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A Generalized Framework for Optimal Sizing of
Distributed Energy Resources in Micro-Grids
Using an Indicator-Based Swarm Approach

Maria Luisa Di Silvestre, Giorgio Graditi, and Eleonora Riva Sanseverino

Abstract—In this paper, a generalized double-shell framework
for the optimal design of systems managed optimally according to
different criteria is developed. Optimal design is traditionally car-
ried out by means of minimum capital and management cost for-
mulations and does not typically consider optimized operation. In
this paper, the optimized multiobjective management is explicitly
considered into the design formulation. The quality of each design
solution is indeed defined by the evaluation of operational costs
and capital costs. Besides, the assessment of the operational costs
term is deduced by means of the solution of a multiobjective opti-
mization problem. Each design solution is evaluated using the out-
comes of a multiobjective optimization run: a Pareto hyper-sur-
face in the n-dimensional space of the operational objectives. In
the literature, commonly the evaluation of each design solution is
carried out based on an approximate evaluation of the operational
costs, not considering the real multiobjective optimized manage-
ment. In this paper, such assessment is carried out using a suitable
convergence indicator typically used for multiobjective optimiza-
tion algorithms. The application is devoted to the problem of op-
timal sizing of distributed energy resources in medium voltage or
low voltage microgrids. For this problem, the identification of the
multiple operational impacts comes along with the solution of the
optimal unit commitment of distributed generators. After the in-
troductory section, the problem formulation is presented and an
interesting application of the considered approach to the design of
distributed energy sources in a microgrid is shown.

Index Terms—Glow-worm optimization, indicator based evolu-
tionary algorithm, microgrids, NSGA-II, planning.

I. INTRODUCTION

I N the formulation of many optimal design problems, cost
and efficiency must be considered with equal priority, both

terms depending on how the system is operated. When manage-
ment is accomplished in an optimal way, the design problem
is made awkward due to the fact that the operational costs are
given by the solution of an optimization problem. In this paper,
the authors adopt a double-shell approach for the design of en-
gineering systems for which it is required to carry out a mul-
tiple criteria optimized management. The investigated applica-
tion field is that of the optimal sizing of distributed energy re-
sources (DER) in microgrids where optimal management in-
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Fig. 1. Flowchart of a heuristic-based design approach.

volves the minimization of active losses, operational costs and
emissions. For these systems, due to the complexity of the de-
sign problem, often heuristic approaches, such as evolutionary
computation, are used to solve the issue. Fig. 1 shows the flow-
chart with the main procedures of the algorithm for the optimal
design based on a heuristic population based approach.
The approach is composed of two shells. The outer shell con-

sists of the iterative population-based heuristic algorithm. The
random generation of a population of suitably coded design so-
lutions is first carried out, then solutions are evaluated and sub-
jected to the recombination cycle made of selection and pertur-
bation operators. The evaluation–recombination cycle is then
repeated until the termination condition is reached. The gray box
represents the inner shell where the procedure for the evaluation
of a design solution is carried out.
Such a procedure implies the solution of an optimal manage-

ment problem in order to precisely account for management
costs. Generally, the identification of the latter management
costs requires the solution of a multiobjective optimization
problem.
Fig. 2 describes the problem of the evaluation of a single de-

sign solution that can be operated in different modes through
a double-shell approach. In the figure, the identification of the
best operational solutions is carried out solving a multiobjective
optimization problem.
Such a set of equally optimal operational solutions is located

on a nondominated front in the -dimensional space of the op-
erational objectives.
It is clear that the definition of the goodness of a design so-

lution is not easy, since each design solution can be operated in
different modes.

1551-3203 © 2013 IEEE
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Fig. 2. Evaluation of a single design solution in the double-shell approach.

Fig. 3. Typical MV microgrid with its control devices.

Indeed, in modern distribution systems, smart grids or micro-
grids, differently from standard active distribution systems, the
distributed energy resources are typically managed optimally
and cooperatively in order to guarantee secure working condi-
tions even in absence of the main grid.
Microgrids are indeed small medium voltage (MV) or low

voltage (LV) active networks distribution systems, character-
ized by a high level of penetration of local electric generating
units, enough to supply entirely a local load demand. Based
on technologies such as internal combustion engines, small and
micro gas turbines, fuel cells, photovoltaic and wind plants, the
distributed generation units, (DG units), in microgrids are com-
monly in the range of 3 to 200 kW. DG units, located within
the electric distribution system at or near the end user, are re-
motely controllable and can work, parallel to the electric utility
or stand-alone, cooperatively to improve power quality and to
reduce operational costs.
In Fig. 3, the typical layout of a MVmicrogrid is represented.
As Fig. 3 shows, the microgrid is supplied from the main

