operations.

Communication-bound parallel applications require low la-
tency for an acceptable scalability. For such jobs, an HPC2 model
based on a dedicated cluster interconnect like InfiniBand provides
a clearly better network performance compared to a solution using
Ethernet.

We made, however, the observation that the virtualization
layer obviously introduces an additional source of OS noise, as is
indicated by themeasurements of the dispersion of the results (see
Fig. 6). It seems that there is a need to work on the optimization of
the hypervisor in order to reduce jitter.

4. Future perspectives

The concept of virtualization plays a key role for the implemen-
tation of the HPC2 model. Besides the construction of virtual on-
demand clusters there are further benefits that could be expected,
such as live migration and checkpointing.

4.1. Live migration

Live migration is a concept that allows to shift virtual machines
between physical hosts during operation, described by Clark
et al. [40]. The advantage is that maintenance work becomes
possible without interruption of running processes and programs.
The live migration feature could be very interesting for large HPC
systemswith thousands of nodes as it would bring high availability
and also gives a new degree of freedom for load-balancing. In the
ideal case, the migration is transparent to the migrated VM as well
as to all peers that communicate with the migrated VM.
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Whereas livemigration is commonly found in virtual infrastruc-
tures based on Ethernet, there is currently no way known to trans-
parently migrate virtual machines with active connections over
InfiniBand. With current InfiniBand HCAs protocol state of open
connections is part of the internal state of an HCA and cannot sim-
ply be transferred to other adapters together with the VM. Mi-
gration of VMs which share a single HCA is even more difficult,
because an InfiniBand node address is associated with a (physical)
port instead of with a VM. Thus, a VM will have a different node
address before and after migration. These node addresses are also
used at the InfiniBand user interface, so user-level software has to
be modified to handle node addresses changing during migration.

Live migration of VMs with active InfiniBand connections
is possible, when the migration process involves user-level
applications. Huang has proposed the nomad framework in his
Ph.D. Thesis [41], an extension to the InfiniBand para-virtualization
approach in [19], to accomplish live migration of VMs. The nomad
framework is based on the fact that most HPC applications do not
use InfiniBand directly, but employ a communication library such
asMPI. This approach concealsmigration fromHPC applications by
modifying the MPI library to close all connections before and re-
establish them after migration. Thus, this technique depends on
software modifications inside the VM and cannot be considered
transparent. Therefore, transparent live migration of VMs with
InfiniBand access is a worthwhile topic for future work.

In contrast, transparent live migration works with TCP/IP over
Ethernet, because connection state is kept in the guest OS’s
protocol stack and thereby is migrated with the memory image of
the VM. Usually, each VM has its own distinct MAC address and
packet routing automatically adapts to a VM’s new location in the
network topology after migration. Even when MAC addresses are
assigned to host systems and therefore notmigratedwith aVM, the
indirection of using IP addresses in applications avoids changes in
user-space.

4.2. Checkpointing

Checkpointing of HPC jobs is an important topic as it leads to a
better fault-tolerance. This is especially interesting for actual HPC
systems that comprise 10,000 s or even 100,000 s of processing
cores. At such large counts of cores, faults are becoming common-
place and checkpointing could lead to more robust operation.

Virtualization technology does enable implicit system-level
fault tolerance without modifying existing OS or applications and
allows to the record virtual machine memory and an I/O state
that may be stored as a snapshot on disk. Thus the state of a
complete HPC application could be conserved at any time for later
restarts, independent of the actual MPI activity. This could even be
accomplished on a different physical infrastructure at an alternate
location, thus enabling ‘‘beaming’’ of virtual clusters fromoneplace
to another.

Regarding the state-of-the-art, it seems feasible to conserve
the machine state of Ethernet based clusters with shared network
disks. However, there is currently no solution to conserve the state
of the switch and HCAs in InfiniBand based clusters together with
the state of the virtual machines. In addition there is currently no
method available to conserve the state of parallel file systems.

4.3. Spot market

Cloud providers like Amazon start to establish spot markets on
which they sell excess capacity. Getting HPC resources from the
spot market is pretty cheap most of the time and works marvelous
for development, testing and smaller campaigns. However, there is
no guarantee for continuous operation: If themarket price exceeds
the maximum bid, a virtual machine is stopped. As only a few HPC
applications have been designed to work under such conditions,
system-level checkpointing could be of importance to generally
overcome this difficulty.

On the other hand there are specific market services that
allow that customers and clients meet to make a special deal
(e.g. SpotCloud market place [42]). SpotCloud has implemented an
environment to buy and sell computing capacity globally based
on price, location, and quality on a fast and secure platform. Here
any datacenter can offer spare resources and sell them for use in
a virtual environment. At the same time customers can get very
affordable computing power that is sometimes even cheaper than
the energy cost to operate the same resources at home. While this
currently only works for individual virtual machines, an extension
to the HPC2 model seems to be a quite natural step in the near
future.

5. Summary

High Performance Cloud Computing (HPC2) is a model that
offers a lot of interesting perspectives. The provisioning of elastic
virtual clusters as on-demand pay-as-you-go resources avoids
initial cost for physically owned hardware and allows great
flexibility and scalability for customers and their applications.

Current cloud computing offerings with virtual machines are
based on communication via Ethernet. InfiniBand as an intercon-
nect technology would be a better choice due to its superior per-
formance. We present a novel architecture for HPC IaaS clouds
supporting InfiniBand that allows an individual network configu-
rationwith QoSmechanisms. Customers are able to allocate virtual
clusters which are isolated from other tenants in the physical net-
work.

Future plans foresee the provisioning of InfiniBand access
within virtual machines based on SR-IOV, that is the most promis-
ing and sustainable virtualization technology for high-speed inter-
connects. The first officially supported SR-IOV firmware releases
and drivers will soon be available.

Currently, live migration of virtual machines in an InfiniBand
based configuration is still an unsolved problem because of the
machine specific protocol offloading in the adapter hardware.
An additional challenge is the efficient usage of the limited
QoS resources which may restrict the maximum number of
isolated virtual clusters in the same physical context. In this case,
sophisticated scheduling algorithms could help to improve the
situation.
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