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Abstract The influence of nanocatalyst on three main reactions for natural gas conversion such as

steam reforming, dry reforming and oxidative coupling of methane has been reviewed with an

emphasis on the literatures’ reports and results. Although literatures’ experimental results showed

that the conversion of methane over the nanocatalysts was higher than that obtained from the

ordinary catalysts, there was no correlation between the conversion of methane and the average

sizes of the nanoparticles. The results of some nanocatalyst are also compared to ordinary catalysts

in the literature which shows the improved influence of nanoscale catalyst performance on methane

conversion.
ª 2011 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
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1. Introduction

Although methane is an excellent raw material for the produc-
tion of fuels and chemicals, the main use is as fuel for power
generation and for domestic and industrial uses. Large
amounts of methane are found in regions that are located far

away from industrial complexes and often methane is found
off shore. This means its transportation is uneconomical or
even impossible. Therefore, parts of the methane obtained, is

re-injected, flared or vented at the moment, which is waste of
hydrocarbon resource (Farsi et al., 2010; Lunsford, 2000).

On the other hand, both methane and CO2 are greenhouse

gases responsible for global warming and more strict regula-
tions about letting out or flaring are expected in the future
(Lunsford, 2000). These transportation and environmental

problems and the increasing oil price have led to world-wide
efforts for converting methane into easy transportable value
added products, such as ethylene, aromatics and liquid hydro-
carbon fuels (Amenomiya, 1990; Ross et al., 1996). Methane

can be converted into chemicals and fuels in two ways, either
via synthesis gas or directly into C2 hydrocarbons or methanol
(Farsi et al., 2010; Lunsford, 2000; Amenomiya, 1990; Ross

et al., 1996). For instance, concerning global warning issues
both methane and CO2 can convert greenhouse gases into syn-
thesis gas by dry reforming which is an important feedstock for

many industrial processes (Hu, 2010; Xu and Wei et al., 2003;
Xu et al., 2003).

Recently, nanocatalysts have attracted much attraction

(Shu et al., 2007). In comparison with their micro-sized coun-
terparts, nanocatalysts show higher activity, better selectivity,
and outstanding stability because of their large specific surface
area, high percentage of surface atoms and special crystal

structures (Farsi et al., 2011a; Guo et al., 2000). Nanoparticles
can be synthesized by several methods such as sol–gel process-
ing, micro-emulsion, homogeneous precipitation, gas evapora-

tion, laser vaporization, ionized beam deposition, freeze drying
and etc (Farsi et al., 2011a; Guo et al., 2000; He et al., 2004a).

The objective of the present review is to provide a tangible

account of methane conversion over nano scale catalysts by
three reactions namely as steam reforming of methane, dry
reforming of methane and oxidative coupling of methane. It
is intended that this review provides necessary background

information and general direction to those who are involved
or about to be involved in this research field.

2. Steam reforming of methane (SRM)

SRM (e.g., CH4 + H2O M CO + 3H2) is a crucial reaction
for the production of synthesis gas (Lunsford, 2000). The pro-

cess is also important for the direct electrochemical conversion
of hydrocarbons in solid oxide fuel cells (SOFCs). SOFCs are a
very attractive option for electrical power generation in sta-

tionary, mobile, and portable applications (Oha et al., 2003;
Wu et al., 2009). Commercial catalyst for this reaction is Ni
supported on a metal oxide (Wu et al., 2009; Maluf and Assaf,

2009).
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The process is run under a wide range of conditions with
operating temperatures from approximately 500 to 950 �C
(Zhou et al., 2008). One of the critical problems with long-term
performance of Ni catalysts is the formation of carbon depos-
its on the catalyst surface, which evolve into carbon filaments,

ultimately diminishing the performance of the catalyst (Wu
et al., 2009; Maluf and Assaf, 2009; Zhou et al., 2008).Three
main reactions take place as in the following equations:

CH4 þH2O! COþ 3H2 ð1Þ

COþH2O! CO2 þH2 ð2Þ

CH4 þ 2H2O! CO2 þ 4H2 ð3Þ

Both the water–gas shift reaction (Eq. (2)) and reverse metha-
nation (Eq. (3)) are always associated with catalytic SRM at
elevated temperatures. Due to their overall high endothermic

nature, these reactions are carried out at high temperature to
achieve high conversions.

