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a b s t r a c t

The cross-sensitivity of chemical sensors for several metal ions resembles in a way the overlapping sen-
sitivity of some biological sensors, like the optical colour receptors of human retinal cone cells. While
it is difficult to assign crisp classification values to measurands based on complex overlapping sensory
signals, fuzzy logic offers a possibility to mathematically model such systems. Current work goes into the
direction of mixed heavy metal solutions and the combination of fuzzy logic with heavy metal-sensitive,
silicon-based chemical sensors for training scenarios of arbitrary sensor/probe combinations in terms of
an electronic tongue. Heavy metals play an important role in environmental analysis. As trace elements
lectronic tongue
ross-sensitivity
halcogenide glass sensor
ulti-component heavy metal solution

as well as water impurities released from industrial processes they occur in the environment. In this
work, the development of a new fuzzy logic method based on potentiometric measurements performed
with three different miniaturised chalcogenide glass sensors in different heavy metal solutions will be
presented. The critical validation of the developed fuzzy logic program will be demonstrated by means
of measurements in unknown single- and multi-component heavy metal solutions. Limitations of this

n bet
ation
program and a compariso
heavy metal ion concentr

. Introduction

The detection of heavy metal ions in aqueous solutions plays
n important role in the field of environmental and industrial
ater analysis. Heavy metals e.g., copper, lead and silver, are not
iodegradable and consumption of small amounts of them over a

ong period or intake of large amounts over a short period can lead
o chronic or acute diseases, respectively. Here, essential enzymes
nd thus biochemical processes in the human body are inhibited
1]. In recent years, it could be demonstrated that miniaturised
ilicon-based chalcogenide glass sensors can be very well applied
or the detection of heavy metals. Those sensors showed good

tability in liquid media, high long-term stability in operation,
ow detection limit and compatibility to silicon technology [2–12].
owever, in multi-component solutions potentiometric chalco-
enide glass chemical sensors show cross-sensitivities towards

∗ Corresponding author at: Institute of Nano- and Biotechnologies (INB), Aachen
niversity of Applied Sciences, Campus Jülich, Germany. Tel.: +49 241 600953215;

ax: +49 241 600953235.
E-mail address: m.j.schoening@fz-juelich.de (M.J. Schöning).

013-4686/$ – see front matter © 2009 Elsevier Ltd. All rights reserved.
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ween calculated and expected values in terms of analyte composition and
will be shown and discussed.

© 2009 Elsevier Ltd. All rights reserved.

other/interfering ions in the test sample due to the nature of the
complex sensing material. Based on cross-sensitivities of chemi-
cal sensors in combination with intelligent data analysis software,
different electronic tongues for the detection of e.g., heavy met-
als, different kinds of wines, beverages and even tomatoes, have
been developed [13–25]. However, such electronic tongues con-
sist of either pattern or complex recognition tools, e.g., artificial
neural networks (ANN), principal component analysis (PCA), par-
tial least squares (PLS) regression and soft-independent modelling
of class analogy (SIMCA), and/or of a huge number of sensors.
The calibration of these electronic tongues results in a complex,
time-consuming and laborious procedure. In order to meet these
problems fuzzy logic as intelligent (while different to many other
techniques that mimic human intelligence, transparent and with
short calculation times) data recognition software together with
miniaturised silicon-based chalcogenide glass sensors can offer an
innovative, relatively “simple” and fast approach for qualitative and

quantitative detection of multi-component heavy metal solutions.

The concept of fuzzy logic was introduced more than 40 years
ago by Zadeh [26]. Lying dormant for many years, it has been
rediscovered in the mid-1980s for regulation in micro-electronics,
automatic process regulation or in operation research. In general,

http://www.sciencedirect.com/science/journal/00134686
http://www.elsevier.com/locate/electacta
mailto:m.j.schoening@fz-juelich.de
dx.doi.org/10.1016/j.electacta.2009.03.035
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uzzy logic is an artificial intelligence (AI) technique that tries to
mulate human decision processes, which are usually based on
omparative estimation rather than on fixed thresholds. Whenever
arious measures with complex interrelationship have to be con-
idered, static decision rules often fail. This is where fuzzy logic can
elp.

