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An early detection of colorectal cancer through colorectal endoscopy is important and widely used in hos-
pitals as a standard medical procedure. During colonoscopy, the lesions of colorectal tumors on the colon
surface are visually inspected by a Narrow Band Imaging (NBI) zoom-videoendoscope. By using the visual
appearance of colorectal tumors in endoscopic images, histological diagnosis is presumed based on clas-
sification schemes for NBI magnification findings. In this paper, we report on the performance of a rec-
ognition system for classifying NBI images of colorectal tumors into three types (A, B, and C3) based
on the NBI magnification findings. To deal with the problem of computer-aided classification of NBI
images, we explore a local feature-based recognition method, bag-of-visual-words (BoW), and provide
extensive experiments on a variety of technical aspects. The proposed prototype system, used in the
experiments, consists of a bag-of-visual-words representation of local features followed by Support Vec-
tor Machine (SVM) classifiers. A number of local features are extracted by using sampling schemes such
as Difference-of-Gaussians and grid sampling. In addition, in this paper we propose a new combination of
local features and sampling schemes. Extensive experiments with varying the parameters for each com-
ponent are carried out, for the performance of the system is usually affected by those parameters, e.g. the
sampling strategy for the local features, the representation of the local feature histograms, the kernel
types of the SVM classifiers, the number of classes to be considered, etc. The recognition results are com-
pared in terms of recognition rates, precision/recall, and F-measure for different numbers of visual words.
The proposed system achieves a recognition rate of 96% for 10-fold cross validation on a real dataset of
908 NBI images collected during actual colonoscopy, and 93% for a separate test dataset.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Colorectal cancer was the third-leading cause of cancer death
in Japan in 2009, and the leading cause for death for Japanese
women over the last 6 years (Ministry of Health et al., 2009).
In the United States, a report estimates that 49,920 people have
died from colorectal cancer in 2009 (National Cancer Institute,
US National Institutes of Health, 2010) and in UK 26,423 people
in 2008 (Cancer research UK, 2011). WHO has released projec-
tions (Health Statistics and Informatics Department, World
Health Organization, 2008) in which the number of deaths in
the world is estimated to be about 780,000 in 2015, and is
expected to rise to 950,000 in 2030. Because of the increased
ll rights reserved.
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number of patients, skill/training required for medical examina-
tions, and the need for objective evaluation in order to allow
non-experts to achieve high diagnostic accuracy and reduce
inter/intra-observer variability, it is very important to develop
computerized systems able to provide supporting diagnosis for
this type of cancer.

An early detection of colorectal cancer by colonoscopy or
colorectal endoscopy, an endoscopic examination of the colon, is
important and widely used in hospitals as a standard medical pro-
cedure. During colonoscopy, the lesions of colorectal tumors on the
colon surface are often visually inspected by a Narrow Band Imag-
ing (NBI) zoom-videoendoscope with a magnification factor of up
to 100 (Tanaka et al., 2006). By using the visual appearance of colo-
rectal tumors in endoscopic images, histological diagnosis is pre-
sumed based on classification schemes for pit-patterns (Kudo
et al., 1994, 1996) and NBI magnification findings (Kanao et al.,
2009; Oba et al., 2010).

http://dx.doi.org/10.1016/j.media.2012.08.003
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A diagnosis by visual inspection, however, is affected by two
main factors. One factor is the skill and familiarity of each inspec-
tor, i.e., performance differences between expert and non-expert
endoscopists (Oba et al., 2010; Higashi et al., 2010; Chang et al.,
2009). For example, Higashi et al. (2010) studied the effect of an
intensive training program for non-experienced endoscopists
(NEE), less-experienced (more than 5 years) endoscopists (LEE)
who have never used NBI, and compared to high-experienced
endoscopists (HEE) who had used NBI more than 5 years. After
the training program, the LLE group improved their accuracy from
73% to 90%, which is close to the accuracy 93% of the HEE group
(for NBI zoom-endoscopy). However, the NEE group improved
from 63% only up to 74%, which is not a satisfactory result. The
other factor concerns inter-observer variability and intra-observer
variability (Meining et al., 2004; Mayinger et al., 2006; Oba et al.,
2010), that is, whether different diagnoses would be made by
different observers (inter-observer variability), or by the same
observer at the different times (intra-observer variability). Table 2
shows an example of variability for NBI magnification findings
(Oba et al., 2010), in which there was a high level of inter- and
intra-observer variability.

Hence, a computer-aided system for supporting the visual
inspection would be of great help for colonoscopy, due to the large
number of images of colorectal tumors which should be classified
in a regular inspection in an effort to detect cancer in its early
stage. Fig. 1 shows a screen shot of an actual monitor at which
endoscopists and doctors are looking during endoscopy. The mon-
itor displays the live video from a videoendoscope (the largest im-
age in Fig. 1). When an endoscopist presses a button on the
endoscope, a frame of the video is captured as a still image, which
is stored to a file and also displayed on the monitor below the live
video (four still images captured are shown Fig. 1). Actually, endos-
copists usually take a lot of pictures of a polyp for finding a good
image of the polyp for a paper-based report with medical evi-
dences (Aabakken, 2009). In the clinical workflow, it would be
helpful if an objective diagnosis by a computer-aided system as a
kind of second opinion could be provided onto the video monitor
directly or for pictures taken during the examination (Takemura
Fig. 1. A screen shot of an actual NBI zoom-videoendoscopiy.
et al., 2012). This can be used in two ways. First, it can assist in
the endoscopist’s decision-making which part of a tumor should
be shot, or whether some more pictures need to be taken. For this
purpose, processing a fixed region around the center of the live
video would be enough because the region of interest should
always be shot at the center. Second, even after the examination,
an objective information is useful for supporting the doctors by
allowing them to specify regions of interest in the captured still
images to be processed. Many attempts have been done in this
direction (i.e., classifying trimmed endoscopic images) (Gross
et al., 2009a,b; Häfner et al., 2008, 2009a,b,c,d; Häfner et al.,
2010b,a; Häfner et al., 2009e; Kwitt and Uhl, 2008; Kwitt et al.,
2010; Stehle et al., 2009), however, most of them have not
been verified for NBI images but only for pit-pattern images of a
chromoendoscopy, which requires a dye-spraying process. Since
those studies have developed different techniques of texture
analysis specific to the visual appearance of pit-pattern images, it
is not straightforward to extend them to NBI images.

In this paper, we focus on a recent recognition framework based
on local features which has been used with great success for a
range of challenging problems such as category-level recognition
(Csurka et al., 2004; Nowak et al., 2006; Lazebnik et al., 2006) as
well as instance recognition (Sivic and Zisserman, 2003; Chum
et al., 2007) and also endomicroscopic image retrieval (André
et al., 2012, 2011c,a,b, 2009). To deal with the problem of com-
puter-aided classification of NBI images, we explore a local
feature-based recognition method, bag-of-visual-words (BoVW or
BoW), and provide extensive experiments on a variety of technical
aspects. Our prototype system used in the experiments consists of
a BoW representation of local features followed by Support Vector
Machine (SVM) classifiers. BoW has been widely used for general
object recognition and image retrieval as well as texture analysis.
Local features such as Scale Invariant Feature Transform (SIFT)
are extracted from an image and their distribution is modeled by
a histogram of representative features (also known as visual words,
VWs). A number of local features are extracted by using sampling
schemes such as Difference-of-Gaussians (DoG-SIFT) and grid
sampling (gridSIFT). In addition, in this paper we propose a new
combination of local features and sampling schemes, DiffSIFT and
multi-scale gridSIFT. Extensive experiments done by varying the
parameters for each component are needed, for the performance
of the system is usually affected by those parameters, e.g. the sam-
pling strategy for the local features, the representation of the local
feature histograms, the kernel types of the SVM classifiers, the
number of classes to be considered, etc. The recognition results
are compared in terms of recognition rates, precision/recall, and
F-measure for different numbers of visual words. The proposed
system achieves a recognition rate of 96% for 10-fold cross valida-
tion on a real dataset of 908 NBI images collected during actual
colonoscopy, and 93% for a separated test dataset.

The rest of the paper is organized as follows: Section 2 reviews
the medical aspects of colorectal cancers, two types of visual
assessment strategies (pit-pattern classification and NBI magnifi-
cation findings), and related work. Section 3 gives an outline of
the bag-of-visual-words framework, and Section 4 describes the
details of each component of the framework. Section 5 presents
the experimental results obtained for 10-fold cross validation
and a test dataset. Section 6 shows conclusions and discussions.
2. Colonoscopy and related work

2.1. Colorectal endoscopy and pathology

There are many ways of examination and screening of the colon.
Those include colonoscopy, as well as Fecal Occult Blood Test
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(FOBT) (Sanford and McPherson, 2009; Heitman et al., 2008), Digital
Rectal Examination (DRE) (Gopalswamy et al., 2000), biomedical
markers (Karl et al., 2008), CT colonography (Halligan and Taylor,
2007; Yoshida and Dachman, 2004), MR colonography (Shin et al.,
2010; Beets and Beets-Tan, 2010), Marvin Positron Emission
Tomography (PET) (Lin et al., 2011), Ultrasound (Padhani, 1999),
Double Contrast Barium Enema (DCBE) (Johnson et al., 2004; Canon,
2008), Confocal Laser Endomicroscopy (CLE) (Kiesslich et al., 2007),
and Virtual Endoscopy (Oto, 2002). Interested readers are referred
to the following surveys on colorectal cancer screening and clinical
staging of colorectal cancer (Jenkinson and Steele, 2010; Tweedle
et al., 2007; Barabouti and Wong, 2005) and endoscopic imaging
devices (Gaddam and Sharma, 2010).

