
Generalised fault-tolerant stored-unibit-transfer
residue number system multiplier for moduli set
{2n 2 1, 2n, 2n 1 1}
S. Timarchi1 M. Fazlali2

1Electrical Engineering Department, Shahid Beheshti University, Tehran 1983963113, G.C., Iran
2Computer Science Department, Shahid Beheshti University, Tehran 1983963113, G.C., Iran
E-mail: s_timarchi@sbu.ac.ir

Abstract: Residue number system (RNS) which utilises redundant encoding for the residues is called redundant residue number
system (RRNS). It can accelerate multiplication which is a high-latency operation. Using stored-unibit-transfer (SUT) redundant
encoding in RRNS called SUT-RNS has been shown as an efficient number system for arithmetic operation. Radix-2h SUT-RNS
multiplication has been proposed in previous studies for modulo 2n 2 1, but it has not been generalised for each moduli lengths
(n) and radix (r ¼ 2h). Also, SUT-RNS multiplication for modulo 2n + 1 has not been discussed. In this study the authors remove
these weaknesses by proposing general radix-2h SUT-RNS multiplication for the moduli set {2n 2 1, 2n, 2n + 1}. Moreover, the
authors demonstrate that our approach enables a unified design for the moduli set multipliers, which results in designing
fault-tolerant SUT-RNS multipliers with low hardware redundancy. Results indicate that the proposed general SUT-RNS
multiplier for the moduli set {2n 2 1, 2n, 2n + 1} is a fast fault-tolerant multiplier which outperforms area, power and energy/
operation of existing RRNS multiplier.
1 Introduction

Multiplication is a critical operation in digital signal processing
[1], cryptography [2] and communication [3] because of its high
latency in comparison to addition and subtraction. Although
techniques such as pipelining can be employed to accelerate
multipliers, there is still a necessity to improve multiplication
performance. An important scheme to do this is utilising
unconventional number representations specially residue
number system (RNS) [4]. RNS is presented by a moduli set
which represents a large number by a set of small residues
(reminders) of each module. In this context, integer operands
are represented by residues, and arithmetic operations are
independently performed on the residues. The most important
characteristic of RNS is carry propagation limited inside each
module [5]. Thus, RNS can accelerate arithmetic operations
specially addition and multiplication by employing this
parallelism. Another way to accelerate digital arithmetic
circuits is employing redundant number system whose digit
set in radix-r system contains more than r digits [6]. So, a
redundant number can have more than one representation and
using this capability results in significant improvements in
performance through reduction or elimination of carry
propagation. Therefore utilising a proper representation for
digits among various redundant representations can improve
arithmetic operations such as multiplication [7].

Although RNS lowers carry propagation, it cannot eliminate
carry propagation inside each module which bounds RNS
speed-up. Applying redundant encoding to each module is a
suitable solution to reduce the remained carry propagation in
RNS. As redundant addition can be done in a constant time
independent of the operand length, combining carry-free
property of redundant number system with RNS arithmetic
can improve the implementation of digital arithmetic circuits.
This results in redundant residue number system (RRNS).
Signed-digit RNS (SD-RNS) proposed in [8] and stored-
unibit-transfer RNS (SUT-RNS) proposed in [9] are two
RRNS with fully and high-radix redundant representation,
respectively, that have ever been used. SUT-RNS with high-
radix redundant representation offers wider variety of choices
to designer than the former one. For example, the area
available to a designer may be limited, or, the worst case delay
is determined. In these cases, the designer can select an
appropriate radix-2h that yields the most suitable
implementation while satisfying area usage or time constraint.
To this end, we proposed efficient Radix-2h SUT-RNS
multiplication for modulo 2n 2 1 in [10] and here we discuss
on the general multiplication for modulo 2n + 1. Also, here we
design a fault-tolerant multiplier [11] for moduli set {2n 2 1,
2n, 2n + 1}. Therefore the main contributions of this paper are

1. Generalising radix-2h SUT-RNS multiplication proposed in
[10] for the moduli set {2n 2 1, 2n, 2n + 1} for each moduli
lengths (n) and radix (2h).
2. Enabling a unified design for the moduli set {2n 2 1, 2n,
2n + 1} multipliers to open the possibility of designing
fault-tolerant SUT-RNS multipliers with low hardware
redundancy.
269

http://www.iceni.com/unlock-pro.htm

www.ietdl.org
The rest of the paper is organised as follows. Backgrounds
on SD-RNS and SUT-RNS encodings and their arithmetic
operations are briefly studied in Section 2. Section 3 focuses
on the proposed general radix-2h SUT-RNS multiplication
algorithm and its hardware realisation. Comparisons to
previously published architectures are presented in Section 4
and finally, Section 5 concludes the paper.