By now, the fuzzy set theory has many applications in a large
ariety of different domains. It has, for example, been used for
egmentation of molecular surfaces by means of physico-chemical
otentials [27]. In combination with other AI techniques, like neural
etworks, the benefits of both methods can lead to fast learning self-
upervised decision-making systems [28]. Since the field is quite
omplex and in development, the basics of fuzzy logic cannot be
iscussed fully in this paper. For detailed representation refer to
29,30]. Here, only those concepts which are (more or less) directly
sed for the cross-sensitive sensor analysis are presented.

Fuzzy set theory may be seen as a generalisation of classical set
theory, each element of a fuzzy set Ã being defined by a function
value x in definition space X together with its degree of member-
ship to Ã. The latter is defined by a membership function �Ã(x),
whose values lie normally within a range 0 ≤ �Ã(x) ≤ 1 between
zero and complete membership, respectively:

Ã = {x, �Ã(x)|x ∈ X}. (1)

In classical (crisp) sets �Ã(x) can only be 0 or 1, while fuzzy logic
allows almost any type of function for membership definitions.
One of the most important tools in applications of fuzzy set the-
ory is the concept of linguistic variables (LV) [31]. These are groups
of fuzzy sets with (partially) overlapping membership functions
over a common (crisp) basic variable x. In order to represent sev-
eral classes within a LV the membership functions should cover
all the relevant definition space of the basic variable x with mem-
bership function values 0 ≤ �Ã(x) ≤ 1 (see Fig. 1). Values of 0 or 1
are assigned to the rest of the definition space in all membership

functions. The overlap of these functions defines the fuzziness.
Generally, a linguistic variable L, classified by n fuzzy sets Ãi, can
be defined as

L = {Ã1, . . . , Ãn} (2)

Fig. 1. Schematic of linguistic variables.
cta 54 (2009) 6082–6088 6083

or, together with Eq. (1):

L = {{x, �Ã1(x)}, . . . , {x, �Ãn(x)}}. (3)

• Usually, the information of a decision (decision making in fuzzy
environments) should be based upon, is given by crisp function
values; for sensor signal analysis, this means e.g., the voltage out-
put of an electrochemical sensor. Also the decision itself shall
again lead to a crisp value: in this case, the binary decision about
how to interpret the signal tuple of the applied sensor array in
terms of ion type and concentration. However, in order to apply
fuzzy logic tools to a problem, it has to be defined by linguistic
variables. Thus, decision making requires three steps:
1. fuzzification (the conversion of crisp input data into fuzzy sets

and formulation of LV for further calculations),
2. fuzzy inference (the application of fuzzy operators for the

mathematical evaluation of the LV, thereby producing new
fuzzy sets),

3. defuzzification (the conversion of fuzzy sets resulting from the
inference step into evaluable concrete crisp output data).

The details of these steps are discussed with the specific appli-
cation patterns as far as necessary. For further details, see reference
[30].

Aiming at the development of artificial sensors, like an “elec-
tronic tongue”, it might be helpful to have a look on biological
sensors which have to cope with very similar problems (e.g., in
particular cross-sensitivity of specific sensor cells for physical or
chemical stimuli). Nature has been working on this problem for mil-
lions of years—and has solved it quite impressively in a multitude of
organisms with highly accurate as well as broad-range perceptive
abilities.

A well-known example is the reception of colour by the human
visual system, where light is absorbed by three different receptor
proteins in the retinal cone cells. These sensor cells then emit an
electric signal according to the wavelength of the absorbed light,
which finally leads to a cognitive impression of colour. The opti-
cal sensors have absorption maxima at different wavelengths, but
with overlapping sensitivity curves (Fig. 2). These curves strikingly
resemble the membership functions of a linguistic variable, which

led to the idea to develop a software system based on fuzzy logic
for the interpretation of signals derived from a set of cross-sensitive
artificial sensors.