The ‘‘gold standard’’ (Häfner et al., 2010a) for colon examination
is colonoscopy, an endoscopy for the colon, which has been com-
monly used since the middle of the last century (Classen et al.,
2010). Colonoscopy is an examination with a video-endoscope
equipped with a CCD camera of size less than 1.4 cm in diameter
at the top of the scope, as well as a light source and a tube for
dye spraying and surgical devices for Endoscopic Mucosal Resec-
tion (EMR) (Ye et al., 2008).1

Colorectal polyps detected during colonoscopy are histologi-
cally identified as cancers (carcinomas) or non-cancers through
biopsy, by removing the lesions from the colon surface. The polyps
are histologically classified into the following groups (Hirata et al.,
2007b,a; Kanao et al., 2009; Raghavendra et al., 2010): hyperplasias
(HP), tubular adenomas (TA), carcinomas with intramucosal invasion
to scanty submucosal invasion (M/SM-s) and carcinomas with mas-
sive submucosal invasion (SM-m). TA, M/SM-s and SM-m are also
referred to as neoplastic, and HP and normal tissue as non-
neoplastic.

HP are non-neoplastic and hence not removed. TA are polyps
and likely to develop into cancer (many cancers follow this ade-
noma-carcinoma sequence (Gloor, 1986)) and can be endoscopically
resected (i.e., removed during colonoscopy). M/SM-s cancers can
also be endoscopically resected, while SM-m cancers should be
surgically resected (Watanabe et al., 2012). Since SM-m cancers
deeply invade the colonal surface, it is difficult to remove them
completely by colonoscopy due to the higher risk of lymph node
metastasis.

SM-m cancers need to be discriminated from M/SM-s cancers
and TA polyps without biopsy because the risk of complications dur-
ing colonoscopy should be minimized by avoiding unnecessary
biopsy. Biopsy also tends to be avoided because the biopsied tumor
develops to a fibrosis (Matsumoto et al., 2010) which causes a per-
foration at the time of surgery. While there is controversy about the
benefit of avoiding biopsy (Gershman and Ament, 2012), recent ad-
vances in the field of medical devices (Gaddam and Sharma, 2010)
would allow the endoscopic assessment of histology to be estab-
lished and documented without biopsy in the near future (Rex
et al., 2011).
2.2. Pit-pattern classification

In order to determine a histological diagnosis by using the
visual appearance of colorectal tumors in endoscopic images, the
pit-pattern classification scheme was proposed by Kudo et al.
(1994, 1996) and later modified by Kudo and Tsuruta as described
in Imai et al. (2001). A pit pattern refers to the shape of a pit (Bank
et al., 1970), the opening of a colorectal crypt, and can be used for
the visual inspection of mucosal surface. During a chromoendos-
copy, indigo carmine dye spraying or crystal violet staining are
1 Also such devices are used for Endoscopic Piecemeal Mucosal Resection (EPMR)
(Tamegai, 2007), or Endoscopic Submucosal Dissection (ESD) (Saito et al., 2007).
used to enhance the microscopic appearances of the pit patterns
illuminated by a white light source. Fig. 2a shows an image of a
colon taken by an endoscope without staining, while Fig. 2b and
c show images stained by two different dyes. In (b) and (c), the
structure of the mucosal surface on the polyp is well enhanced
and the visibility is much better than in white light colonoscopy
(a). Pit-pattern analysis started in the 1970s (Bank et al., 1970;
Kosaka, 1975), and developed over the next 20 years (Kudo et al.,
1994, 1996; Imai et al., 2001). Currently, the most widely used
classification categorizes pit-patterns into types I to V. Types III
and V are further divided (Fig. 3)) into IIIS (S: Smaller) and IIIL

(L: Larger), VI (I: Irregular) and VN (N: Non-structure).
The pit-pattern classification has been used to differentiate

non-neoplastic colorectal lesions from neoplastic ones (for exam-
ple, Fu et al., 2004), and to guide therapeutic decisions. Indicated
diagnosis (Tanaka et al., 2006; Kanao, 2008) roughly corresponds
to: follow up (no resection) (type I and II), endoscopic resection
(type IIIS, IIIL, and IV), surgery (type VN), and further examinations
(type VI).
2.3. NBI magnification findings

Narrow Band Imaging (NBI) (Gono et al., 2003, 2004; Machida
et al., 2004; Sano et al., 2006) is a recently developed videoendo-
scopic system that uses RGB rotary filters placed in front of a white
light source to narrow the bandwidth of the spectral transmit-
tance. The central wavelengths of the RGB filters are set to 540
and 415 nm with a bandwidth of 30 nm, since the hemoglobin in
the blood absorbs lights of these wavelengths. NBI provides a lim-
ited penetration of light to the mucosal surface, and enhances the
microvessels and their fine structure on the colorectal surface (see
Fig. 2d). NBI enables an endoscopist to quickly switch a white light
colonoscopy image to an NBI colonoscopy image when examining
tumors, while a chromoendoscopy requires a cost for spraying,
washing and vacuuming dye and water, and prolongs the examina-
tion procedure.

NBI was introduced to gastro or esophageal examinations in
the last decade (Panossian et al., 2011) as dye-spraying needs to
be avoided due to its irritancy. NBI has been also used for colon-
oscopy since around 2004 (Gono et al., 2003, 2004; Machida et al.,
2004; Sano et al., 2006). By using NBI, the pits are also indirectly
observable, for the microvessels between the pits are enhanced in
black, while the pits are left in white. The high visibility of the
microvessels (Ignjatovic et al., 2011; Higashi et al., 2010; Chang
et al., 2009) has led to the wide use of NBI both in pit-pattern
analysis (Hirata et al., 2007b) and microvessel analysis (Hirata
et al., 2007a).

Several categorizations of NBI magnification findings, diagnosis
based on magnifying NBI endoscopic images, have been recently
developed by different medical research groups (Oba et al., 2011):

� Hiroshima University Hospital (Kanao et al., 2009; Oba et al.,
2010): three main types (A, B, and C) and subtypes (C1, C2,
and C3).
� Sano Hospital (Sano et al., 2009; Ikematsu et al., 2010): three

main types (I, II, and III) and subtypes (IIIA and IIIB) based on
the density of capillary vessels, lack of uniformity, ending and
branching of the vessels.
� Showa University Northern Yokohama Hospital (Wada et al.,

2009): six main types (A to F) associated with two subtypes
(1 and 2) based on the thickness, network structure, density
and sparsity of the vessels.
� The Jikei University School of Medicine (Saito et al., 2011; Tamai

et al., 2011): four main types (1, 2, 3 and 4) and subtypes (3 V
and 3I) based on detail and regularity of the vessels.



(a) White light colonoscopy (b) Chromoendoscopy with in-
digo carmine dye

(c) Chromoendoscopy with
crystal violet dye

(d) NBI endoscopy

Fig. 2. Images showing different colonoscopy processes.

Fig. 3. Pit-pattern classification of colorectal lesions (Takemura et al., 2010).
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Among those, in this paper we use the classification proposed by
Tanaka’s group (Kanao et al., 2009; Oba et al., 2010) at Hiroshima
University Hospital. It divides the microvessel structures in an
NBI image into types A, B, and C (see Fig. 4). In type A, microvessels
are not observed, or slightly observed but opaque with very low
contrast (typical images are shown in the top row of Fig. 5). In type



Fig. 4. NBI magnification findings (Kanao et al., 2009).

Fig. 5. Examples of NBI images of types A (top row), B (middle row), and C3 (bottom row).
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B, fine microvessels are visible around clearly observed pits (the
middle row of Fig. 5). Type C is divided into three subtypes C1,
C2, and C3 according to detailed texture. In type C3, which exhibits
the most irregular texture, pits are almost invisible because of the
irregularity of tumors, and microvessels are irregular and thick, or
heterogeneously distorted (the bottom row of Fig. 5).

This classification has been shown to have a strong correlation
with histological diagnosis (Kanao et al., 2009), as shown in Table 1.



Table 1
Relationship between NBI magnification findings and histologic findings (from Kanao
et al. (2009)).

Type HP TA M/SM-s SM-m

A 80% 20%
B 79.7% 20.3%
C1 46.7% 42.2% 11.1%
C2 45.5% 54.5%
C3 100%

Table 2
(Top) Inter-observer variability and (bottom) intra-observer variability in assessment
of NBI magnification findings (from Oba et al. (2010)).