high voltage (HV) grid through anHV/MV transformer. Themi-
crogrid central controller (MGCC), is located downstream the
transformer; the microsource controller (MC) and the load con-
troller (LCO) are respectively installed close to the distributed
energy resources (DERs), including DG units, storage units,
and loads. In the same figure, PV identifies the photovoltaic
units, CHP indicates the combined heat and power generating
units, while ac/dc indicates the inverter. The inverter interfaces
the generating units with the electric grid. It is able to change
voltage module and displacement in order to adapt to the current
operating requirements. The load controllers and microsource
controllers are usually implemented into inverters control logic.

Every generating unit produces LV electric power and is con-
nected to the grid through an MV/LV transformer. Among other
functions, the MGCC [1] plays a fundamental role for optimal
power generation dispatch (generation unit commitment), ar-
ranging the active and reactive power set points for the fol-
lowing day in order to minimize various technical, environ-
mental, and economical objectives. It is thus clear that the de-
sign of modern power distribution systems cannot ignore a pre-
cise evaluation of operational costs. Some papers on the issue of
the optimal design of DER units in distribution systems do not
even consider explicitly the solution of the operational problem
into the design problem [2]–[5]. This is due to the fact either that
the DER units are considered to be operated not cooperatively
or that they are not controllable and thus based on renewables.
To understand the reasons behind the different formulations of
the design issue that can be found in the literature, it is important
indeed to consider the different points of view. It can indeed be
the case that the distribution utility does not own the plants or
that the distribution utility owns the plants. A large review on
the state of the art on the theme of designing microgrids (also
named smart grids) is reported in [6]. The work gives also a
large insight into the formulation of the design problem putting
into evidence the different aspects to be considered.
More recently, in [7], the authors find an optimal location of

customer-owned renewable-based DER in a distribution system
so as to minimize energy losses. The methodology is based on
generating a probabilistic generation-load model that combines
all possible operating conditions of the renewable generation
units, with their probabilities, hence accommodating this model
in a deterministic planning problem.
In [8], the power losses are considered in the problem formu-

lation, but they are evaluated considering an estimated working
condition of the installed DG units. Also in this case, the units
are owned by customers. Soroudi and Ehsan in [9] consider the
design issue as amultiobjective problem for a distribution utility
owning the DG plants, but the running costs are not considered
in the problem formulation, while a further objective about tech-
nical constraints dissatisfaction is introduced. Therefore, capital
costs are considered in the formulation, but no optimal manage-
ment problem is solved. Also, [10] does not consider optimized
management of utility owned DG units, although it adopts a for-
mulation that includes reliability and islanded operation issues.
Reference [11] and, more recently, [12] solve the design issue
comparing the attained results with those available in existing
systems but still not accounting for optimal operation of DG
units. Other papers evaluate the operational costs considering
that they are derived from the optimal and coordinated manage-
ment of DER.
In [13] and [14], the point of view is still that of the distribu-

tion utility owning the DER plants. In this case, the multiobjec-
tive optimal design is executed taking into account single-ob-
jective formulations for the operational issue but neglecting its
multiobjective nature. Indeed, the optimal operation issue is for-
mulated considering just costs minimization and calculating the
other operational objectives (yearly CO emissions and energy
losses) required for the multiobjective optimal design based on
the minimum cost solution. In fields like electrical power dis-
tribution, where the market liberalization has created many dif-
ferent interests and where ICT (Information and Communica-
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tions Technology) allows cheap monitoring and control of en-
ergy resources, it is requested to use suitable tools both for
solving operation and design issues. In this sense, cooperative
approaches such as multiobjective optimization, to model inter-
actions between different actors, appear to be acceptable if there
is a unique point of view and a unique owner of the plants; other-
wise, it would be advisable to formulate the operational problem
considering competing interests. In any case, appropriate design
of microgrids should be grounded on the evaluation of optimal
management strategies of the DER; this is one of the elements
of novelty of the proposed approach based on a double-shell ar-
chitecture.
The approach is a general framework for the solution of

any design issue for systems that can be operated considering
different objectives. The choice of dividing the problem into
two different subproblems (two shells) is grounded on the
following considerations. Consider a unique multiobjective
optimization problem consisting both of the design problem
and of the optimal operation. In this case, the optimization
variables is a string that can ideally be separated in two parts.
The first, say part A, contains data about size and/or type
and/or location of the DER to be installed, while the second,
say part B, contains their management plan in the considered
time frame. Such formulation leads to two major drawbacks.
First of all, the number of variables is increased. Second, there
is in general a large difference in weight between the two
parts of the optimization string, thus leading to a “deceptive”1