This work demonstrates a new concept of a recognition method
for the qualitative and quantitative detection of different heavy

Fig. 2. Human colour perception: overlapping sensitivity curves of cone cell colour
receptors (blue—dashed line; green—dotted line; red—continuous line); scheme
after an image in [32].
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Fig. 4. Measurement curve from potentiometric measurements in three different
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etal ions in unknown mixed solutions by means of a miniaturised
halcogenide glass multi-sensor system. The method is based on
uzzy logic as an AI technique. The critical evaluation and validation
f this fuzzy logic program will be presented by means of mea-
urements in unknown single- and multi-component heavy metal
olutions. Limitations of the fuzzy logic program due to the input
ata and a comparison between calculated and expected values in
erms of analyte composition and heavy metal ion concentration
ill be shown and discussed.

. Experimental and computations

.1. Chemical sensors and measurement set-up

The miniaturised chalcogenide glass multi-sensor system con-
ists of an Ag-, Cu- and Pb-selective sensor. Each sensor is made of
p-doped Si layer (specific resistance >1000 � cm) with a 500 nm

hick SiO2 layer for electrical insulation and a metal contact consist-
ng of 15 nm Ti, 30 nm Pt and 250 nm Au on the sensor substrate.
n order to realise the miniaturised Ag-, Cu- and Pb-sensors, com-
lex chalcogenide glass material systems of AgIAsSe, CuAgAsSe,
bI2Ag2SAs2S3, have been used, respectively. The deposition of
hese chalcogenide glass materials in a thin-film state onto the
ubstrates has been performed by means of pulsed laser deposi-
ion (PLD) technique. The sensing area is approx. 40 mm2. For more
etailed information of sensor fabrication, see [4,33,34].

The (ion-selective) potentiometry was presented to characterise
he electrochemical behaviour of the chalcogenide glass sensors
n single- and multi-component heavy metal solutions. Fig. 3
emonstrates schematically the measurement set-up, including
he multi-sensor system (Ag-, Cu-, Pb-sensor) and a conven-
ional double-liquid junction Ag/AgCl reference electrode which are
mmersed in the analyte solution and connected via a highly ohmic

ultimeter (2700, Keithley) to close the electrical circuit. The outer
nd inner electrolyte of the reference electrode is 10−1 mol/l KNO3
nd 10−1 mol/l KCl, respectively.

Three different stock solutions have been prepared: 10−2 mol/l
g(NO3), 10−2 mol/l Cu(NO3)2 and 10−2 mol/l Pb(NO3)2. Every two
tock solutions have been mixed in ratios of 100%:0%, 80%:20%,
0%:40%, 40%:60%, 20%:80% and 0%:100%, in order to realise differ-

nt single- and multi-component analyte solutions with different
atios of heavy metal ions. As background solution 10−1 mol/l KNO3
ith 10−3 mol/l HNO3 solution has been applied.

The calibration measurements as well as the potentiometric
easurements in unknown heavy metal solutions have been per-

ig. 3. Schematic of the measurement set-up for the development of a fuzzy logic
rogram.
heavy metal ion compositions (in diagram “comp. 1” to “comp. 3”) in concentration
range “conc. 1” to “conc. 4” performed with an Ag-selective sensor. The measured
potential values, which are underlined grey, are used as a priori knowledge for fuzzy
logic calculations.

formed in the background solution increasing the heavy metal ion
concentration from 10−6 mol/l to 10−3 mol/l by using the standard
addition method.