Group A Group B

C1 C2 C3

C1 85.4% 14.6%
C2 13.2% 76.3% 10.5%
C3 12.7% 87.3%

Group B (1st) Group B (2nd)

C1 C2 C3

C1 94.0% 6.0%
C2 20.4% 71.4% 8.2%
C3 21.4% 78.6%
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80% of type A corresponded to HP, and 20% to TA. 79.7% of type B
corresponded to TA, and 20.3% to M/SM-s. For type C3, on the other
hand, 100% were of SM-m. Therefore, it is very important to detect
type C3 among other types, not just as a two-class problem of neo-
plastic (type A) and non-neoplastic (other types) lesions (Stehle
et al., 2009; Tischendorf et al., 2010).

Note that we exclude types C1 and C2 (in a similar manner to
Kanao et al., 2009) from most of the experiments in this paper.
One reason is that the inter- and intra-observer variability is not
small and adjacent levels are interchangeably recognized as shown
in Table 2. In particular, type C2 has a large variability, which leads
to poor performance of classification systems. Actually, our meth-
od does not perform well for this five-class classification problem
(as detailed in Section 5.7.1): the recognition rate is at most 75%,
and recall rates for types C1, C2, and C3 are about 50%, 10%, and
50%, respectively. This means that most images of type C2 are mis-
classified to different classes.

Another reason to exclude types C1 and C2 is that the subtypes
C1, C2, and C3 are defined as the degree of irregularity of the
microvessel network, rather than by discrete labels. This means
that categorizing samples to intermediate labels (C1 and C2) makes
little sense. Instead, two ends of irregularity (B and C3) are better
to be used to indicate numerical values between them as the devel-
opment of a polyp. The prediction of the numerical value between
B and C2 is one of our future tasks.

However, still it is not easy to discriminate between the remain-
ing three classes in a recognition task. Several examples of images
in the dataset used in our experiments are shown in Fig. 5 (see also
Section 5.1). In particular, images of type B have a wide variety of
textures, for which a simple texture analysis might not work well.
Moreover, some images of types B and C3 have similar appearances
to each other as shown in Fig. 6, which makes even the three-class
classification quite a challenging task.

2.4. Related work and contributions

To support colorectal cancer diagnosis with computer-aided
systems, many approaches have been discussed and proposed from
a variety of aspects.
Endoscopy frame selection: Oh et al. (2007) proposed a method
for selecting visually preferable in-focus frames and excluding
out-of-focus and blurred frames.

3D reconstruction from videoendoscope: Hirai et al. (2011) used
the folds of the colonal surfaces for matching in order to recon-
struct the 3D geometry of the colon.

Polyp detection: Karkanis et al. (2003) used color wavelets fol-
lowed by LDA, and Maroulis et al. (2003) used neural networks
for detection of polyps in colorectal videoendoscopy. Sundaram
et al. (2008) detect colon polyps by using 3D shape information
reconstructed by CT images.

Biopsy image recognition: Tosun et al. (2009) used unsupervised
texture segmentation for detecting cancer regions. Al-Kadi (2010)
developed a method using Gaussian Markov random fields, and
Gunduz-Demir et al. (2010) used a local object-graph to segment
colon glands.

Endomicroscopic image retrieval: André et al. (2012), André et al.
(2011c), André et al. (2011a), André et al. (2011b), and André et al.
(2009) used a content-based video retrieval method for in vivo
endomicroscopy.

While a huge amount of research on medical image analysis has
been done including the work mentioned above, only few groups
have worked on automatic visual inspection of colonoscopy by
using the pit-pattern classification. We should note the work by
the Multimedia Signal Processing and Security Lab, Universität
Salzburg which is one of the most active groups in this field
(Häfner et al., 2006, 2008, 2009a,b,c,d, 2010b,a, 2009f; Häfner
et al., 2009e, 2008; Kwitt et al., 2010; Kwitt and Uhl, 2007a). In
Häfner et al. (2010a), the edges of Delaunay Triangles produced
by Local Binary Patterns (LBP) of RGB channels were used as
features, achieving a recognition rate of 93.3%. In Häfner et al.
(2010b), morphology and edge detection were applied to images
for extracting 18 features followed by feature selection, and recog-
nition rates of 93.3% for a two-class problem and 88% for six classes
were achieved. Kwitt et al. (2010) introduced a generative model
that involves prior distributions as well as posteriors, and employed
a two-layered cascade-type classifier that achieved 96.65% for two
classes and 93.46% for three classes. Other work from this group
includes texture analysis with wavelet transforms (Häfner et al.,
2009f; Kwitt and Uhl, 2007a), Gabor wavelets (Kwitt and Uhl,
2007b), histograms (Häfner et al., 2006), and others. In our previous
work (Takemura et al., 2010), we have used shape analysis of
extracted pits, such as area, perimeter, major and minor axes of a
fit ellipse, diameter, and circularity.

There is much less research on automatic classification of NBI
endoscopy images, compared to research based on pit-patterns,
because NBI systems became popular only after 2005. To the best
of our knowledge, only the group at the Institute of Imaging and
Computer Vision at RWTH Aachen University has reported some
studies including colorectal polyp segmentation (Gross et al.,
2009a) and localization (Breier et al., 2011). They used Local Binary
Patterns (LBP) of NBI images, as well as vessel features extracted by
edge detection (Gross et al., 2009b), and vessel geometry features
extracted by segmentation (Stehle et al., 2009; Tischendorf et al.,
2010). They classified NBI images of colorectal tumors into non-
neoplastic and neoplastic: images were directly related with histo-
logical diagnosis, and no visual classification scheme was
introduced.

In contrast, the present paper makes the following two contri-
butions. First, we investigate if the visual inspection schemes are
valid for NBI magnification findings, like has been shown for pit-
pattern classification. Previous works on NBI image recognition
(Gross et al., 2009b; Stehle et al., 2009; Tischendorf et al., 2010)
are based on histopathological results for classifying tumors into
non-neoplastic and neoplastic. However, it is very important to
discriminate M/SM-s and SM-m cancers (both are neoplastic)



Fig. 6. Some similar images of types B and C3.
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without biopsy or EMR, as described in Section 2.1. Second, due to
the large intra-class variation of the visual appearance of NBI
images, we propose to use for representation the bag-of-visual-
words (BoW) framework. Since BoW has been successfully applied
to a variety of recognition problems, including generic object rec-
ognition and texture analysis, it is natural to expect that BoW
would perform well for NBI images that have a wide range of var-
iation in texture of colorectal tumors. In the following sections, we
outline the process of recognition with BoW and address some
technical aspects to be considered in the extensive experiments
which is the significantly extended version of our prior work
(Tamaki et al., 2011).

It should be noted that BoW has been also applied to image re-
trieval of probe-based Confocal Laser Endomicroscopy (pCLE) by
André et al. (2012, 2011c,a,b, 2009) for real-time diagnosis from
in vivo endomicroscopy. For video and image retrieval, they pro-
posed ‘‘Bag of Overlap-Weighted Visual Words’’ constructed from
multi-scale SIFT descriptors combined with the k-nearest neigh-
bors retrieval. Their emphasis is on a ‘‘retrieval’’ approach (Müller
et al., 2009, 2004) since it enables endoscopists to directly compare
the current image and retrieved images for diagnosis.

In contrast, our approach targets classification for providing an
objective diagnosis and a kind of ‘‘second opinion’’ to avoid over-
sights during colonoscopy and assist an endoscopist’s decision-
making (Takemura et al., 2012), as well as for real-time in vivo
endoscopic diagnosis (Rex et al., 2011). To demonstrate our con-
cept, a prototype recognition system for NBI video sequences has
been constructed, which is shown in the last section of this paper.

3. Outline of bag-of-visual-words

A bag-of-visual-words (BoW) is a representation of images
mainly used for generic object recognition or category recognition.
The use of bag-of-visual-words for generic visual categorization
(Csurka et al., 2004; Nowak et al., 2006; Lazebnik et al., 2006)
and instance recognition (Sivic and Zisserman, 2003; Chum et al.,
2007) has been motivated by the success of the bag-of-words
method for text classification (Joachims, 1998; Tong and Koller,
2002; Lodhi et al., 2002; Cristianini et al., 2002) in which a docu-
ment or text is represented by a histogram of words appearing
regardless of word order. Similarly, BoW represents an image as
a histogram of representative local features extracted from the im-
age regardless of their location. Each representative local feature,
called a visual word (or codeword, visterm, visual texton), is the
center a cluster of local features. A set of visual words (codewords)
is often called a visual vocabulary (or a codebook).

Fig. 7 shows an overview of the recognition process with BoW.
Local features are extracted from images, and then clustered with
vector quantization to represent an image with a histogram of vi-
sual words. This approach includes the following steps:

1. Training phase
(a) Extracting feature points from the training images.
(b) Computing feature vectors (descriptors) for each feature

point.
(c) Clustering feature vectors to generate visual words.
(d) Representing each training image as a histogram of visual

words.
(e) Training classifiers with the histograms of the training

images.
2. Test phase

(a) Extracting feature points from a test image.
(b) Computing feature vectors (descriptors) for each feature

point.
(c) Representing the test image as a histogram of visual words.
(d) Classifying the test image based on its histogram.