From thermodynamics and reaction engineering perspec-
tive, SRM is a highly endothermic process and therefore de-

mands an efficient heat supply to the system. It is usually
operated in a temperature range of 700–900 �C to achieve high
conversions. It is a very energy consuming and capital-inten-

sive process although the present technology approaches
90% of the maximum thermodynamic efficiency. Although
this thermodynamic and kinetic limitation is the opposite of

main challenge that occurs for exothermic reactions, further
research can be directed to predict a novel strategy for meth-
ane activation to produce more substances that are valuable

by solving both problems of endothermic and exothermic reac-
tions that designate (Farsi et al., 2011b).

Commercial catalysts for the SRM reaction are Ni on sup-
ports, such as Al2O3, MgO, MgAl2O4 or their mixtures (Maluf

and Assaf, 2009). Selection of a support material is an impor-
tant issue as it has been evident that metal catalysts are not
very active for the SRM when supported on inert oxides (Sady-

kov et al., 2009).
Watanabe et al. (2007) studied on nanosized Ni particles.

They supported Nickel nanoparticulate catalysts on hollow

Al2O3 ball by spraying a mixed solution of Nickel and alumi-
num nitrates. Their solution-spraying plasma (SSP) system is
shown in Fig. 1. Their system consists of: (1) an ultrasonic mist

generator for a catalyst source solution, (2) a plasma torch
reactor and (3) a catalyst particle collector with a water shower
supplied by a circulatory pump. They used a fixed bed quartz
tubular reactor for SRM. They reported a 92% methane con-

version for their nanocatalyst.
Roh et al. (2007) studied highly active and stable nano-sized

Ni/MgO–Al2O3 catalyst. They concluded that the high activity

and stability are due to beneficial effects of MgO such as en-
hanced steam adsorption, basic property, nanosized NiO, crys-
tallite size and strong interaction between Ni and support.

Sadykov et al. (2009) studied on nanocomposite catalysts
for SRM. Nanocomposite catalysts comprised of Ni particles
embedded into the complex oxide matrix comprised of Y or
Sc-stabilized Zr (YSZ, ScSZ) combined with doped
uence of nanocatalyst on oxidative coupling, steam and dry
istry (2012), doi:10.1016/j.arabjc.2011.08.001
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Figure 1 Solution-spraying plasma system for the preparation of nano sized catalysts on hollow oxide balls.
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ceria–zirconia oxides or La–Pr–Mn–Cr–O perovskite and pro-
moted by Pt, Pd or Ru were synthesized via different routes.
3. Dry reforming of methane (DRM)

The CO2/CH4 reforming has been studied over numerous sup-

ported metal catalysts, such as Ni-based and noble metal cat-
alysts (Luna and Iriarte, 2008; Zhao et al., 2008; Gallego et al.,
2008; Liu et al., 2009). The DRM reaction (Eq. (4)) is accom-

panied by several side reactions, of which the reverse water gas
shift reaction (Eq. (5)), the methane cracking reaction (Eq. (6))
and the Boudouard reaction (Eq. (7)) appear to be the most

important:

CH4 þ CO2 ! 2H2 þ 2CO ð4Þ

CO2 þH2 ! COþH2O ð5Þ

CH4 ! Cþ 2H2 ð6Þ

2CO! Cþ CO2 ð7Þ

In many literatures (Zhao et al., 2008; Gallego et al., 2008;
Liu et al., 2009; Kroll et al., 1996; Steinhauer et al., 2009), rare

earth oxides are usually added to the nickel-based catalysts for
CO2/CH4 reforming as a promoter to optimize the activity of
the catalysts. However, performing DRM with traditionally
prepared nanoparticle catalysts such as Ni nanoparticles has

met with several severe obstacles.
One of the current constraints in DRM is about surface

analysis which has been studied less than the catalyst synthesis

and characterization investigations. To address this constraint,
Kiennemann and co-workers used spinel and perovskite sup-
port (Parvary et al., 2001; Djaidja et al., 2006; Sahli et al.,

2006; Valderrama et al., 2005). The effect of Ni/Al ratio on
the structure of NiAl2O4 spinel was suggested as an important
Please cite this article in press as: Farsi, A., Mansouri, S.S. Infl
reforming of methane: A short review. Arabian Journal of Chem
factor related to small metallic particles to obtain a good per-
formance for the reforming of methane into synthesis gas with

limited coke formation. They reported that the growing of the
Ni particles needs to be limited. The author found that NiMg/
Al2O3 catalysts, prepared by co-precipitation method and Ni/

MgO, prepared by impregnation, are suitable catalysts for
selective DRM. The catalysts are remarkably active even at
the lowest reaction temperature studied (700 �C) showing a

low carbon deposition even at the highest reaction temperature
(850 �C). A previous reduction of the solids improves their cat-
alytic activity. Their results revealed that the catalytic behavior
of these catalysts could be explained in terms of the reducibility

and also of the good dispersion of Ni species due to the inter-
actions between Ni and Mg–Al.