2 Backgrounds

2.1 Redundant SD-RNS

Applying redundant binary SD representation has been
proposed in [8] as a way of eliminating the remaining carry
propagation in RNS arithmetic. The resulted number system
is called SD-RNS. An n-digit SD number
X = [xn−1 . . . x0]BSD, xi [= {�1, 0, 1} where �1 = (− 1), has
the value |X |10 =

∑n−1
i=0 xi × 2i. Binary representation of a

SD digit, xi, requires two bits with the same weight, negative
bit x−i (negabit) and positive bit x+i (posibit). Illustration of
posibits and negabits is depicted in Table 1. SD number
system can represent a negative integer without any special
sign digit. Negation of an SD number is a very simple
operation performed by exchanging the bits polarities. That
is, all negabits are converted to posibits and vice versa.

Modulo 2n + 1 SD-RNS addition can be performed by
including an end-around-carry in the SD addition
computations which has been described in [8, 12–14]. This
results in modulo adders that are just a few gates larger than
a normal SD adder. Using a more efficient SD adder cell
makes SD modulo adders faster and smaller. Also it can
make efficient multiplier scheme called SD-RNS multiplier.

SD-RNS multiplication of two n-digit SD numbers can
be implemented by obtaining n partial products and
accumulating partial products. A partial product is simply
obtained through end-around-shift and multiplying a
multiplier digit by n-digit multiplicand number. A binary
tree of modulo m SD-RNS adders can be constructed for
the modulo m summation of the partial products [14].

2.2 Redundant high-radix SUT-RNS

Redundant high-radix SUT-RNS, abbreviately SUT-RNS, is
a combination of two number systems: SUT and RNS. That
is, SUT-RNS utilises SUT digits (with radix r) in each RNS
moduli (m1, m2, . . ., mp). Each radix-r (r ¼ 2h) SUT digit
consists of three types of two-valued digits (twits) [15]:
(h 2 1) posibits in the set {0, +1}, a negabit in the set {21,
0}, and a unibit in the set {21, +1}. Posibit has a lower
value equal to 0 whereas negabit and unibit have a lower
value equal to 21. Furthermore, posibit and unibit have an
upper value equal to 1 whereas negabit has an upper value
equal to 0 [15]. All the three twits have two values, so they
require one bit for representation. Dot notations, symbolic
representations and binary encodings of the twits are given
in Table 1. We underline negabits and draw two lines under
unibits in SUT bit representation as depicted in Table 1.
A negabit is encoded by using logical 1 to denote
270
arithmetic value 0 and logical 0 to denote arithmetic value 21.
A unibit is also encoded using logical 1 to denote arithmetic
value 1 and logical 0 to denote arithmetic value 21.

SUT-RNS has been proposed as a redundant encoding to
represent the numbers in moduli set {2n 2 1, 2n, 2n + 1}
[9, 10, 16]. SUT-RNS encoding proposed in [9] is defined
by two types of parameters: value of moduli (m) as well as
radix of SUT (r) against the moduli. Therefore SUT with
different radix, r1, r2, . . ., rp, is generally applied to each
moduli m1, m2, . . ., mp, respectively, to create
SUT-RNS(r1, m1, r2, m2, . . . , rp, mp). Utilising the same
radix (r ¼ r1 ¼ r2 ¼ . . . ¼ rp) in a system results in SUT-RNS
(r, m1, m2, . . ., mp) where for each module, SUT-RNS is
shown by SUT-RNS (r, m), m [{m1, m2, . . ., mp}.