behavior. Indeed, for each design plan (part A), there may
be both very good and very bad solutions according to the
operational plan (part B) considered. Hence, the optimal design
solution, leading to very few good operational plans, can be
easily lost during the search.2 It is possible to overcome both
drawbacks above by separating the two issues considering a
nested formulation of the multiobjective operational issue into
the general multiobjective optimization design problem.
In this paper, following the route traced in [17], the authors

consider the nested formulation with the internal shell providing
the outer shell an evaluation of multiobjective operation of each
design solution. The point of view is that of the distribution
utility owning the DG plants. Another methodological element
of novelty in the proposed approach is the use of a multimodal
optimizer with an indicator-based methodology to evaluate the
quality of each single design solution. The use of an efficient
multimodal optimizer as the Glow-worm optimizer allows in-
deed to capture more optima, namely more design solutions
showing high quality.
The indicator-based evaluation implicitly expresses the pos-

sibility to operate the solution in different modes that are almost

1In the GA’s literature, a problem is said to be “deceptive” if the building
blocks of the solution string identified actually lead the GA away from the global
objective. In this case, the term is referring to the large difference, in terms of
influence on the objective function’s value, of contribution of the two parts of
the optimization string.
2In this case, the average fitness of the relevant “schema” is quite low; see

“Building block hypothesis” [15] (founding the GAs approach and their ex-
tension to real coded GAs [16]): A genetic algorithm creates stepwise better
solutions by recombining, crossing, and mutating short, low-order, high-fitness
schemata [15]. If the optimal design solution is , the relevant fitness (cal-
culated as the average fitness of all solutions attainable with those bits kept at
a fixed value) may be lower than that of others and will not be considered for
further improvements.

Fig. 4. (a) Set of nondominated solutions outputted by the optimal management
algorithm. (b) From the optimal management to the optimal design evaluation.
(c) Size of space covered in the yearly cost/quality-1 objectives space.

equally optimal. The indicator-based evaluation is outlined in
the following section.

II. INDICATOR-BASED EVALUATION OF A

DESIGN SOLUTION

At this point, it is important to operatively clear out how the
management costs for a design solution can be evaluated.
The possibility to consider as a whole the entire Pareto front

outputted by the solution of the optimal management issue is
given by the calculation of a general quality index, the size of
space covered [18]. The latter index concerns the size of the
hyper-volume in the objectives space delimited by a set of non
dominated solutions. The union of all hyper-rectangles covered
by the nondominated optimal solutions constitutes the space to-
tally covered, its size is used as an indicator of the quality of the
front. This concept may be extended to more than two dimen-
sions. An advantage of this measure is that each front can be
evaluated independent of the other fronts. In the field of optimal
design, each solution is typically evaluated both in terms of op-
erational costs and quality terms, such as emissions or power
losses, as well as in terms of design costs.
Fig. 4(a) shows a set of nondominated solutions outputted

by an optimization run devoted to optimal management in a
two-dimensional space of the objectives. Of course, in order
to consider the capital costs, for each solution, the yearly op-
erational cost is summed up with the annualized capital cost of
the relevant design solution [see Fig. 4(b)]. Finally, Fig. 4(c)
shows the indicator size of space covered for the attained non-
dominated front taking into account both annualized capital and
yearly management costs.
In this way, it is possible to assess a design solution giving a

quality to each front, considering it as a single entity. Besides,
it is also possible to compare multiobjective design solutions
using a single index for each design solution catching the en-
tire operational behavior of the design solution instead of con-
sidering a single management strategy out of the Pareto front.
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Namely, the Pareto optimal operational solutions can be posi-
tioned on a multidimensional objectives space, and these are
those minimizing cost and maximizing quality assessed on a
yearly basis.
To evaluate the relevant design solution, it is enough to sum

up, for each solution, the annualized capital cost to the yearly
operational cost to get the assessment of the considered de-
sign solution according to different criteria. At this point, it is
possible to evaluate the size of space covered of the attained
front and to characterize it by a unique number that captures
the global behavior of the design solution when it is optimally
operated.

III. MICROGRIDS OPTIMAL DESIGN

In recent years, the attention regarding the analysis and de-
sign of modern distribution systems is quite high. The European
community indeed is supporting the research in this field with
a specific platform [19]. The design of modern power distribu-
tion systems thus cannot ignore a precise evaluation of opera-
tional costs. In the following sections, the optimal management
problem formulation is given (inner shell) as well as the optimal
design problem formulation (outer shell).