BoW can be divided into three main components: detection and
description of local features, visual word representation, and
classification.

Detection and description of local features is the first step where
information is extracted from the images in the form of feature vec-
tors. This step can be further divided into two steps: detection, or
sampling (detecting the location where the features are to be ex-
tracted), and description (how the features are to be represented).
In the next section, we focus on the Scale Invariant Feature Trans-
form (SIFT) (Lowe, 1999, 2004), which is a standard feature descrip-
tor and known to perform better (Mikolajczyk and Schmid, 2003,
2005) than other features such as PCA-SIFT (Ke and Sukthankar,
2004), for example. For detection, both the Difference-of-Gaussians



Fig. 7. Overview of bag-of-visual-words.
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(DoG) detector (Lowe, 1999, 2004) and grid sampling (Nowak et al.,
2006; Fei-Fei and Perona, 2005; Bosch et al., 2007) are investigated in
this paper. Other detectors (Tuytelaars and Mikolajczyk, 2007) such
as Harris (Harris and Stephens, 1988), Harris–Laplace (Mikolajczyk
and Schmid, 2004) and dense interest points (Tuytelaars, 2010) are
also good alternatives to DoG, and investigating them is left for
future work. SURF (Bay et al., 2006, 2008) is known to be faster than
SIFT in detection speed, however, a GPU implementation of SIFT is
available (Wu, 2010), and the speed of detection depends on the
sampling strategy. We have seen in preliminary experiments that
grid sampling of SIFT is reasonably fast.

Visual word representation involves clustering of the extracted
local features for finding the visual words (the cluster centers),
and histogram representation of the images. For clustering a large
number of local features, hierarchical k-means (Nister and Stewe-
nius, 2006) has been widely used for representing a vocabulary
tree. From the viewpoint that the histogram of visual words can
be considered as a representation of the local feature distributions,
many vocabulary-based approaches (Amores, 2010) and variants
Fig. 8. DoG and grid sampling of features. (a) Keypoints detected by DoG. (b) Grid
sampling.
have been recently proposed, such as Gaussian Mixture Model
(GMM) (Campbell et al., 2006; Farquhar et al., 2005; Perronnin
et al., 2006; Perronnin, 2008; Zhou et al., 2008), kernel density esti-
mation (van Gemert et al., 2008), soft assigning (Philbin et al.,
2008) and global Gaussian approach (Nakayama et al., 2010). In
this paper, we employ a simple vocabulary-based approach as it
has a lower computational cost than the other methods, and inves-
tigate two types of histogram representations.

Classification is used to classify the test image based on its his-
togram representation. In this paper, Support Vector Machine
(SVM) (Vapnik, 1998; John Shawe-Taylor, 2000; Schölkopf and
Smola, 2002; Steinwart and Christmann, 2008) is used with differ-
ent kernel types. Other classifiers, such as Naive Bayes (Csurka
et al., 2004; Bishop, 2006), Probabilistic Latent Semantic Analysis
(pLSA) (Hofmann, 1999; Qiu and Yanai, 2008; Yanai and Qiu,
2009), or Multiple Kernel Learning (Sonnenburg et al., 2006; Joutou
and Yanai, 2009) have also been used for category recognition.

4. Technical details

In this section, we describe some technical aspects explored in
the experiments for classifying NBI images based on the NBI mag-
nification finding by using the BoW representation.

4.1. Local features

4.1.1. DoG-SIFT
SIFT (Lowe, 1999, 2004) is a local feature descriptor invariant to

shift, rotation, scale and intensity change. Difference-of-Gaussians
(DoG) is used to detect keypoints (Fig. 8a) where the DoG response
is maximum in space (location) and scale (different width of
Gaussian) (Schmid and Mohr, 1997; Lindeberg, 1994; Koenderink,
1984). The maximum direction of the intensity gradients around
each keypoint is computed as its orientation. Then, a histogram
of gradients within the patch, the local region centered at the
keypoint, is computed. Usually 8 directions of gradients in 4 � 4
blocks in a patch are used to make a 128-dimensional vector as a
SIFT descriptor.

To remove unreliable keypoints, the eigenvalues of the patch
are used for eliminating points on edges (Lowe, 2004). Keypoints



(a)

(b)
Fig. 10. gridSIFT descriptor. (a) gridSIFT. (b) Multi-scale gridSIFT.
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are discarded if the Hessian H of the associated patch does not
satisfy

TrðHÞ2

DetðHÞ <
ðr þ 1Þ2

r
; ð1Þ

where r ¼ 10 (Lowe, 2004).
DoG responses are also used for eliminating points with low

contrast. Keypoints at location x̂ are discarded if the value of the
DoG response

Dðx̂Þ ¼ Dþ 1
2
@D
@x

T

x̂; ð2Þ

is less than a threshold Dth ¼ 0:03 (Lowe, 2004), which means low
contrast and hence unstable extrema.

4.1.2. gridSIFT
SIFT descriptors at sparsely detected keypoints by DoG can be

used for recognition, however, densely sampled SIFT descriptors
are known to perform better (Fei-Fei and Perona, 2005; Jurie and
Triggs, 2005; Nowak et al., 2006; Herve et al., 2009). The SIFT fea-
tures obtained by grid sampling are referred to as gridSIFT (Nowak
et al., 2006; Fei-Fei and Perona, 2005; Bosch et al., 2007): features
are sampled at points on a regular grid over the image (Fig. 8b). For
gridSIFT, the following parameters need to be specified:

� Grid spacing (Fig. 10) affects how densely the features are
extracted. Smaller spacing generates more features while at
the same time increasing computation and storage cost, but
generally performs better.
� The scale of a patch around each grid point affects the extent of

the spatial information involved in the feature at the point.
Although DoG finds the optimal scale for each keypoint, grid-
SIFT requires a range of scales to be specified at each grid point.
In this paper, we refer the scale of a SIFT descriptor to the width
of a square block (see Fig. 9).

We use each descriptor of different scales at the sample point as
a single feature vector (Fig. 10a): for example, if there are 100
points on the grid and 4 scales are being used, then we have 400
gridSIFT descriptors, where each descriptor is a 128 dimensional
vector. An alternative way to define the descriptor is to combine
the descriptors of different scales at the sample point into a single
feature vector (Fig. 10b): e.g., in this case we have 100 descriptors,
each being a 512 dimensional vector (we call this variant multi-
scale gridSIFT).

Note that we do not use spatial information as in Spatial Pyra-
mid Matching (Lazebnik et al., 2006) and Pyramid Histogram Of vi-
sual Words (PHOW) (Bosch et al., 2007). And also we do not use
orientation information as in SIFT descriptors; i.e., orientations of
SIFT descriptors of gridSIFT are fixed. Since the images in the NBI
Fig. 9. Scale in gridSIFT.
dataset used in the experiments have been taken by a randomly ro-
tated endoscope and trimmed to different sizes, spatial informa-
tion and orientation in NBI images are less informative than
those in images used for category recognition.

Orientation and scale invariances of local descriptors are useful
for matching images of the same scene which have been rotated or
scaled. Those invariances are generally useful for recognition tasks
and therefore merit further investigation in a future work, but have
not been used in this paper. Random sampling (Nowak et al., 2006)
is not used, since it also seems to be less effective for randomly ro-
tated and shifted texture images, like the NBI images.
4.1.3. DiffSIFT
By a simple extension of gridSIFT, we propose a new combina-

tion of SIFT descriptors and grid sampling, which we call DiffSIFT.
DiffSIFT is inspired by Relational Binarized HOG (Matsushima
et al., 2010) in which Histograms of Oriented Gradients (HOG)
(Dalal and Triggs, 2005) of two different regions are subtracted
and binarized. Similarly, DiffSIFT is computed by the difference be-
tween two gridSIFT descriptors at adjacent grid points (Fig. 11). If
multiple scales are used, subtraction is done for descriptors with
the same scale. Note that the orientations of the SIFT descriptors
of DiffSIFT are also fixed.

We refer as horizontal DiffSIFT (hDiffSIFT) the method which
uses subtraction of horizontally adjacent descriptors, and vertical
DiffSIFT (vDiffSIFT) when subtracting vertically adjacent descrip-
tors. When both descriptors are used at the same time, we call
them hvDiffSIFT descriptors.



Fig. 11. DiffSIFT descriptor computed as the difference between two SIFT descriptors at adjacent grid points.
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4.2. Visual word representation

4.2.1. Number of visual words
The number of visual words (or vocabulary size, codebook size)

is a crucial parameter for better performance and needs to be
tuned for each application: for example, 200 to 400 for natural
scene categorization (Lazebnik et al., 2006), 6000 to 10,000 for ob-
ject retrieval (Sivic and Zisserman, 2003), 10,000 to 1,200,000 for
landmark object retrieval (Philbin et al., 2007). It has been reported
(Philbin et al., 2007; Nowak et al., 2006; Zhang et al., 2007) that
increasing the size improves performance, however, the perfor-
mance has a peak at a certain size and appears flat or even de-
grades for larger sizes.