2.2. Development of fuzzy logic software

For the development of the fuzzy logic software, the calibra-
tion measurements performed in different heavy metal solutions
were imported into a database. The program extracted the infor-
mation of relevant measurements. Here, relevant information was
after 1.5 min of a measurement period in a certain ion concentra-
tion of the solution (Fig. 4, grey areas), because of the response
time of the heavy metal sensors. Relevant information was used as
a priori knowledge for further calculations. These measurements
were assigned as characteristic curves to appropriate sensors. A
characteristic curve consists of an average value of the calibration
measurements in each heavy metal ion concentration of a solu-
tion (Fig. 5a, solid line) and the corresponding standard deviation
(Fig. 5a, shade). All three sensors were associated with all calibra-
tion measurements resulting in a total number of 18 characteristic
curves for each sensor, as 18 different calibration solutions for the
single- and multi-component measurements have been investi-
gated. Applying the sensor set to a heavy metal solution of unknown
composition and concentration, from the relevant measured poten-
tials (a priori knowledge) for each sensor a constant mean potential
was calculated.

Fuzzy logic was used to combine the constant mean value of
each sensor with the characteristic curves of the particular sen-
sor to an intersection line. From the intersections of the measured
constant mean potential with every characteristic curve a fuzzy
set was calculated. An intersection was assigned as the highest
membership value (1) if the constant mean potential cuts exactly
the average of the curve and as the lowest membership value (0)
if the measured mean potential was outside the standard devi-
ation of the characteristic curve. Between the average value and
its standard deviation the membership value was interpolated lin-
early. Fig. 5b shows exemplarily the membership function of the
Ag-selective sensor from the intersection of the measured average

potential with the characteristic curve from composition 2 (from
Fig. 5a).

Three fuzzy sets were summarised to a linguistic variable, due
to the number of constant mean potentials in a solution, and thus
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ig. 5. (a) Characteristic curves of a Ag-selective sensor in three different heavy met
shade) and the constant mean potential measured in an unknown heavy metal ion

easured constant mean value and the characteristic curve of composition 2 (see (

o the number of applied sensors. This resulted in 18 different
inguistic variables, according to the number of used calibration
olutions.

For the prediction of the measured unknown heavy metal solu-

ion a fuzzy intersection operator (fuzzy AND connective) was
pplied to the three fuzzy sets of a linguistic variable through
heir membership functions. This fuzzy AND connective con-
tituted a membership function for the unknown solution to

known solution represented by the linguistic variable (see

ig. 6. Schematic of the procedure of the fuzzy logic program based on three chalcogeni
nd the measured constant mean value in an unknown heavy metal solution. The “grey a
hree fuzzy sets (see Eq. (4)).
compositions with their mean value (solid line), their respective standard deviation
ion by the Ag-selective sensor. (b) Fuzzy set based on the intersection between the

Eq. (4)).

�AND(x) = min{�Ag-sensor(x),�Pb-sensor(x),�Cu-sensor(x)}, x ∈ X (4)
Through an analysis of all linguistic variables a likely conclusion
on the composition of the unknown heavy metal solution was made.
The most likely composition was the linguistic variable with the
highest membership value of its fuzzy AND connective membership
function.

de glass sensors (Ag-, Pb- and Cu-selective sensor), three calibration compositions
rea” of the composition 3 represents the intersection membership function of the
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An overview of the fuzzy logic program procedure is exemplarily
hown in Fig. 6. Each one of the three sensors has measured a signal
n an unknown heavy metal solution. The program calculated fuzzy
ets based on the determined constant mean potential values and
haracteristic curves of known ion type and concentration combi-
ations, that are compositions 1–3. In each case, three fuzzy sets,
ccording to the three different sensors used, were formulated to a
inguistic variable for each composition. On each linguistic variable
he fuzzy intersection operator (Eq. (4)) was applied. The linguistic
ariable of compositions 1 or 2 did not have any intersection areas,
hus the unknown heavy metal ion composition was neither com-
osition 1 nor 2. However, composition 3 showed an intersection
rea of all electrodes (see “grey area” in Fig. 6), resulting in that the
nknown measured heavy metal composition was most probably
he composition 3 with the ion concentration where the highest

embership value of the intersection area was found.