Gonzalez-Delacruz et al. (2011) worked on the effect of a

reduction process with CO or H2 on the size of nickel particles
in Ni/ZrO2 DRM catalysts. Their results signify that a high
temperature treatment with CO increases the dispersion of

the nickel metallic phase. Their X-ray Absorption Spectros-
copy results have shown a lower coordination number of Ni
in the sample treated with CO than that reduced with H2. They
also showed that under the CO treatment, the formation of

Ni(CO)4 complexes corrodes the nickel particles, decreasing
their size. The formation of these gas molecules occurs without
measurable losses of nickel from the catalyst which maintains

the same nickel content after the hydrogen or the CO treat-
ment at high temperature. They concluded that different ef-
fects of CO on nickel catalysts have been formerly described,

though they have found for the first time more than a few
experimental evidences demonstrating the whole re-dispersion
phenomenon.

Qu et al. (2008) studied the catalytic reaction of CO2

reforming of methane using Ni/CO nanoparticles which are
believed to be immobilized at the tips of single-walled carbon
nanotubes (SWNTs). Their results revealed that (1) SWNTs
uence of nanocatalyst on oxidative coupling, steam and dry
istry (2012), doi:10.1016/j.arabjc.2011.08.001
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Table 1 Comparison between ordinary catalysts and nanocatalysts on SRM and DRM.

T (�C) Catalyst BET (m2/g) CH4:H2O:CO2 % Methane conv.

700 Ni/Ce–ZrO2/h-Al2O3 (Farsi et al., 2011) 167 1:3:0 97

800 Ni/NiAl2O4/c-Al2O3 (Oha et al., 2003) 148.3 1:3:0 60–98

750 Ni–Al2O3 (Sadykov et al., 2009)a 209 1:0:1 85

700 Ir/Al2O3 (Wang and Gorte, 2002) 2.268 1:0:1 48–67

700 La2NiO4 (Watanabe et al., 2007) 11 1:0:1 81–85

850 Ni–MCM-4 (Roh et al., 2007) 0.71 1:0:1 99

700 Ni–Pd/(ZrO2–La2O3) (Zhao et al., 2008)a 96 5:0:4.5 73

700 Ni/Al/Mo (He et al., 2004) 97.7 4:1:0 98

750 Pt/Pr0.3Ce0.35Zr0.35O2/Ni/YSZ (Wu et al., 2009)a 1:3:0 91

700 Ni/SBA–15/ZrO2/Al2O3/FeCrAl (Guo et al., 2000) 1:2:0 96–98

750 Ni/CeO2–Al2O3 (Valderrama et al., 2005) 127.2 1:0:1 88

700 Ni/(NiK2O/ZrO2) (Gonzalez-Delacruz et al., 2011)a 174 1:0:1 75

700 Ni/CaO (Qu et al., 2008) 15.2 1:0:1 52

700 Nickel/Zirconia (Liu et al., 2009)a 134.67 1:0:1 64.12

800 LaRu0.8Ni0.2O3 (Rezaei et al., 2008) 9 1:0:1 78.6

800 La0.8Ca0.2Ru0.8Ni0.2O3 (Rezaei et al., 2008) 3 1:0:1 98.5

700 Ni–Ti (Aiken and Finke, 1999) 1.9 1.8:0:1 30–40

700 Ni–AL–Ti (Aiken and Finke, 1999) 86.4 1.8:0:1 67.5

a Denotes to a nanocatalyst.
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are a better support for nanocatalysts at high temperatures; (2)
nanoparticles at the tips of SWNTs are small enough to reduce

or even eliminate carbon deposition on them; and (3) nanopar-
ticles at the tips of SWNTs do not sinter during DRM.

Rezaei et al. (2008) studied DRM over nanocrystalline zir-

conia-supported nickel catalysts. They prepared nickel cata-
lysts by excess-solution impregnation using zirconia powder
and an aqueous solution of Ni(NO3)2Æ6H2O. The best methane

conversion of their catalyst was 70%.
The nanocatalysts performance results such as BET surface

area of catalyst, reaction temperature, feed portions and meth-
ane conversion are compared to relevant works on ordinary

catalysts for SRM and DRM reported in Table 1. Many works
(Shu et al., 2007; Aiken and Finke, 1999; Trionfetti et al., 2006)
show that preparation of a catalyst with high surface area has

a great effect on its properties, and this can be attained by a
nanocatalyst. This advantage is in contrast with those of the
ordinary catalysts with similar combinations. These effects

can alter the reaction parameters, sometimes on conversion.
Comparing nanocatalysts with their corresponding ordinary
catalysts shows that these improvements can not only alter
conversion, but also the other parameters. These alterations

are merely for the nanocatalyst and its corresponding catalyst
with identical combinations. This is clear that two catalysts
with different properties cannot be thoroughly compared by

just considering their scale. This has to be noted that it is per-
fectly apparent that the catalysts and nanocatalyst presented in
Table 1 have been characterized in various reaction conditions

such as temperature, feed portions, reactor geometry and type
of the reactor.