The best size of the vocabulary obviously depends on the size of
the dataset, while a relatively large number of visual words is nec-
essary in general. Since NBI images have never been explored in
terms of visual words, it is necessary to study the effect which
vocabulary size has on recognition performance. When the vocab-
ulary size is huge, the computational cost for clustering is very
high. To deal with a large vocabulary size, here we use two meth-
ods: hierarchical k-means clustering and class-wise concatenation
of visual words.

4.2.2. Hierarchical k-means clustering
Hierarchical k-means can be used for clustering of large-size

data and in (Nister and Stewenius, 2006) has been used for vocab-
ulary tree construction. In our experiments, we need to cluster sev-
eral millions of features densely sampled from almost one
thousand training images, and explore vocabularies of size up to
several thousands visual words. Hence, the use of hierarchical
k-means is necessary for reducing the computational cost for
clustering.

4.2.3. Class-wise concatenation of visual words
Zhang et al. (2007) create global visual words by concatenation

of the visual words of each class (Fig. 12). Instead of clustering to-
gether all features from all classes, they perform k-means cluster-
ing separately for each class to form a class-wise vocabulary. Then
a visual word representation of an image is made by concatenating
the representations for each class-wise vocabulary. Similarly, it is
possible to combine multi-level vocabularies by using different
number of clusters (Quelhas and Odobez, 2007) to form a global
visual word representation. In this case, results show that a perfor-
mance peak is reached for a certain vocabulary size, and using
multi-level vocabularies leads to improved performance.

We use a concatenation of vocabularies for three classes (corre-
sponding to types A, B, and C3 NBI images) to form a global visual
word representation. Consequently, the dimensionality of the his-
tograms representing the images is between 3� 22 ¼ 12 and
3� 213 ¼ 24;576. In our case, however, the computational cost
for vocabulary construction for each class is reduced to OðN3 kdÞ
on average, resulting in a significant reduction of the computa-
tional cost compared with the global vocabulary case. In the cross
validation dataset used in the experiments, the total number of
gridSIFT features is 4,123,706 (with grid spacing of 10 pixels),
which requires about 2 GB memory just for storing all features,
and even more for clustering when all features are used for con-
structing a global vocabulary. The class-wise concatenation of vi-
sual words requires much smaller amount of memory for storing
features: in the dataset used, type A had 1,423,841, type B
2,148,225, and type C3 551,640 features.

4.3. Classifiers

4.3.1. SVM
The Support Vector Machine (SVM) classifier is used for classi-

fying a two-class problem by using slrack variables (soft margin)
and nonlinear kernels (the kernel trick). Interested readers can find
more details in textbooks like (Steinwart and Christmann, 2008;
Schölkopf and Smola, 2002; John Shawe-Taylor, 2000; Vapnik,
1998).

4.3.2. Kernel types
We use the following five kernels for SVM: Radial Basis Func-

tion (RBF), linear, v2, and histogram intersection (HI):

kRBFðx1;x2Þ ¼ expð�c jx1 � x2j2Þ; ð3Þ
klinearðx1;x2Þ ¼ xT

1x2; ð4Þ

kv2 ðx1;x2Þ ¼ exp � c
2

X
i

ðx1i � x2iÞ2

x1i þ x2i

 !
; ð5Þ

kv2
ng
ðx1;x2Þ ¼ �

X
i

ðx1i � x2iÞ2

x1i þ x2i
; ð6Þ

kHIðx1; x2Þ ¼
X

i

minðx1i; x2iÞ; ð7Þ

where c is a scaling parameter which should be tuned for each
problem.

The RBF kernel (or Gaussian kernel) is the most commonly used
kernel, while Zhang et al. (2007) reported that the v2 kernel per-
forms best. Note that there are some variations of the v2 kernel.
Here we use a RBF type kernel v2 (Chapelle et al., 1999; Fowlkes
et al., 2004) and a negative type kernel v2

ng (Schölkopf and Smola,
2002; Haasdonk and Bahlmann, 2004), while still there are some



Fig. 12. Concatenating the visual words for each class in the training set.
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other variants (Vedaldi and Zisserman, 2012). The histogram inter-
section kernel is also used for histogram classification (Swain and
Ballard, 1991; Grauman and Darrell, 2005; Lazebnik et al., 2006)
as well as the v2 kernel. Although the linear kernel does not pro-
vide any nonlinearity for SVMs, it has the advantage that it can
be computed very fast and no kernel parameters are involved. Note
that a class of kernels including the histogram intersection can be
also computed as fast as a linear kernel by explicitly embedding
vectors in a feature space, as shown by Maji et al. (2008).

Scaling (or standardization, normalization) of the feature vec-
tors is also one of the important factors affecting performance
(Graf and Borer, 2001; Hsu et al., 2003; Hastie, 2009). We normal-
ize training and test data; i.e., each element in feature vectors is
linearly scaled into ½�1;þ1� for linear and RBF kernels, but not
for histogram-based (v2;v2

ng and histogram intersection) kernels
because this scaling affects the counts in the bins of a histogram.

In our experiments, an SVM classifier is trained for different val-
ues of the regularization parameter2 C and the scaling parameter c,
by using 5-fold cross validation on the training set. The ranges of the
parameter values are set based on preliminary experiments to
C ¼ 2�3;2�1; . . . ;219 and c ¼ 2�19;2�17; . . . ;20;21, then the values that
give the best recognition rate are chosen.
Table 3
NBI image dataset.

Dataset Type A Type B Type C3 Total
4.3.3. Multi-class classification
To handle the three-class problem, the one-against-one strategy

is employed. There are two main strategies for extending a
two-class classifier such as SVM to a multi-class classifier: one-
against-all (or one-versus-all, one-versus-the-rest) and one-
against-one (one-versus-one).

One-against-all (Vapnik, 1998; Lee et al., 2001; Weston and
Watkins, 1999) is to train k SVM classifiers with one class as a po-
sitive training set, and all other classes as a negative training set.
This strategy has the problem that the dataset sizes for each SVM
training are unbalanced. One-against-one (Platt et al., 2000; Allwein
et al., 2000) is to train two-class SVM classifiers for each pair of
classes and then combine the results from all classifiers. The disad-
vantage of this strategy is that the number of classifiers is propor-
tional to the square of the number of classes c: i.e., cðc�1Þ

2 .
2 This parameter controls the trade-off between the margin and the slack variables’
penalties. See Steinwart and Christmann (2008), for example.
We employ the one-against-one strategy because both strate-
gies seem to achieve similar performance (Hsu and Lin, 2002;
Milgram et al., 2006), and for the three-class problem both
strategies result in training the same number of classifiers. Also,
we would like to avoid the unbalancedness of the one-against-all
strategy because the dataset used in our experiments is already
unbalanced (explained below). Currently we do not use any
weights for the SVM classifier to deal with the unbalancedness,
leaving this problem for future research.

5. Experimental Results

In this section we report the experimental results obtained by
the proposed system. In the following several subsections, we ex-
plain the dataset, the evaluation measures, experimental settings
and classification results for each experiment.

5.1. Dataset

We have collected 908 NBI images (as shown in Table 3) of colo-
rectal tumors as a dataset for n-fold cross validation (we use n ¼ 10
which is a typical choice Hastie, 2009). Examples of images in the
dataset are shown in Fig. 5. Note that each image corresponds to a
colon polyp obtained from a different subject: no images share the
same tumor. In addition, we have collected another 504 NBI
images as a separated test dataset. The cross validation dataset
was collected before April 2010, while the test dataset after May
2010. This is similar to a practical situation in which samples col-
lected at a certain period are used for training, and samples taken
after that are then classified.

Every image was collected during an NBI colonoscopy examina-
tion. The instruments used were a magnifying videoendoscope
system CF-H260AZ/I (Olympus Optical Co, Ltd, Tokyo, Japan),
which provides up to 75x optical magnification. Then the images
were digitized into 1440�1080 pixels and stored on an Olympus
Cross validation 359 462 87 908
Test 156 294 54 504
Total 515 756 141 1412



Fig. 13. Dataset construction by trimming a rectangle (right) from an NBI videoendoscope image (left).
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EICP-D HDTV recorder. Care was taken to ensure that the lighting
conditions, zooming and optical magnification were kept as similar
as possible across different images. Therefore, the microvessel
structures on the surface of the colorectal tumors can be regarded
as being approximately of the same size in all images. The captured
images were then trimmed by medical doctors and endoscopists to
a rectangle so that the rectangle contains an area in which typical
microvessel structures appear (see Fig. 13). For this reason, the size
of the images is not fixed and varies from about 100� 300 to
900� 800 pixels. Image labels were provided by at least two med-
ical doctors and endoscopists who are experienced in colorectal
cancer diagnosis and familiar with pit-pattern analysis (Kudo
et al., 1994, 1996; Imai et al., 2001) and NBI classifications (Kanao
et al., 2009). Note that these images were collected not for these
experiments, but for actual medical reporting (Aabakken, 2009)
in case of surgery or comparison during a follow-up period, discus-
sion with endoscopists, and informed consent with patients.