In the rest of the paper, we assume SUT-RNS system with
the same radix r ¼ 2h and moduli set {2n 2 1, 2n, 2n + 1}.
Now we discuss about SUT-RNS (r, m), m [{2n 2 1, 2n,
2n + 1} without losing generality. Consider X is a number
in SUT-RNS (r, m). X is composed of k radix-2h SUT
digits (n ¼ k.h) as depicted in Fig. 1. Each radix-2h SUT
representation is composed of a radix-2h main part [22h21,
2h21 2 1] in two’s complement representation and a
transfer part in the set {21, 1}. In this figure, k-digit
number X in SUT-RNS encoding is shown, where, xi, Xi

and x′i are posibit, negabit and unibit, respectively. Ai

(0 ≤ i ≤ k) is a radix-2h SUT digit.
SUT-RNS addition structure is depicted in Fig. 2 which is

composed of following three stages:

1. Summation of input unibits,
2. Addition of three vectors including two inputs and the
vector obtained from the first stage,
3. Ripple-carry addition of two vectors achieved from the
previous stage.

Equations of end-around-carry in modulo 2n + 1 addition
are shown by the following equations proved in [9], the
least significant bits of addition output can be obtained by
the following equations

(s0)modulo 2n+1 addition = Cn ⊕ Cn ⊕ m0

(s′0)modulo 2n−1 addition = m0Cn + cn(Cn + m0)

(s′0)modulo 2n+1 addition = m0Cn + cn(Cn + m0)

(1)

An output carry cout [cn and Cn in (1)] of modulo 2n–1
SUT-RNS adder can be rotated and stored in position
0. This is justified by (2)

|2ncout|n2 −1 = |(2n − 1)cout + cout|n2 −1 = cout (2)

Therefore if we use modulo 2n 2 1 SUT-RNS residues, the
output carries can be reentered as cout in position 0. That is,
equation set (1) is implemented with standard full adders
(FAs) as shown in Fig. 2. End-around-carry operation for cn

and Cn leads to a posibit and a negabit in the least
significant position, respectively.
Table 1 The specifications of posibit, negabit and unibit

Bit name Dot notation Symbolic representation Lower value representation Upper value representation Arithmetic value

posibit * x 0 1 X

negabit W X 0 1 X 2 1

unibit A x’ 0 1 2x′
2 1

http://www.iceni.com/unlock-pro.htm

We can rewrite (2) to satisfy modulo 2n + 1 SUT-RNS
addition. An output carry cout [cn and Cn in (1)] with
weight 2n in modulo 2n + 1 SUT-RNS adder can be
reentered as – cout in position 0. Equation (3) justifies this
end-around operation

|2ncout|n2 +1 = |(2n + 1)cout − cout|n2 +1 = −cout (3)

Therefore output carry cn ¼ 0 is converted to 0 and reentered
in the least-significant position and output carry cn ¼ 1 results
in 21. To perform this inversion and, satisfy inverted
encoding depicted in Table 1, the posibit output carry cn is
inverted first and its polarity is converted to a negabit. The
same description can be represented for negabit output carry
Cn. Hence, after inverting the output carries in modulo
2n + 1 SUT-RNS addition, their polarity are also changes.
Therefore desired generic modulo 2n + 1 adder can be
obtained by simply adding two inverters in the output
carries (cn and Cn) paths. The case is also proved in [9] and
shown in (1). The adder is obtained by adding two inverters
in Fig. 2 and inverting the polarity of two least significant bits.

3 Proposed radix-2H SUT-RNS multiplication
algorithm

SUT-RNS multiplication algorithm proposed in [10] is
composed of four stages: creating bit-products, producing
digit-products and partial-products summation through
addition tree and final modulo addition. We combine third
and fourth phases in the previous SUT-RNS multiplication
algorithm besides adding a new phase to the algorithm. This
let us well generalise multiplication algorithm for moduli set
{2n 2 1, 2n, 2n + 1} as well as generalising addition tree
stage for the moduli set. The proposed SUT-RNS
multiplication algorithm is listed in the following stages:

1. Creating bit-products,
2. Producing digit-products,
3. Rotating digit products and producing partial products,
4. Partial-products summation through addition tree.