4. Oxidative coupling of methane (OCM)

The normally accepted scheme for OCM is as follow (Farsi
et al., 2010; Farsi et al., 2011a,c). The principal reactions are

2CH4 þ 0:5O2 ! C2H6 þH2O ð8Þ

C2H6 þ 0:5O2 ! C2H4 þH2O ð9Þ
Please cite this article in press as: Farsi, A., Mansouri, S.S. Infl
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and the main unwanted reactions are:

CH4 þ 2O2 ! CO2 þ 2H2O ð10Þ

CH4 þ 1:5O2 ! COþ 2H2O ð11Þ

Due to the above scheme, methane is first partially oxi-
dized to ethane in reaction 8. A secondary reaction of oxy-

dehydrogenation of ethane then proceeds to form ethylene
in reaction 9. Two further steps are the nonselective oxidation
of methane to carbon dioxide and carbon monoxide (reac-
tions 10 and 11).

The challenges that limit the commercialization of OCM
process are: (I) high temperature (700–900 �C) to achieve high
ethylene and ethane (C2+) yield; (II) The active sites in the

coupling catalysts activate also the C–H bond in C2+, resulting
in the formation of CO2 by combustion; (III) limitation on
methane conversion (<45%) and C2+ yield (<27%) imposed

by the explosion limit of oxygen concentrations in the feed;
(IV) low concentrations of ethylene in the product, making
the separation of the product stream uneconomical; (V) low
selectivity at higher conversion, making the achievement of

simultaneous good selectivity and conversion extremely diffi-
cult (Sinev et al., 2009; Choudhary and Uphade, 2004; Sekine
et al., 2009). Some of these problems can be overcome by the

use of nanocatalyst.
A series of nanocatalysts for the OCM based on MgO with

a varying content of Li have been synthesized. Farsi et al.

(2011a) prepared Li/MgO catalyst and nanocatalyst by the
incipient wetness impregnation and sol–gel method, respec-
tively. Their catalyst and nanocatalyst were tested at wide

range of temperature (700–800 �C) at constant total pressure
(�1 atm). Their results show that using Li/MgO nanocatalyst
in the OCM would result in higher conversion of methane,
higher selectivity and higher yield of C2+ hydrocarbons com-

pared to ordinary catalyst. Their results of methane conver-
sions in OCM reaction over Li/MgO ordinary and
nanocatalyst in different range of temperature and CH4/O2

are illustrated in Fig. 2(a) and (b), respectively. Due to these
figures the conversion of methane by the Li/MgO nanocatalyst
uence of nanocatalyst on oxidative coupling, steam and dry
istry (2012), doi:10.1016/j.arabjc.2011.08.001
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Figure 2 Profile of percent of methane conversion versus CH4/O2 over Li/MgO at different feed temperatures: (a) ordinary catalyst, (b)

nanocatalyst.
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was apparently higher than ordinary catalyst especially at
higher temperatures.

In another work on Li/MgO nanocatalyst, morphology and
microstructure of this nanocatalyst were investigated by
Zavyalova et al. (2011) in OCM reaction. They asserted that

the resulting catalytically active systems are studied by a com-
bination of TEM and SEM methods. Samples with a low pro-
fusion of Li reveal a hierarchical pore system built from
tubular structures made from primary MgO particles. Mor-

phological indications have been established for the role of
Li as flux in this transformation. The alteration of the primary
particle morphology leads to a drastic change in secondary

structure from open sponges to compact sintered plates. They
also showed that a relation was found between catalytic func-
tion in OCM and the transformation from cubic to complex-

terminated particles. They concluded that, it is suggested that
sites active for the coupling reaction of methane are related to
the projections arising from segregation of oxygen vacancies to
the surface of MgO.