The study was conducted with an approval from the Hiroshima
University Hospital ethics committee, and an informed consent
was obtained from the patients and/or family members for the
endoscopic examination.

5.2. Evaluation

In our experiments, 10-fold cross validation is used for evaluat-
ing the performance. For each experiment, recognition rate, recall,
precision, and F-measure are calculated from a confusion matrix
(Table 4) as follows:

Recognition rate ¼
P

imiiP
i;jmij

; ð8Þ

Recallj ¼
mjjP

imji
; ð9Þ

Precisionj ¼
mjjP

jmji
; ð10Þ

F-measurej ¼
2Recallj � Precisionj

Recallj þ Precisionj
; ð11Þ

where i; j 2 fA;B; Cg.
Table 4
Confusion matrix.

Estimated category
Type A Type B Type C3

True category Type A mAA mAB mAC

Type B mBA mBB mBC

Type C3 mCA mCB mCC
Usually precision and recall rates are defined for two-class
problems. We use those rates specific to each type. As we stated
in Section 2, images of type C3 should be correctly identified be-
cause of the high correlation to SM-m cancers (Kanao et al.,
2009). Therefore, the class-specific recall rate, in particular for type
C3, is important to measure the performance of the system. In the
following subsections, mainly results for recognition rates are
shown in figures, with RecallC3 in tables. Recall, precision, and
F-measure are available in the Supplemental material.

5.3. Implementation

For generating the gridSIFT, DiffSIFT, and DoG-SIFT descriptors,
we use VLFeat (Vedaldi and Fulkerson, 2008), which is widely used
for large image databases such as (Deng et al., 2009). For the
hierarchical k-means clustering we use also the VLFeat
implementation.

For the SVM classifiers, we use libSVM (Chang and Lin, 2011), a
publicly available implementation of SVM, by adding our imple-
mentation of v2 and intersection kernels.

5.4. Experimental results

In the following three subsections we describe the results of 10-
fold cross validation, the results on the test dataset, and some other
additional experiments:

� 10-fold cross validation (Section 5.5)
– class-wise concatenation of visual words
– DoG–SIFT
– different grid spacings
– SVM kernels
– different scales of gridSIFT descriptors
– multi-scale gridSIFT
– DiffSIFT
� Results on the test dataset (Section 5.5)

– SVM kernels
� Additional experiments (Section 5.7)

– 5-class problem.

5.5. Results for the 10-fold cross validation

First we evaluate the performance of the system using a 10-fold
cross validation (Hastie, 2009) on 908 NBI images, as shown in
Table 3. For each experiment, the dataset is randomly divided into
10 folds of 90 images each (i.e., 8 images are randomly excluded).
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Fig. 14. Comparison between global and class-wise concatenated visual words.
gridSIFT (grid spacing of 10 pixels, scale 5, 7, 9, 12 pixels), global or class-wise visual
word concatenation, linear kernel SVM.

Table 5
Performance of gridSIFT with different visual word types (grid spacing of 10 pixels,
scale 5, 7, 9, 12 pixels, linear kernel SVM).

Type Recognition rate VWs RecallC3

Global 93.67 2048 67.60
Class-wise 93.89 6144 64.71
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Fig. 15. Performance of DoG-SIFT with values of r ¼ 5;10;15 for each contrast
threshold Dth of (top) 0.003, (middle) 0.006, and (bottom) 0.01 (linear kernel SVM).

Table 6
Performance of DoG-SIFT with values of r ¼ 5;10;15 (linear kernel SVM).

Dth r Recognition rate VWs RecallC3

0.003 5 92.44 1536 58.14
10 92.78 768 65.12
15 92.44 3072 55.81

0.006 5 93.22 1536 68.60
10 93.33 384 73.56
15 93.55 1536 72.09

0.01 5 89.11 768 67.81
10 87.56 3072 69.77
15 85.67 6144 63.22
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At each fold, 810 images are used for training and 90 images for
validation.

5.5.1. Visual words with and without class-wise concatenation
First we checked whether class-wise concatenation performs as

well as the global vocabulary. Fig. 14 shows the performance
curves for the two methods when increasing the number of visual
words (VWs). Table 5 shows the maximum recognition rates, the
number of visual words, and recall rate for type C3. We can see
in Fig. 14 that both curves show similar performances, and the dif-
ference of maximum recognition rates is small. Therefore, we
chose the use of class-wise concatenation of visual words for suc-
cessive experiments for its smaller computational cost.

5.5.2. DoG-SIFT
Here we compare the performance of the gridSIFT descriptors

with SIFT descriptors detected by DoG (DoG-SIFT). Fig. 15 and
Table 6 show the performance of DoG-SIFT.

There are two parameters in DoG, for eliminating edges (r ¼ 10
as a default value) and low contrast (Dth ¼ 0:03), as described in
Section 4.1.1. These parameters control the number of detected
keypoints and might affect the performance, because more key-
points usually lead to better performance. When the low contrast
parameter Dth is set to a very small value (0.003 or 0.006)
compared to the default value (0.03), there is no significant differ-
ence between the results with r ¼ 5; 10 ðp ¼ 0:097Þ; r ¼ 5;
15 ðp ¼ 0:734) and r ¼ 10; 15 ðp ¼ 0:289) for the results in
Fig. 15 (top),3 hence the recognition rate is insensitive to the edge
parameter r and the low contrast parameter Dth in this range. How-
ever, when Dth is larger than this range, no keypoints are detected in
some training and test images and the performance is drastically de-
graded, as shown in Fig. 15 (bottom) for Dth ¼ 0:01. Therefore, Dth

must be set to a smaller value rather than the default value (0.03).
In the results obtained for DoG-SIFT, the following two observa-

tions can be made in comparison with gridSIFT. First, DoG-SIFT
3 The two-tailed paired t-test of df ¼ 11 over 12 different sizes of vocabularies with
5% significance level (a ¼ 0:05) is used in the successive experiments. The null
hypothesis (H0) is that there is no statistically significant difference.
shows better performance when a small number of visual words
is used: the recognition rate is 86.69% (r ¼ 15;Dth ¼ 0:006;
VWs ¼ 12), which is much better than the results for gridSIFT for
the same number of visual words. Second, while the peak perfor-
mance for DoG-SIFT is 93.55% (r ¼ 15;Dth ¼ 0:006), gridSIFT
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Fig. 16. Performance with different grid spacing and different kernel types. gridSIFT
(grid spacing of (5), (10), (15) pixels, scale 5, 7, 9, 12 pixels), RBF, linear, v2 (chi2),
v2

ng (chi2 ng), and histogram intersection (HI) kernel SVM.

Table 7
Performance of gridSIFT with different grid spacing and SVM kernel types (scale
5,7,9,12 pixels).

Kernel Spacing Recog. rate VWs RecallC3

RBF 5 94.56 3072 75.58
10 94.33 6144 64.37
15 92.00 12,288 46.51

Linear 5 95.11 12,288 73.56
10 93.89 6144 64.71
15 92.11 3072 52.94

v2 5 95.56 6144 71.76
10 94.56 1536 69.77
15 93.44 1536 61.63

v2
ng 5 95.44 6144 74.71

10 94.56 3072 68.60
15 92.78 3072 53.49

HI 5 94.78 1536/3072 66.67/63.10
10 94.22 1536 58.14
15 92.00 768 50.00
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performs better than that, as shown in the following experiments.
Therefore, gridSIFT is preferable when a relatively large number of
visual words are available. However, a smaller size may be ob-
tained when orientation invariance is used (see Section 4.1.2).
5.5.3. gridSIFT with different grid spacing
Here we explore the effect of grid spacing on gridSIFT: with

smaller spacing a lot of descriptors are extracted while with larger
(hence sparse) spacing descriptors are fewer. We use a regular grid
with spacing of 5, 10, and 15 pixels. For 5 pixels, the total number
of descriptors is about 9 times larger than for spacing of 15 pixels.

Fig. 16 shows the performances of the SVM classifiers with RBF,
linear, v2;v2

ng , and HI kernels. Table 7 shows the maximum recog-
nition rates, the number of visual words, and recall rate for type C3.
The performance improves roughly 2% to 3% by using smaller spac-
ing for each kernel type. Table 8 shows the results of statistical sig-
nificance tests for each pair of different grid spacings. These results
support the observation of performance improvement for smaller
spacing (except for the RBF kernel with grid spacing of 5 and 10
pixels). For types A and B, recall and precision rates do not appear
to change significantly and good performance is achieved even for
spacing of 15 pixels. In contrast, for type C3 the recall rate im-
proves by 10% to 20% as spacing becomes smaller. The performance
might be further improved by using spacing smaller than 5 pixels,
however, we did not conduct such experiments because of the high
computational cost due to the huge number of descriptors: already
16,268,314 features were used for spacing of 5 pixels, while there
are 44,915,615 features for spacing of 3 pixels.