IV. INNER SHELL: MULTIOBJECTIVE UNIT COMMITMENT

The unit commitment problem is a research field often
studied in the power systems’ literature. This is an optimization
problem in which the scheduling of generators (and other
resources) give rise to minimum cost or maximum profit while
meeting electrical energy request is searched. The unit commit-
ment problem can be included into higher level system design
where broad parameters such as generators size, electricity
and/or heat storage capacity, and boiler capacity are optimized
based on their optimal operational schedule. The state of the
art on the topic can be divided based on the different solution
techniques for this issue: methods like dynamic programming,
simulated annealing, tabu search, fuzzy computing, and ge-
netic algorithms can be implemented to bring to a successful
conclusion the issue. The literature on the unit commitment
can also be dealt with from the point of view of the formula-
tion of the optimization problem as well as of the analysis of
particular technical constraints, such as generator ramp limits,
or environmental constraints and carbon dioxide emissions
targets. The contribution in [20] shows a complete survey of
the most interesting works on the topic. More recently, in [21],
a multiobjective approach using a fuzzy formulation for repre-
senting the input variables allows the handling of uncertainties.
In addition, the test system in [21] is small, and this allows
the authors to neglect the power losses term and to consider
an easier formulation of the problem. Paper [22] also does not
account for power losses evaluation due to the limited size of
the system. The work in [23] aiming at optimal management of
modern distribution systems proposes a neural network-based
approach, including a distribution management systems (DMS)
policy both for intraday and on a one-day-ahead scheduling.
The proposed approach could be easily integrated as an inner
shell for evaluating the operating objectives but only after a
suitable training phase carried out on already known optimized
layouts. Reference [24] also deals with optimal management

proposing a new constrained multiobjective optimization
technique, which seems to outperform NSGA-II. However, it
cannot still account for mixed integer variables. In the case
studied in this paper, it is more suitable to adopt a strategy to
derive the optimized layouts using a classical unit commitment
formulation within the design problem formulation. From the
analytical point of view, the problem of optimal power dispatch
among DER units through unit commitment in microgrids
seems to be very complex due to the nonlinear nature of the
multiple objectives to be optimized. Moreover, the possible
presence of real and reactive storage units affects the power
dispatch and the way in which voltage regulation is carried out;
thus, it is required to control their insertion status. For a given
design layout (capacity, typology, and location of dispersed
generation units; capacity and location of capacitor banks;
capacity and location of storage units), knowing the hourly
upper and lower production limits of each DG unit and the
hourly loading level of each bus of the electrical distribution
network, the objectives to be achieved are as follows:
1) the minimization of the yearly power losses;
2) the minimization of the yearly overall production costs;
3) the minimization of the yearly emissions.
The independent optimization variables are the hourly power

productions of the DER units. While other unknowns of the
problem are as follows:
1) the hourly storage units level;
2) the hourly capacitor banks status.
Consider a -bus microgrid system with the following:
— load or generation nodes with fixed forecasted real
and reactive power demands or injections;

— controllable DER units;
— controllable capacitor banks.
The problem is that to identify the real-valued vector iden-

tifying the operating points of the DER units (electrical gen-
eration and storage units) in the network hour by hour of the

representative days of the different periods of the year.
The vector has 2 24 real elements; a subset
of it taken for a generic hour of the generic day takes the
following form:

(1)
the entire vector can thus be written as

(2)

subject to the following constraints:
1) upper and lower limits of the values of the controlled vari-
ables, namely the DER units power outputs, taking into ac-
count the required power reserves:

(3)

(4)

where
a) , , , , respec-
tively, represent the active production at hour of day
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, the minimum and maximum limits of real power at
the DER units;

b) , , , , respec-
tively, represent the reactive production at hour of
day , the minimum and maximum limits of the reac-
tive power at the DER unit;

2) the solution must give rise at all nodes to limited voltage
drops;

3) the solution must satisfy the constraint about power
transfer limits in the network lines;

4) the solution must satisfy the integral constraint about the
energy stored in batteries, namely the starting state of
charge (SOC) level must equal the ending SOC level;

5) the solution must satisfy the generators ramping limit
constraint.