Fig. 2 Redundant end-around-carry adder for two k-digit modulo
2n 2 1 SUT-RNS residues

Fig. 1 Symbolic representation of a k-digit radix-2h SUT-RNS
number X [16]
The first stage of multiplying two SUT-RNS numbers is to
derive bit products including posibits, negabits and unibits.
There are six possible combinations of bit products whose
circuits were proposed in [10, 16].

In the second stage, we derive the digit products. k2 digit
products are formed for n-bit radix-2h SUT-RNS operands.
This stage has been discussed in [16] just for radix-4 and
radix-8 SUT digits product, and was proved generally in
[10] where we demonstrated that multiplication of two
radix-2h SUT (h ≥ 3) digits results in a two-digit SUT
number with the same representation. Therefore in
the second stage, after multiplying two k-digit SUT
numbers, there are k2 digit products with different weights.
Each digit product is a two-digit radix-2h SUT number. It
should be mentioned that for radix-4 we suggested a
different representation (a pseudo-SUT representation) to
guarantee that a two-digit radix-4 pseudo-SUT number is
produced.

The third stage is to rotate k2 digit products which is
proposed in the paper for general moduli length (n). The
rotation rule is based on the module format and is discussed
for moduli set {2n 2 1, 2n, 2n + 1} in this paper. k2

two-digit SUT numbers (obtained from previous stage)
are converted to 2k k-digit SUT-RNS numbers, as
described underneath. So, in this stage 2k partial products
are created.

In the fourth stage, the partial products are accumulated
during an addition tree. Here, we develop the method
presented in [10, 16] to be utilised for modulo 2n + 1
multiplication. We show that there are three possible
radix-2h SUT digit additions in the addition tree which can
be performed using SUT-RNS addition algorithm as well as
rules that are proposed in the paper.

The first two stages (producing bit-products and partial
products) which have been proposed in [10] are general and
can be used in our algorithm. Here we go for generalising
the rotation and producing partial products, as well as
creating general addition tree. Then, we will explain how
the proposed SUT-RNS structure enables fault tolerance.

3.1 Rotating digit products and producing partial
products

Let us assume two k-digit radix-2h SUT-RNS numbers as
shown in Fig. 3. SUT-RNS numbers A and B composed of
k SUT digits; Ai and Bi (0 ≤ i ≤ k 2 1) refer to ith digit of
the numbers A and B, respectively.

During first and second stages, each digit of B (Bi) have
been multiplied by A. Fig. 4 depicts digit products of
multiplying the first digit of B (B0) by number A. Each digit
production has been resulted in a two-digit SUT-RNS
number as proved in [10]. After producing k digit products
(resulting from multiplying B0 and A), the digit products are
rotated in the third stage and two k-digit SUT-RNS partial
products in the format of SUT or pseudo-SUT are
produced. The pseudo-SUT refers to a SUT-RNS number
whose some digits are not in the format of standard SUT.

Fig. 3 Representation of two k-digit SUT-RNS numbers, A and B
271

http://www.iceni.com/unlock-pro.htm

Fig. 4 Rotating digit products resulted from multiplying B0 by A and producing two final partial products in Stage 3
In modulo 2n 2 1 rotation, the format of SUT-RNS
representation does not change. However, the value ‘21’
converts to ‘+1’ and vice versa in the third stage for modulo
2n + 1 multiplication. To do this, for modulo 2n + 1 rotation,
posibits, negabits and unibits of the rotated SUT digit are
inverted and polarities of negabits and posibits are also
reversed (as described in Section 2.2) that is forming a
pseudo-SUT digit in modulo 2n + 1 rotation. Pseudo-SUT
digit has a posibit in the highest position, a unibit in the first
position and (h 2 1) negabits in other positions. Rotated SUT
digit is shown by a shadowed block in Fig. 4. The shadowed
block is still a SUT digit in modulo 2n 2 1 multiplication and
is a pseudo-SUT digit in modulo 2n + 1 multiplication which
is called moduli rotation rules in the rest of the paper.