5.5.4. SVM kernels
As shown above, the performance difference for different SVM

kernels is apparently small. Table 7 summarizes the performance
difference for five SVM kernel types, also shown in Fig. 16 for grid
spacing of 10 pixels. The v2 kernel performs best, but the difference
is small. Recognition rate difference is at most 4.89% (for 96 visual
words), and the maximum performances differ only about 1%.
Table 8 shows the results of statistical significance tests for each
pair of different kernels. For grid spacing of 5 pixels, where all
kernels perform best as described above, RBF, linear and HI kernels
are not significantly different, and v2 and v2

ng kernels are better
than those.

We use the linear kernel for the successive experiments hereaf-
ter for reducing the computation time of the experiments. SVM
with a linear kernel has much smaller computational cost while
the nonlinear RBF and v2 kernels also need the scaling parameter
c to be selected by cross validation. v2

ng and HI kernels are also
attractive alternatives because no such parameter is involved,
however those are nonlinear.

5.5.5. Different combinations of multiple scales in gridSIFT
The scale, or size, of a patch for computing the gridSIFT descrip-

tors affects the range of the local region involved. All experiments
above used four different scales: 5, 7, 9, and 12 pixels. Here we ex-
plore different combinations of scales for examining which scales
are most effective for the performance of the system.

Fig. 17 shows the performance for combinations of 1, 2, and 3
scales separately. The results seem to indicate that:

� using only a single scale results in a worse performance than
when multiple scales are used. In particular, the smallest and
the largest scales 3 and 12 perform worst.
� combinations of multiple scales lead to decreased performance

when scale 12 is included.



Table 8
p-Values of significance tests for gridSIFT for each pair of different grid spacing and SVM kernel types (scale 5,7,9,12 pixels). Gray boxes show p > 0:05, which means no significant
differences at the 5% significance level. ‘‘0.000’’ means p < 0:5� 10�3.
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Fig. 17. Performance when single scales are used. gridSIFT (grid spacing of 5 pixels,
{single, two, three} combinations of scales 3, 5, 7, 9 or 12 pixels, linear kernel SVM).

Table 9
Performance of gridSIFT with different combinations of scales (grid spacing of 5
pixels, linear kernel SVM).

Scale (s) Recognition rate VWs RecallC3

3 92.89 6144 60.71
5 93.44 3072 68.24
7 95.22 6144 69.41
9 94.00 24,576 56.98
12 91.89 12,288 61.90
(5,7) 96.00 6144 77.01
(5,9) 95.00 3072 76.47
(5,12) 94.44 12,288 63.53
(7,9) 94.89 12,288 72.41
(7,12) 94.67 24,576 65.12
(9,12) 94.11 24,576 68.24
(5,7,9) 95.33 6144 75.58
(5,7,12) 93.56 3072 75.86
(5,9,12) 94.44 12,288 71.26
(7,9,12) 94.11 12,288 70.59
(5,7,9,12) 95.11 12,288 73.56
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� in contrast, performance is improved when the combination
includes scale 7.

Table 9 shows the maximum recognition rates, the number of
visual words, and type C3’s recall rate. Using only scale 7 achieves
recognition rate of 95%, and scales 5 and 9 also achieve more than
93%, hence each of those scales is expected to contribute to a better
performance. However, type C3 recall rates for single scales are not
better than those for multiple scales. When multiple scale combi-
nations include scale 12, type C3 recall rates are degraded to less
than 70% and recognition rates are also slightly degraded. The best
performance was obtained by the combination of scales 5 and 7,
with recognition rate of 96% and type C3 recall rate of 77.01%.
Table 10 shows the results of statistical significance tests for each
pair of different combination of scales, and these results support
the observations listed above. While the best performance was ob-
tained by the combination (5,7), this is not significantly different
with a single scale of 7 or combinations (5,9), (7,9), (5,7,9),
(5,7,12), and (7,9,12). In terms of computation time, a single scale
is preferable because fewer features are used, while combinations
of two or more scales can still be used.
5.5.6. Multi-scale gridSIFT
When multiple scales are used for computing the gridSIFT

descriptors, multiple descriptors for a single point are obtained.
For gridSIFT, those descriptors are then individually clustered. Here



Table 10
p-Values of significance tests for gridSIFT for each pair of different scale combinations (grid spacing of 5 pixels, linear kernel SVM). Gray boxes show p > 0:05, which means no
significant differences at the 5% significance level. ‘‘0.000’’ means p < 0:5� 10�3.
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Fig. 18. Performance of multi-scale gridSIFT with different grid spacing. gridSIFT
(grid spacing of 5, 10, 15 pixels, scale 5, 7, 9, 12 pixels, linear kernel SVM).

Table 11
Performance of gridSIFT and multi-scale gridSIFT (grid spacing of 5 pixel, linear kernel
SVM, scale 5, 7, 9, 12 pixels, linear kernel SVM).

Recognition rate VWs RecallC3

gridSIFT 95.11 12,288 73.56
Multi-scale gridSIFT 94.33 6144 64.71
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Fig. 19. Performance comparison between DiffSIFT and gridSIFT on the cross-
validation dataset. DiffSIFT and gridSIFT (grid spacing of 5 pixels, scale 7 pixels,
linear kernel SVM).

Table 12
Performance comparison between DiffSIFT and gridSIFT. (grid spacing of 5 pixels,
scale 7 pixels, linear kernel SVM).

Feature Recognition rate VWs RecallC3

gridSIFT 95.22 6144 69.41
vDiffSIFT 95.11 6144 74.42
hvDiffSIFT 95.44 6144 71.26
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we investigate an alternative way for constructing a descriptor of
larger size by combining the features obtained at different scales
into a single feature vector (multi-scale gridSIFT, see Section 4.1.2).
We use four scales (5, 7, 9 and 12 pixels): four 128 dimensional
gridSIFT feature vectors are concatenated to make a single 512
dimensional vector.

Fig. 18 shows the resulting performance. In Table 11 are given
the maximum recognition rates, the number of visual words, and
the recall rates for type C3. Overall, the performance of multi-scale
gridSIFT follows similar trends to that of gridSIFT: performance im-
proves as smaller grid spacing is used, no significant difference be-
tween different kernel types. A notable exception, however, can be
seen in the decrease of the recall rate and F-measure for type C3.
Therefore, multi-scale gridSIFT seems to be inferior to gridSIFT.
This is also supported by the result of the significance test which
is p ¼ 0:007 < 0:05.
5.5.7. DiffSIFT
Here we show the results obtained with the DiffSIFT descriptors

proposed in this paper. To evaluate the effectiveness of DiffSIFT as
a descriptor, we use a single scale 7 and compare it with gridSIFT.

Fig. 19 compares the performance of DiffSIFT and gridSIFT using
the same parameters, and Table 12 shows the maximum recogni-
tion rates, the number of visual words, and recall rate for type
C3. The difference is slight and hvDiffSIFT improves the recognition
rate only by 0.22% in comparison to gridSIFT. Table 13 shows the
results of statistical significance tests and indicates no significant
Table 13
P-values of significance tests between gridSIFT, vDiffSIFT, and hvDiffSIFT (grid spacing
of 5 pixels, scale 7 pixels, linear kernel SVM).



Table 14
Performance of gridSIFT with different kernels on the test dataset (grid spacing of 5
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difference between DiffSIFT and gridSIFT. But vDiffSIFT improves
type C3 recall rate by about 5%, as shown in Table 12.
Table 15
P-values of significance tests for gridSIFT for different kernels on the test dataset (grid
spacing of 5 pixels, scales 5, 7 pixels).

pixels, scale 5, 7 pixels).

Kernel Recognition rate VWs RecallC3

RBF 93.65 12,288 66.67
Linear 93.45 12,288 62.96
v2 94.25 12,288 61.11

v2
ng 94.25 12,288 61.11

HI 93.85 3072 68.52
5.6. Results on the test dataset

Next, we evaluate the performance on the test dataset as shown
in Table 3. Now all of the 908 NBI images from the dataset used for
the cross validation were used to construct the visual words and to
train the classifiers. The additional dataset of 504 NBI images was
used for the evaluation. Recall that the training dataset (used for
the cross validation) and the test dataset were collected during dif-
ferent periods, as described in Section 5.1.

There are two reasons why we perform experiments with a sep-
arated test dataset in addition to the experiments with the cross
validation dataset. First, separating a training dataset from a test
dataset is similar to the practical situation in which samples col-
lected at a certain period are used for training, and samples taken
after that are then classified. Second, using all samples in a training
dataset would lead to parameter tuning instead of validation.
Therefore, many recent papers on machine learning use three kinds
of datasets: training, validation, and test sets. A training set is used
for parameter tuning, and those are evaluated by using a validation
dataset. After the parameters are fixed, then a (novel) test set is
used for evaluation of generalization. If we evaluate a method
using only training and test sets, the resulting parameters would
overfit both the training and test sets. Therefore, we used cross-
validation for most experiments, and then we used fixed parame-
ters (such as kernels, grid spacing, and scale combination) for the
test set.
5.6.1. Performance of gridSIFT with different kernels
To see how gridSIFT works for the test (i.e., a novel) dataset, we

use the parameter settings that give the best performance found in
the cross validation experiments: spacing of 5 pixels and combina-
tion of two scales, 5 and 7.