As far as the latter constraint is concerned, it must be here
underlined that for microgrids, where, in general, generators are
of small size (rated power below 1 MW), the constraint can be
reasonably neglected with an elementary time interval of 1 h.
Anyway, if required, depending on the optimization algorithm
employed such constraint can easily be considered. In partic-
ular, for evolutionary algorithms, it will be sufficient to integrate
suitable limits to the variables perturbation in each time interval.
The issue is that of finding the feasible vector optimizing the
following criteria:
— Yearly joule losses in the system:

(5)

In this expression, the energy losses in the system are
assessed as the summation of the differences between
the generated ( ) power and the consumed ( )
power at each bus multiplied by which, in this case,
is 1 hour. The quantities in round brackets are considered
constant in the considered time interval.

— Yearly fuel consumption cost:

(6)

where is the unitary fuel consumption cost of the
source, the power output of the source at hour
and day , considered constant in time interval (in this
case, it is 1 hour).

— Yearly CO emissions [25]:

(7)

where is the amount of emissions from the DER
unit at hour during day . Therefore, the formulated problem is
that to determine the operating points of the DER units (genera-
tion and storage units) giving rise to a technical–economical op-
timum as a compromise between minimum cost operation and
high-quality service. Minimum cost operation is ensured if the
overall fuel consumption is minimum.
The problem is dealt with using a multiobjective evolutionary

approach: the nondominated Sorting Genetic Algorithm II [26].
Constraints are taken into account by means of the constraint

domination concept [28]. In the following section, a few con-
cepts about non domination and multiobjective optimization are
recalled.

A. NSGA-II for Multiobjective Optimization

A multiobjective optimization problem has a number of
objectives that have to be maximized or minimized [27]. There
are different ways to deal with a multiobjective optimization
problem, e.g., objectives can be aggregated into a single one,
but a lot of work in the area of multiobjective optimization
has concentrated on the approximation of the Pareto set by
stochastic population-based methods. Evolutionary and meta-
heuristic techniques are suitable for this task, since many of
these methods proceed through the modification of sets of solu-
tions (population-based algorithms). Accordingly, the outcome
of a population-based multiobjective optimization algorithm
is considered to be a set of mutually nondominated solutions,
or Pareto set approximation. The concept of nondominance
is one of the basic concepts in multiobjective optimization.
Further details can be found in [27]. It is important to underline
that the concept of optimality in multiobjective optimization
is related to a set of solutions, rather than to a single one. Sets
of solutions can be equivalent if we aim at optimizing more
than one objective. From the above discussion, it is possible to
point out that there are primarily two goals that a multicriterion
optimization algorithm must achieve:
1) guide the search towards the global Pareto-optimal region;
2) maintain population diversity in the Pareto-optimal front
(prevent crowding of solutions).

In the following section, the well-known Nondominated
Sorting Genetic Algorithm II proposed by Deb et al. [26] is
briefly recalled. In this algorithm, the concept of non domi-
nance is used for solutions prizing. The algorithm described in
the following applies to constrained multiobjective problems,
using the constraint domination concept for solutions selec-
tion. The Non-dominated Sorting Genetic Algorithm II is an
evolutionary optimization method, where sets of solutions are
evolved by means of recombination operators such as mutation
and crossover. As Non-dominated Sorting Genetic Algorithm
[27], NSGAII divides the population in fronts of nondomi-
nated solutions so that the search can be addressed towards
interesting areas of the search space, where the global Pareto
optimal region is presumably located. In NSGA and NSGA-II,
solutions are prized on the basis of their non-domination
level, which is called solutions ranking. However, basically,
NSGA-II varies from the NSGA in three main things. It is more
efficient computationally, since the ranking of solutions based
on nondomination is performed with an algorithm,
instead of , where is the number of objectives,
and is the population size; it significantly prevents the loss
of good solutions once they have been found (elitism); it does
not need any parameter specification. A binary tournament
selection operator is used to select the offspring population,
whereas crossover and mutation operators remain as usual.
Before selection is performed, the population is ranked on
the basis of an individual’s nondomination level and, to allow
the diversification, a crowding factor is calculated for each
solution. In [26], further details about the main operators of the
algorithm are given.
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Fig. 5. NSGA-II algorithm.

B. Crossover and Mutation Operators

Crossover and mutation operators have an implementation
depending on the problem at hand. In this paper, these operators
are implemented so as not to disrupt feasible solutions (energy
balance in storage systems at every hour); please check [17]. In
Fig. 5, one cycle of the NSGA-II procedure is represented.
and are the populations of solutions at iteration and ,
while is a partially ordered ( ) set of solutions.
In the following section, the outer shell, devoted to the op-

timal design of microgrids, is described.