Underneath, we discuss our method to rotate the digit
products resulted from multiplying A by Bi. The method is
depicted in Fig. 5. In the figure, Pj0 and Pj1 indicate to
double-digit SUT number which is produced by multiplying
Aj and Bi, and their position numbers are (i + j) and
(i + j + 1), respectively. In modulo 2n 2 1 and 2n + 1
multiplications, the digit products are not rotated if their
position numbers are less than k. Otherwise; the digit has to
be rotated according to the moduli rotation rules. In this
case, new position of each SUT digit is equal to its
previous position minus k. For example, in Fig. 4, position
of P(k21)1 is k [because ((k 2 1) + 1) ¼ k]. So it is rotated
and transferred to position zero (because k 2 k ¼ 0). The
rotated digits are shown by shadowed blocks in Fig. 5.
272
After rotating digit products, 2k partial products are finally
created. We summarise the case in Fig. 6. To conclude,
difference among the moduli set multipliers is because of
their different moduli rotation rules in the third stages.
Modulo 2n multiplier does not include any rotation because
it is a regular multiplier. In modulo 2n 2 1 multiplier, the
digits whose position numbers are more than k, are directly
entered to their new positions in the structure. In modulo
2n + 1 multiplier, digits whose position numbers are more
than k, are firstly inverted and polarities of posibits and
negabits are changed before moving back to their new
positions in the multiplier.

3.2 Partial-products summation through addition
tree

Rotated SUT digits (resulted from stage 3) are shown by
shadowed blocks in Fig. 6. As mentioned before, in modulo
2n 2 1 multiplication, shadowed blocks are still SUT digits,
whereas they are pseudo-SUT digits in modulo 2n + 1
multiplication. As in modulo 2n + 1 multiplication, there
are both SUT and pseudo-SUT digits, we face to different
types of SUT-RNS digit additions, whereas, in modulo
2n 2 1 multiplication, we only face to normal SUT-RNS
digit additions in the addition tree. There are three possible
cases of digit additions in modulo 2n + 1 addition tree
whose symbolic representation are depicted in Fig. 7.
The cases include addition of: two SUT digits (Fig. 7a),
Fig. 5 Rotating digit products resulted from multiplying Bi by A, and producing two final partial products in Stage 3

http://www.iceni.com/unlock-pro.htm

Fig. 6 Resulted partial products from stage 3
SUT and pseudo-SUT digits (Fig. 7b), and two pseudo-SUT
digits (Fig. 7c). In the additions, firstly, two’s complement
addition of two unibits is performed. Then the three input
operands are reduced to two numbers by h-bit carry-save-
adder. If we apply an inverted encoding to negabits,
illustrated in Table 1, standard carry-save-adder can handle
any mix of equally weighted posibits and negabits [15].
Finally, two numbers are added together. The output posibit
and negabit are passed to the next higher position digit.
These output carries are added to the least significant
posibit of the next higher position digit, to generate a
posibit and a unibit as illustrated in Fig. 7. Three additions
depicted in Fig. 7 are performed by a unique structure
because, the output of each three different additions is a
SUT digit.

Output carries resulted from the addition of kth digits of
partial products are ignored in modulo 2n multiplier
addition tree in the last stage. However, these output carries
are moved back in the least significant bit of the first digit
in modulo 2n + 1. They are directly entered to modulo
2n 2 1 multiplier as input carries, while they are moved
back in modulo 2n + 1 multiplier after inverting.

Fig. 7 Notations of three existing digit-products additions for
modulo 2n + 1 addition tree in stage 4

a Two SUT digits
b One SUT and one pseudo-SUT digits
c Two pseudo-SUT digits
3.3 Fault-tolerant structure