. Results and discussion

.1. Characterisation of the sensors

In order to illustrate important sensor parameters in terms of
lectronic tongue behaviour, sensitivity, cross-sensitivity, response
ime and linear measuring range will be discussed exemplarily.
ig. 7 demonstrates calibration measurements with the minia-
urised chalcogenide glass-based Ag-sensor in three different
nalyte solutions: Ag:Cu with 100%:0%, Ag:Pb with 0%:100% and
u:Pb with 60%:40%. The measurement in analyte solution con-
aining only Ag+-ions represents the sensor behaviour towards
ts primary ion. The Ag+-ion sensitivity was about 60.5 mV/dec.
nd correlates well with the expected Nernstian response for
onovalent ions. The response time was around several seconds

nd the linear measuring range was extended over four decades
own to 10−6 mol/l Ag+-ions. The measurements in 100% Pb2+-ion
nd 60%:40% of Cu2+:Pb2+-ion solution demonstrate the cross-
ensitivity properties of the chalcogenide glass-based Ag-sensor.
he cross-sensitivity towards Pb2+-ions and the Cu2+:Pb2+-ion mix-
ure was about 38.0 mV/dec. and 48.1 mV/dec., respectively. The

easurement time increased to several tenths of seconds, the lin-
ar range changed from 10−4 mol/l to 10−3 mol/l for measurements
n 100% Pb2+-ion and remained from 10−6 mol/l to 10−3 mol/l for

u2+:Pb2+-ion mixture solution. The calibration measurements in
ig. 7 represent three characteristic examples from a set of 18 mea-
urements that have been performed with different composition
ixtures, as described in the experimental part (see Section 2.1).

ig. 7. Measurement curves from potentiometric measurements in different heavy
etal ion compositions in the concentration range from 10−6 mol/l to 10−3 mol/l
ith the miniaturised chalcogenide glass Ag-selective sensor.
cta 54 (2009) 6082–6088

In order to feed the developed fuzzy logic program with cali-
bration data, this procedure has been repeated with the Cu- and
Pb-sensor in an analogue way, varying the mixture of the heavy
metal compositions. The resulting cross-sensitivities and linear
ranges have been determined (not shown here). With regard to
its primary ion solution, the Cu-sensor had an average sensitiv-
ity of 30.0 ± 4.5 mV/pCu; thus a near-Nernstian response, which
is in good agreement with previous published sensitivity values,
has been achieved [2]. The Pb-sensor showed an average sensitiv-
ity of 20.0 ± 0.7 mV/pPb which is around 6–9 mV/pPb less than the
expected value [2,5,8]. The decreased sensitivity (that has been con-
stant during the experiment) is probably due to the already “aged”
sensor chip used in this experiment.

3.2. Evaluation of the fuzzy logic program for heavy metal
measurements

In order to validate the functionality of the developed program,
a self-test was made. Here, to illustrate the results more clearly, a
diagram representation was chosen (see Fig. 8). On the x-axis the
sequence of the input data as unknown composition and on the
y-axis the range of the proposable/known compositions are pre-
sented. Instead of calculating proposed composition proportions
continuously, the suggestion of the software is assigned to a set of
finite concentration ratios, namely Ag:Cu with 0%:100%, 100%:0%,
80%:20%, 20%:80%, 60%:40% and 40%:60% ratios from the lowest to
the highest ion concentration followed by compositions Pb:Ag and
Pb:Cu (same sequence of ratio and ion concentration) from bot-
tom to top. Each proposal calculated by the fuzzy logic program
is represented by a small rectangle. The colour of those rectangles
represents the probability: black boxes mean high membership and
thus high probability, while grey boxes mean minor membership
(decreasing with increasing brightness).

In order to evaluate the limits of the fuzzy logic software, known
heavy metal ion compositions were used as unknown data input.
These input data are the same data as used for the calculation of the
characteristic curves in the fuzzy logic program. The sequence of the
input data in Fig. 8 on the x-axis (from left to right) is assigned in the
same order as for the y-axis from bottom to top. The proposals of
the fuzzy logic program for the unknown input data should ideally
result in black rectangles on a diagonal. Further proposals for the
same data input are shown as rectangles out of the diagonal, with
the same x-value (input data) but with different y-values (output
data).