V. OUTER SHELL: OPTIMAL DESIGN USING GLOW-WORM
SWARM OPTIMIZATION

The optimal sizing of distributed energy resources, whether
storage systems, renewables-generation based (wind or PV
units) or not (CHP and gas micro-turbines), is carried out
solving an optimal design problem. The optimal location
problem is not studied here since often there are spatial and
environmental (mostly PV and wind) constraints over it. The
objective function is the size of space covered calculated as
described in Section I. The space of the objectives in which
the SSC index is calculated includes the yearly Joule losses,
the yearly costs (capital and management), and the yearly CO
emissions. The function to be minimized is thus

YearlyCapitalCost

(8)

where

namely is the design solution giving rise to many possible
operational solutions, and is described in (2). Such solutions
are optimized and a subset of nondominated solutions
is identified using the inner shell algorithm (NSGA-II). Such
subset is used to evaluate the function in (8). is the
rated size of the th DER unit to be optimized. This value can
range between 0 and the maximum possible commercial size.
The solution method is the Glow-worm Swarm Optimization

(GSO) algorithm [29]. The latter takes inspiration from com-
petitive learning, and, for this reason, it has the property of
capturing many optima and thus many design solutions for the
same problem showing the same SSC index. In GSO, a swarm
of agents are initially randomly distributed in the search space.
Agents (glow-worms) are characterized by a real quantity (lu-
ciferin, ) whose intensity is proportional to the associated ca-
pacity to interact with other agents within a variable neighbor-

hood. In particular, the neighborhood is defined as a local-deci-
sion domain that has a variable neighborhood range bounded
by a radial sensor range ( ). An agent con-
siders another agent as its neighbor if is within the neigh-
borhood range of and the luciferin level of is higher than
that of . The decision domain enables selective neighbor inter-
actions and aids information of disjoint subswarms. Each agent
is attracted by those agents in the neighborhood with a higher
level of luciferin. Agents in GSO depend only on information
available in their neighborhood to make decisions. Each agent
selects, using a probabilistic mechanism, a neighbor that has a
luciferin value higher than its own and moves towards it. These
movements, which are based only on local information and se-
lective neighbor interactions, enable the swarm of agents to par-
tition into disjoint subgroups that steer toward, andmeet at, mul-
tiple optima of a given multimodal function.
The GSO algorithm starts by placing a population of

agents randomly in the search space so that they are well
dispersed. Initially, all the agents contain an equal quantity of
luciferin . Each iteration consists of a luciferin-update phase
followed by a movement phase (update-position) based on a
transition rule.

A. Luciferin-Update Phase

The luciferin update depends on the function value at the
agent’s position.

(9)

where represents the luciferin level associated with
glow-worm at time , is the luciferin decay constant (

), is the luciferin enhancement constant, and
represents the value of the objective function at agent ’s loca-
tion ( ) at time evaluated according to (8).

B. Update-Position Phase

During the update position phase, each agent decides, using
a probabilistic mechanism, to move toward a neighbor that has
a luciferin value higher than its own:

(10)

where is the location of glowworm , at time
n the -dimensional real space and ( ) is
the step size. Further details about the algorithm can be found
in [29].
Below, Fig. 6 shows the flowchart of the glow-worm-based

outer shell for optimal design of microgrids.

VI. APPLICATION AND RESULTS

Simulations have been carried out on a low voltage 15-buses
network taken from the literature [17], [30].
The planning methodology has been entirely implemented

using an object-oriented programming language (Delphi
Pascal). The algorithm for the load flow is the classical Newton
Raphson. In the network, it is decided to install two photo-
voltaic generation systems. In the system, also three storage
units are installed as well as three reactive compensation units.
A micro-turbine is also installed at one of the buses. The system
is connected to the main grid. The system is depicted in Fig. 7.
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Fig. 6. Flowchart of the double-shell approach (outer shell).

Fig. 7. Test system.

The amortization rate of all the components to be sized is
20%, the installation cost is reported in Table I.
The electrical system is described in Table II.
The load nodes have a behavior depicted in Fig. 8. Two typ-

ical days (winter day is type 1 and summer day is type 2) along

TABLE I
COST OF THE DIFFERENT UNITS

TABLE II
ELECTRICAL FEATURES OF THE LINES

Fig. 8. Load at node 6 in the two typical days considered.

the year have been considered for the optimization. The PV
plant at node 5 behaves as described in Fig. 9.
In the following paragraphs, the output of the proposed design

approach is presented using different graphs. The applications
aim at the following:
1) showing how the GSO finds multiple optima;
2) evaluating the computational efficiency of the whole algo-
rithm and finding the parameters on which it depends.