In the proposed SUT-RNS multiplication algorithm, the same
components are utilised for the first two stages, that is,
creating bit-products and producing digit-products, in three
moduli 2n 2 1, 2n and 2n + 1. Therefore these stages can be
performed for all moduli in the same way. The differences
between these moduli multiplication are on rotating the
digit products as well as modulo addition. However, as
described above, modulo 2n + 1 rotation and addition are
obtained by adding an inverter for each output carry
coming back to the structure as a feedback. Therefore in
our proposed multiplication algorithm, since we assumed
SUT-RNS system with the same radix r ¼ 2h for the
moduli set, similar design strategies are applied to the
moduli set. Unified design for the moduli set enables us to
realise a reconfigurable multiplier which can accept
operands of the three moduli. Basic structure of the
reconfigurable multiplier is composed of 2n SUT-RNS
multiplier. Output carries of the multiplier are ignored,
whereas these are reentered to the structure following
modulo 2n 2 1 and 2n + 1 multiplication rules described
before. To allow 2n SUT-RNS multiplier being able to do
multiplication for modulo 2n 2 1 and 2n + 1, the structure
have feedback wires for both of the moduli and also
inverters have to be added to modulo 2n + 1 multiplier.
Such a reconfigurable multiplier lets fault-tolerant designs
while it has a fewer hardware redundancies than full
replication. In a reconfigurable SUT-RNS architecture
composed of the three modular multipliers, one
reconfigurable multiplier can be employed as a spare and
whenever a fault is detected in one of the multipliers, the
spare can be replaced to enable fault tolerance [17].

4 Simulation results and comparisons

To evaluate speed, area and power dissipation of the proposed
SUT-RNS multipliers, four stage-pipelined structural VHDL
273

http://www.iceni.com/unlock-pro.htm

(VHSIC-Very high speed integrated circuits – Hardware
Description Language) descriptions of SD-RNS and the
proposed SUT-RNS multipliers for modulo 26 2 1, modulo
26 and modulo 26 + 1 with h ¼ 3 have been first generated.
Then, we synthesised them for 130 nm CMOS technology
with the synopsys design vision tool. A typical condition
(1.2 V, 25 8C) was considered. As stated in [10], radix-8
SUT-RNS modulo adder consumes significantly less power
and less area than SD-RNS modulo adder. Since radix-2h

SUT-RNS multiplier is composed of radix-2h SUT-RNS
adders, radix-8 SUT-RNS is selected for implementation.

The results of total power, energy per operation and area for
modulo 26, 26 2 1 and 26 + 1 multipliers are shown in Fig. 8.
Delay, area and power results are given in ns, mm2 and mw,
respectively. The syntheses were performed for different
delays from 2 to 5 ns.
274
The achieved experimental results shown in Fig. 8 reveal
that power, energy/operation and area of the SD-RNS
and also SUT-RNS multipliers are reduced with reducing
their clock frequencies. It means that to reach the least
delay (best clock frequency), total power, energy and area
will be increased. However, for different clock frequencies,
the proposed radix-8 SUT-RNS modulo multiplier
outperforms area, power and energy/operation of the SD-
RNS modulo multipliers for each module. This is because,
SUT-RNS employs a hybrid redundant representation in
each module whereas SD-RNS is a fully redundant
representations for each moduli set. Besides, SUT-RNS
multiplier delays are very close to SD-RNS. This shows
that SUT-RNS representation and consequently proposed
general SUT-RNS multiplier are appropriate for modular
operations.
Fig. 8 Synthesis results of SD-RNS and radix-8 SUT-RNS multipliers for moduli set {26 2 1, 26, 26 + 1} against different delays

a Total power
b Energy per operation
c Area consumption

http://www.iceni.com/unlock-pro.htm

The results indicate that radix-8 SUT-RNS multiplier
outperforms power of the SD-RNS multiplier about 29, 17
and 23% for modulo 26, 26 2 1 and 26 + 1 multipliers in
their maximum clock frequencies, respectively. Besides,
SUT-RNS multiplier consume about 30, 27 and 31% less
energy/operation than SD-RNS multipliers for modulo 26,
26 2 1 and 26 + 1 multipliers, respectively. Area
comparison of the multipliers shows that modulo 26, 26 2 1
and 26 + 1 SD-RNS multipliers have 36, 22 and 24% more
area than modulo SUT-RNS multipliers. Besides, SUT-RNS
reaches the near speed of the most high-speed RRNS
multiplier. The minimum delays of the proposed multipliers
are about 2.4 ns for modulo 26, and 2.6 ns for modulo
26 2 1 and 26 + 1 SUT-RNS multipliers. Whereas, the
minimum delays of the SD-RNS multiplier for modulo 26 is
2.4 ns (the same as SUT-RNS modulo multiplier). While
the minimum delays of SD-RNS multiplier for modulo
26 2 1 and 26 + 1 are 2.48 ns which is 0.12 ns less than
SUT-RNS modulo multipliers. This indicates that area
usage reduction and power reduction of SUT-RNS is
obtained at the cost of 0.5% speed reduction.