Fig. 8a exemplarily shows the proposition results of the fuzzy
logic program for the input data as described earlier. The diago-
nal of black rectangles illustrates that the highest probability was
assigned to the correct compositions and concentrations by the
program. However, for some compositions additional proposals
with a lower probability have been calculated, too (additional grey
boxes at the same x-value). These additional proposals of the fuzzy
logic program were mainly due to unknown heavy metal solutions
with a low ionic concentration. Without taking into account data
from heavy metal ion concentrations of 10−6 mol/l, the fuzzy logic
method recognised the unknown solutions with 100% probability
(see Fig. 8b).

In order to demonstrate the limits of the fuzzy logic program for
an acceptable analyte estimation, propositions of heavy metal ion
composition and concentration equal to data from the calibration
measurements but shifted with an offset of 5 mV have been calcu-
lated. The program still resulted in a relatively acceptable hit rate

of approximately 80% (see Fig. 8c). Increasing the offset to 10 mV,
the fuzzy logic program resulted in a larger number of different
grey boxes and thus, for the estimation of the analyte solution less
correct statements could be made. In some cases there were even
erroneous proposals about the composition and concentration of
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Fig. 8. Mathematical diagram of the prediction of potentiometric measurements in unknown heavy metal solution performed by the fuzzy logic program: (a) in unknown
heavy metal solution with identical absolute potentials compared to calibration measurements; (b) in unknown heavy metal solution with identical absolute potentials
c f 10−6
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ompared to calibration measurements excluding heavy metal ion concentration o
otentials; (d) in unknown heavy metal solution with an offset of 10 mV to the abso

he heavy metal solution (see Fig. 8d). Consequently, for the appli-
ation of the developed fuzzy logic method it can be assumed that if
he absolute input values of the unknown solutions differ less than
5 mV in comparison to the characteristic data used for calibration
f the fuzzy program, a correct proposal about the composition and
oncentration of the heavy metal solution with a high probability
s possible.

. Conclusions

In this work, the development of a fuzzy logic method for anal-
sis of combined signals from heavy metal chemical sensors has
een demonstrated. The number of calibration data (database) for
he fuzzy logic program could be minimised to 18 measurements for
ne- and two-component solutions of Ag+-, Pb2+- and Cu2+-ions and
s expected to be 24 for application of this program for one-, two-
nd three-component heavy metal solutions. Potentiometric mea-
urements in unknown single- and multi-component heavy metal
olutions have validated the property of this AI/fuzzy logic method.
he proposal of composition and concentration of heavy metal ions
Ag+-, Pb2+- and Cu2+-ions) in single- and two-component solu-
ions have shown up to 80% hit rate when the measured absolute

otentials in unknown solutions differ up to 5 mV from the abso-

ute values of the respective calibration potentials. Thus, such a
ombination of miniaturised silicon-based chalcogenide glass sen-
ors showing cross-sensitivities with combinatory analysis using
uzzy logic offers a relatively “simple” and fast approach towards
mol/l; (c) in unknown heavy metal solution with an offset of 5 mV to the absolute
otentials.

an electronic tongue-type sensor system for heavy metal detection
in environmental and industrial analysis.

In future, the developed fuzzy logic program has to be validated
by means of “real” unknown heavy metal solutions e.g., waste water
analysis. Hereby, the sensed absolute potential values could vary
more than ±5 mV from the calibration values and therefore uncer-
tain or false statements could result from the fuzzy logic program.
Thus, an advancement of the artificial intelligence program should
be considered. For a further increase of the prediction certainty
of unknown multi-component solutions, more a priori knowledge
in terms of sensor sensitivity and weighting factors for measured
potentials of a certain concentration should be included. These
additional factors might improve the correctness of proposals on
the unknown compositions and allow an analysis not only pre-
dominantly based on absolute values. Additionally, the quantity of
sensors could be slightly enhanced in order to explore the appli-
cation of this electronic tongue arrangement towards real sample
solutions for environmental and food analysis such as industrial
waste water analysis or the analysis of luxury foodstuffs, like wine
and juice towards their originality.
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