The internal shell NSGA-II is run with a population size of
30 elements and 50 iterations, mutation probability 0.1,

and the crossover probability is 0.7. The outer shell, namely
the glow-worm optimizer, uses 100 glow-worms and
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Fig. 9. PV plant irradiation at node 5 in the two typical days considered.

Fig. 10. Trajectory followed by a glow-worm in the three-dimensional space
from the first ( ) to the intermediate ( ) and to (a) the final iteration ( ) and (b)
one of its projections.

100 iterations; the other parameters have the fol-
lowing values:
— radial sensor range : 1.2;
— starting luciferin value : 9;
— luciferin enhancement constant : 0.6;
— luciferin decay constant : 0.4;
— number of neighbors: 3;
— step size : 0.03.
Starting from the values suggested in the literature, the

parameters have been fine-tuned according to the desired ob-
jectives to be reached and namely diversified design solutions
showing low costs and good technical quality with affordable
computational effort. Each glow-worm represents a design
solution whose evaluation is carried out using the set of solu-
tions outputted by the NSGA-II for the optimal management.
The latter set is then shifted along the costs axis adding for
all solutions the capital costs required to create the relevant
design solution. Therefore, in the graphical representation, each
glow-worm corresponds to a set of points in the three-dimen-
sional space of the objectives.
Fig. 10(a) and (b) shows the trajectory followed by a glow-

worm from the first to the final iteration (iteration 1, iteration
50, and iteration 100) in the objectives space. Fig. 10(a) shows
the trajectory in the three-dimensional space, while Fig. 10(b)
shows one of its projections. In Figs. 11–15, the term “quality”

Fig. 11. Quality of a set of glow-worms along the iterations (
100 glow-worms 100; 30 individuals and 50 iterations in
NSGA-II).

Fig. 12. Quality of a set of glow-worms along the iterations (
100 glow-worms 100; 30 individuals and 50 iterations in
NSGA-II). Zoom of the highest values of quality.

refers to the inverse of the size of space covered deduced as
shown in Section I.
Fig. 11 shows the quality of the glow-worms from the first to

the final iteration. Fig. 12 shows a zoom restricted to the highest
values of quality. As it can be observed, there are two saturation
points: an absolute maximum and a relative maximum that both
attract glow-worms.
In the following Fig. 13, it is quite interesting to observe

the two maximum points (absolute and relative) evidenced in
Fig. 12.
In Fig. 13, the trajectories of some of the glow-worms repre-

senting design solutions are considered. Such design solutions
are represented along the iterations (the arrows indicate this)
in the variables space until the points where they gather around
the different solutions themultimodal optimizer GSO efficiently
finds.
Such an approach, using a multimodal optimizer for cap-

turing the behavior of an entire set of solutions, is innovative
and cannot be found in the literature on the topic. These tra-
jectories are traced in a projection of the variables hyperspace.
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Fig. 13. Projection of the trajectory of a set of glow-worms along iterations.

One is reached by solutions whose trajectories are indicated by
a darker line, and the other by solutions whose trajectories are
indicated by a lighter line. Design solutions with a high quality
and thus small volume in the objectives space attract more so-
lutions. The absolute maximum attracts more solutions than the
relative maximum.
Tests concerning computational efficiency of the proposed

approach relate either to the number of agents and iterations em-
ployed in the outer shell (GSO algorithm) and in the population
size and iterations number of the inner shell (NSGA-II).
Actually, the complexity of the approach is mostly con-

nected to the NSGA-II in which the nondomination or-
dering has a quadratic complexity in the population size,
( , where is the number of objective involved in
the optimization) and the load flow calculation based on the
Newton–Raphson method, which has a quadratic complexity
in the number of nodes, , of the considered electric system
( ).
It is interesting to observe that insufficient settings for the

NSGA-II produce unstable solutions as shown in Fig. 14, where
the internal loop was run with 20 individuals and 30 iterations.
In this case, the NSGA-II does not output stable solutions,

and the agents of GSO are evaluated with a fitness showing a
large random component.
Other runs have been carried out with good settings for the

inner shell (30 individuals and 50 iterations for NSGA-II) and
with smaller number of glow-worms in the outer shell. The re-
sults prove that smaller swarms do not address properly the
search and do not stabilize over the optima. This is shown in
Fig. 15, where the results of a run carried out over 100 itera-
tions and 15 glow-worms and 30 individuals and 50 iterations
in NSGA-II is reported. In this case, the mechanism of cooper-
ative learning does not work, because the swarm is too small.
Finally, Fig. 16 shows the correlation between two of the vari-

ables at the last iteration. As it can be noted, the points where
solutions collide are the two identified maxima (absolute and
relative).
The sizes of the plants related to the two solutions are re-

ported in Table III. In order to give two unique values the av-
erage values of each variable have been considered and to cal-

Fig. 14. Quality of a set of glow-worms along the iterations (
100 glow-worms 100; individuals and 30 iterations in
NSGA-II). Zoom of the highest values of quality.