The results in Fig. 8a indicate that power consumption of
SUT-RNS multipliers for modulo 26 2 1 and 26 + 1 are
very comparable because of their similar structures.
Similarly, energy per operation and area consumption of
each SUT-RNS multiplier, shown in Figs. 8b and c, for
moduli set (26 2 1, 26 + 1) are the same comparable. This
indicates that we obtain the symmetric structure for the
proposed moduli multipliers.

From the proposed algorithm, it is concluded that the first
and second multiplication stages are completely similar for
the three moduli set of {2n 2 1, 2n, 2n + 1} multipliers. The
difference in the third stages of the moduli set multipliers
that is because of their different digit rotation rules. In this stage

† Modulo 2n multiplier does not include any rotation
because it is a regular multiplier.
† In modulo 2n 2 1 multiplier, the digits whose position
numbers are more than k, are directly entered to their new
positions in the structure.
† In modulo 2n + 1 multiplier, the digits whose position
numbers are more than k, are first inverted before moving
back to their new positions in the multiplier.

Similarly, the only difference among the fourth stages of
the moduli multipliers is related to the rotation rules of
output carries in kth digits additions. The output carries
resulted from the kth digits additions

† Are ignored in modulo 2n multiplier.
† Are directly entered to modulo 2n 2 1 multiplier as input
carries.
† Are moved back in modulo 2n + 1 multiplier after inverting.

We can conclude that modulo 2n + 1 multiplier has a
number of inverters more than modulo 2n 2 1 multiplier.
Besides, modulo 2n + 1 multipliers have back wires for
digit rotations and end-around-carries rather than 2n

multiplier. Therefore the proposed SUT-RNS multiplication
algorithm results in unified designs for the three moduli of
{2n 2 1, 2n, 2n + 1}, thus provide support for fault-tolerant
RRNS processors. The unified design leads to the
possibility of providing reliability with low hardware
redundancy by using reconfigurable modular multipliers
that can process inputs for different moduli. A
reconfigurable modular multiplier enables fault-tolerant
designs with much lower hardware redundancy than full
replication. One way to do this is to implement more
number of multipliers for three moduli set {2n 2 1, 2n,
2n + 1} and then configure them to perform three different
modular multiplication, with extra ones kept as spare. If a
fault occurred in one of the available multipliers, one of the
spare can be configured accordingly and employed instead
of the faulty multiplier [17].

5 Conclusion and summary

RRNS has been proved an appropriate number representation
to accelerate frequent multiplications. SUT-RNS is a
continuous choice between ordinary (non-redundant) and
full redundant RNS representation that provides flexible
trade-off between area and speed. In this paper, we have
generalised SUT-RNS multiplication algorithm for the
moduli set {2n 2 1, 2n, 2n + 1} multipliers. From synthesis
evaluation, it is concluded that the proposed generalised
SUT-RNS is more efficient than SD-RNS. The results
indicate that radix-8 SUT-RNS multiplier for the moduli set
{26 2 1, 26, 26 + 1} outperforms area, power and
energy/operation of the SD-RNS multiplier. The proposed
SUT-RNS multipliers for the moduli set {26 2 1, 26, 26 + 1}
consume at least 17 less power, 27 less energy/operation
and 22% less area than SD-RNS multipliers. These
achievements are obtained at cost of 5% delay increasing
that shows SUT-RNS reaches nearly speed of the most
high-speed RRNS multiplier. Moreover, we demonstrated
our method allows a unified design for moduli set {2n 2 1,
2n, 2n + 1} multipliers, which causes to design fault-tolerant
SUT-RNS multipliers with low hardware redundancy. We
conclude that the proposed generalised SUT-RNS multiplier
is an appropriate RRNS multiplier to achieve an appropriate
tradeoff among area, speed and power.

6 References
275

http://www.iceni.com/unlock-pro.htm

276

& The Institution of Engineering and Technology 2012

IET Comput. Digit. Tech., 2012, Vol. 6, Iss. 5, pp. 269–276

doi: 10.1049/iet-cdt.2011.0075