Fig. 20 and Table 14 show the performance. A recognition rate
of above 90% is achieved when the number of visual words is larger
than 192 for most kernels and 1536 for the linear kernel, although
this is lower than the rates obtained by cross validation.

Overall, RBF and HI kernels appear to perform better than the
linear kernel as type C3 recall rate is improved. Table 15 shows
the results of statistical significance tests. RBF, v2 and v2

ng kernels
perform better than the linear kernel while the performance of
the HI kernel is not significantly different from the linear kernel.
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Fig. 20. Performance of gridSIFT with different kernels on the test dataset. gridSIFT
(grid spacing of 5 pixels, two scales 5 and 7 pixels), RBF, linear, v2 (chi2), v2

ng (chi2
ng), and histogram intersection (HI) kernel SVM.
5.7. Other experiments

5.7.1. Preliminary results for the 5-class problem
As mentioned before, the NBI magnification findings classify

NBI images into five types: A, B, C, C1, and C3 (Fig. 4 Kanao et al.,
2009). We have used only three types A, B and C3 due to the on-
going arguments on the classification and the ambiguity between
B, C1, C2 and C3 (Table 1). However, we think that it is also worth-
while to tackle the five-class problem because this would demon-
strate the ability of the BoW classification scheme, and also might
contribute to a further development of classification schemes in
the medical research field from the side of the engineering field.

To the cross validation dataset (Table 5), we add 215 images of
type C1 and 71 images of type C2. Totally 1194 images were used
and evaluated by 10-fold cross validation: each of the 10 folds had
119 images, and four images were randomly excluded. We used
gridSIFT with parameters that performed well for the three-class
problem.

Fig. 21 shows the performance for the five-class problem. recog-
nition rate is at most 75%, which is lower by 20% than the three-
class problem. Type A retains good recall rates, while type B and
C decrease recall rates by 15% and 10%, respectively. Recall rates
for types C1 and C2 are 45% and 10%, which means that most
images of those types are classified to different classes.

The NBI magnification findings discriminate between types C1
and C2 by considering vessel irregularity, diameter, and
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Fig. 21. Performance for the 5-class problem. gridSIFT (grid spacing of 5 pixels,
scale 5, 7 pixels, different kernels SVMs).



(a)

(b)

(c)
Fig. 22. Number of support vectors for each class. (a) Type A (359 samples). (b) Type B (462 samples). (c) Type C3 (87 samples). gridSIFT (grid spacing of 5 pixels, scale 5, 7
pixels) on the whole CV dataset.
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homogeneity (Fig. 4, Kanao et al., 2009). Therefore, for describing
such texture properties, texton-based features (Winn et al., 2005;
Shotton et al., 2008) might be better than an intensity gradient-
based descriptor such as SIFT, because those subtypes C1, C2, and
C3 are defined using the degree of irregularity of the observed
microvessel network (see Fig. 4). Obviously the SIFT descriptor
does not capture such information.

6. Summary and discussions

In this paper, we focused on a recent recognition framework
based on local features, bag-of-visual-words (BoW), and provided
extensive experiments on a variety of technical aspects, related
to its application in the context of colorectal tumor classification
in NBI endoscopic images. The prototype system used in the exper-
iments consisted of a bag-of-visual-words representation of local
features followed by Support Vector Machine (SVM) classifiers.
Extensive experiments with varying the parameters for each com-
ponent were needed, for the performance of the system is usually
affected by those parameters, as summarized below.

Visual words representation with class-wise concatenation
(section 5.5.1) has been shown to achieve similar performance
with the global vocabulary (Table 5), with much smaller computa-
tional cost (Section 4.2.3).

DoG-SIFT (Section 5.5.2) has shown better performance when a
relatively small number of visual words were used (Fig. 15).
Although the performance was insensitive to the number of visual
words, as well as to SIFT parameters such as the edge threshold,
the peak performance for DoG-SIFT was not better than that of
gridSIFT, as shown in successive experiments.

The performance of gridSIFT has been explored with different
grid spacing (Section 5.5.3) and different SVM kernel types (Sec-
tion 5.5.4). The v2 kernel performed best, but the difference was
small (Table 7) and the maximum performances differ only by
about 1%. On the other hand, the performance improved roughly
2–3% by using smaller spacing for each kernel type (also Table 7).

Different combinations of four different scales (5, 7, 9, and 12
pixels) of gridSIFT also have been explored (Section 5.5.5). The best
performance was obtained by the combination of scales 5 and 7
(Table 9). Type C3 recall rates for single scales were not better than
those for multiple scales, which was degraded however when mul-
tiple scale combinations included too large a scale (i.e., scale 12).
The use of multi-scale gridSIFT resulted in the decrease of the recall
rate and F-measure for type C3 (Section 5.5.6), while the perfor-
mance of multi-scale gridSIFT followed similar trends to that of
gridSIFT (Fig. 18).
Fig. 23. A prototype system recognizing video sequences. Posterior probabilities for 200
video. Because the polyp in the video is diagnosed as Type B, the posterior probability of
frame is classified by the system described in this paper. Frame rate is about 17 fps (768 v
sequence is available online as supplemental material.
The DiffSIFT descriptors, proposed in this paper, improved type
C3 recall rate by about 5% (Table 12), while the difference between
the maximum recognition rates was small.

For the test dataset (Section 5.6), recognition rates of above 90%
were achieved by using gridSIFT (Fig. 20). For a five-class dataset
(Fig. 21), the recall rates for types C1 and C2 were quite poor, indi-
cating that texton-based features might be better than an intensity
gradient-based descriptor, such as SIFT, for describing the texture
properties of C1 and C2 (Fig. 4, Kanao et al., 2009).

It can be concluded that gridSIFT and linear kernel SVM seem
to be sufficient for a practical system when small grid spacings
(i.e., 5 and 7) and relatively large number of visual words
(roughly 6000 to 10,000) are used, as performance peaks (above
95%) were reached for vocabularies of that size. These sizes are
somewhat moderate compared with sizes reported for other
systems (see Section 4.2.1). However, a question arises whether
vocabularies of such a large size (e.g., 10 times larger than the
number of training samples) may tend to over-train. This means
that almost all of the training samples would be used as support
vectors (SVs). To figure out the percentage of SVs compared to
training samples, we counted the SVs when the entire CV dataset
(908 samples in total) was used for training. Fig. 22 shows the
number of SVs for each class. For Type A and B, the percentages
of SVs are about 60% to 70% for vocabularies of larger size, while
it increases to almost 100% for Type C3, obviously due to the
unbalanced number of training samples. Interestingly, the HI
kernel requires more SVs than other kernels, which may indicate
over-training.

Also, the computation time for recognition is reasonably fast:
about 60 ms for a test image (about 15 fps). This includes all steps,
i.e., reading an image, extracting gridSIFT features, computing a vi-
sual word representation, and classification with linear kernel
SVM. This enables us to develop a real time recognition/assessment
system, which is expected to be of a great help for colonoscopy
(Rex et al., 2011). Currently, we are developing a prototype system
of NBI videoendoscopy by feeding a video sequence frame by frame
to our prototype recognition system to classify images in real time
during endoscopic examination of the colon. A video output of the
prototype system is available as part of the supplemental material.
Snapshots and outputs over 200 frames are shown in Fig. 23. A
rectangular window of 120� 120 size at the center of each frame
is classified by the system proposed in this paper. The output of
each frame is not a label but posterior probabilities of three classes
(Huang et al., 2006). In Fig. 23, three colored temporal curves rep-
resent the posterior probabilities. The polyp in the video is diag-
nosed as Type B, and the posterior probability of Type B is larger
frames are shown in different colored curves, with associated snapshots from the
Type B (red curve) should be close to 1 over the sequence (but currently not). Each

isual words, grid spacing of 5 pixels, scale 5, 7 pixels, and linear kernel SVM). The full



T. Tamaki et al. / Medical Image Analysis 17 (2013) 78–100 97
than the others at about 60% of the 200 frames. This result is a very
promising first step toward the final goal of achieving endoscopic
diagnosis (Rex et al., 2011). At the same time, a huge number of
factors need to be investigated further, such as the stability of
the output, motion blur, focus, size of the window, color bleeding
between frames due to the nature of NBI, highlight areas, and
more. We are presently working on the evaluation of the prototype
system.

Last but not least, our future work includes the prediction of
histology by using the proposed method. While our emphasis in
this paper is on the classification based on the NBI magnification
findings for supporting a diagnosis by visual inspection, we already
have preliminary but promising results for predicting histology as
a two-class problem classifying NBI images into Type A and B-C3
(Takemura et al., 2012), and a three-class problem classifying chro-
moendoscopic pit-pattern images into TA, M/SM-s, and SM-m (Onji
et al., 2011). We are currently planning more detailed experiments
for validating the prediction ability of the system.
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