Fig. 15. Quality of a set of glow-worms along the iterations (
15 glow-worms 100; 30 individuals and 50 iterations in
NSGA-II). Zoom of the highest values of quality.

Fig. 16. Correlation of two variables at the last iteration.

culate the latter only the solutions that are sufficiently close to
each other have been considered. The two columns of Table III
refer to two suboptimal solutions, one of which is better than the
other, but both have been identified using the proposed frame-
work. They have been selected because both have aggregated a
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TABLE III
OPTIMAL DESIGN SOLUTIONS (AVERAGE VALUES OF THE CONSIDERED

SUBSETS) FOR THE ABSOLUTE AND RELATIVE MAXIMA

good number of solutions around creating clusters. Therefore,
the final choice is left to the designer, both solutions being fea-
sible and showing, compared to many other, also good quality,
namely limited operating and installation cost, limited emis-
sions, limited power losses, and thus heating of components
during operation. The last row indicates the management and
installation costs.
As it can be noted, the proposed framework allows to attain

solutions whose optimized operation would cost differently. It
is interesting to observe that the two terms have a different order
of magnitude and thus what observed in Section I is confirmed.
There is indeed a large difference in weight between the two
parts of the optimization string, thus leading to a “deceptive”
behavior.
A strategy that would consider management and design costs

together would produce only solutions whose installation cost
is limited but that cannot be operated efficiently. Moreover, on
average, the absolute optimum is characterized by lower emis-
sions and lower power losses as compared with the other design
solution.
It is interesting to observe that the photovoltaic plants are

quite large and that one of the storage units is indeed also quite
large in order to compensate for the loads during night time
using the stored energy.
All the proposed results, especially those related to the op-

timal design solutions attained as well as the relevant values of
quality, have been found with a limited dispersion observed over
a sample of 50 runs of the two shells approach.
Table IV shows a comparison of the actual size of the energy

sources of the plant and the size of the energy sources deduced
by the application of the proposed algorithm.
The difference between the values reported in Table IV and

the actual sizes of the plants that can be found in [30] raises a big
question concerning the way in which sizing is currently carried
out in microgrids. On the other hand, it must be said that in this
paper the authors have considered only the aspects concerning
tertiary regulation, therefore the sizing of the energy sources is
carried out not considering the request for energy due to the pri-
mary regulation. A large battery at node 3, which is connected

TABLE IV
COMPARISON OF THE ACTUAL SIZE OF THE ENERGY SOURCES OF THE PLANT
AND THE OPTIMAL SIZE DESIGN DEDUCED BY THE PROPOSED APPROACH

to the main supply point with a low-resistance connection, pro-
vides the energy required to supply the loads and provides an
accumulator for the large amount of energy generated by the
large PV plants. The latter have been sized quite large as com-
pared to the current project due to the attention to emissions and
due to the fact that they (and the battery at node 3) take the role
of the micro-turbine, which is connected to the loads through
higher resistance paths. The other sources only cover a limited
part of the load diagram.

VII. CONCLUSION

In this work, the issue of efficient design of optimally man-
aged systems is devised with a new approach. Generally, the
problem of optimal design requires the evaluation of manage-
ment costs. These are typically considered only in an approx-
imated way neglecting automated and optimized management,
which appears to be the standard practice in smart microgrids
management.
In this paper, a new approach for the design of systems that

are managed considering different issues simultaneously is
proposed.
The approach explicitly accounts for multiobjective optimal

operation and is composed of two shells: an internal proce-
dure takes care of the optimal management using Nondomi-
nated Sorting Genetic Algorithm II and the external procedure
chooses the design features such as ratings and/or types. The
latter is implemented through a glow-worm swarm optimization
to attain different design solutions whose quality is evaluated
using the hypervolume indicator. Glow-worm swarm optimiza-
tion is indeed quite efficient for multimodal problems such as it
is a multiobjective optimization problem dealt with using non
dominance ordering.
The authors have applied the new design methodology to the

problem of optimal electrical microgrids design, with successful
results. Further work will be addressed towards the use of spe-
cific problem formulations or optimization algorithms allowing
to consider uncertainty in power production from renewable,
time-varying scenarios and different time steps. Also, further
developments of this work will be aimed at taking into account
the issues related to primary regulation for the dispatch of the
energy sources.