He et al. (2004b) synthesized and tested the CeO2/ZnO nan-
ocatalysts performance on the OCM with carbon dioxide as an
oxidant. They prepared this catalyst using a novel combination
Please cite this article in press as: Farsi, A., Mansouri, S.S. Infl
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of homogeneous precipitation with micro emulsion. The pre-
pared catalyst was compared with those prepared using a con-

ventional impregnation. Fig. 3 shows TEM images of CeO2/
ZnO nanocatalyst and CeO2/ZnO catalyst prepared by the
conventional impregnation. They concluded that a better low

temperature activity has been achieved over the nanocatalyst,
but there was no regular relationship between the average size
of nanocatalyst and their catalytic performance. However, the
conversion of methane increased by increasing fractal dimen-

sion of CeO2/ZnO nanocatalyst.
He et al. (2003) also synthesized La2O3/BaCO3 nanocatalyst

for OCM with CO2 as oxidant. Their nanocatalyst was synthe-

sized by coupling route of homogeneous precipitation with mi-
cro emulsion under pulsed microwave heating; and compared it
with La2O3/BaCO3 ordinary catalyst which was prepared by

conventional homogenous precipitation. Their results showed
that in case of the nanocatalyst, the oxidative coupling can take
place at 100 �C lower than the startup temperature over the
conventional catalysts. They concluded that the conversion of

methane is higher in reaction with nanocatalyst but the
improvement of C2+ selectivity was not distinct and the carbon
deposition on the nanocatalyst was more serious.
uence of nanocatalyst on oxidative coupling, steam and dry
istry (2012), doi:10.1016/j.arabjc.2011.08.001
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Figure 3 TEM images of CeO2/ZnO nanocatalyst prepared by

the combining method (top) and ordinary catalysts prepared by

the conventional impregnation (bottom).

Table 2 Comparison between OCM ordinary catalysts and nanoca

T (�C) Catalyst Method of preparation

800 CeO2/ZnO (Kroll et al., 1996) Combination of homogen

precipitation with micro-e

800 CeO2/ZnO
a (Kroll et al., 1996) The conventional impregn

800 La2O3/BaCO (Sahli et al., 2006) Traditional homogeneous

800 La2O3/BaCO
a (Sahli et al., 2006) Coupling route of homog

precipitation with micro e

under pulsed microwave

700 NaNO3/MgO (Djaidja et al., 2006) Described in the article

700 LiNO3/MgO (Trionfetti et al., 2006) Described in the article

700 Li2SO4/MgO (Trionfetti et al., 2006) Described in the article

800 LiNO3/MgO (Trionfetti et al., 2006) Described in the article

800 CaWO4–Mn/SiO2 (Farsi et al., 2011) Incipient wetness impregn

800 CaWO4–Mn/SiO2 (Farsi et al., 2011) Incipient wetness impregn

800 FeWO4–Mn/SiO2 (Farsi et al., 2011) Incipient wetness impregn

800 FeWO4–Mn/SiO2 (Farsi et al., 2011) Incipient wetness impregn

800 CoWO4–Mn/SiO2 (Farsi et al., 2011) Incipient wetness impregn

800 CoWO4–Mn/SiO2 (Farsi et al., 2011) Incipient wetness impregn

800 NiWO4–Mn/ SiO2 (Farsi et al., 2011) Incipient wetness impregn

800 NiWO4–Mn/ SiO2 (Farsi et al., 2011) Incipient wetness impregn

700 Li2SO4/La2O3 (Sinev et al., 2009) Described in the article

700 LiNO3/La2O3–MgO (Sinev et al., 2009) Described in the article

700 Li2SO4/La2O3–MgO (Sinev et al., 2009) Described in the article

a Denotes to a nanocatalyst.
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In addition to the previously mentioned features of the nan-
ocatalyst over OCM before in this work, The nanocatalysts
performance results such as method of preparations, feed por-

tions, methane conversion and C2+ selectivity and yields for
OCM reaction are compared with ordinary catalyst and re-
ported in Table 2.

The kinetics of OCM reaction which produces C2+ has
been studied extensively based on various reaction mecha-
nisms. Former researches have shown that the kinetics of

OCM reaction is very complicated in terms of the proposed
mechanisms since they involve several chemical species. In
spite of the extensive research done on kinetics of OCM reac-
tion during past thirty years, there are very few reports

addressing the kinetics of OCM reaction over the nanocata-
lysts. Amongst the few works that are available in the litera-
ture, Farsi et al. (2011c) investigated the kinetics of OCM

over La0.6Sr0.4Co0.8Fe0.2O3�d nanocatalyst which was synthe-
sized by citric-EDTA complexation method. The goal of their
work was to propose and discuss a simple power law kinetic

model which may assist the researchers in computer aided de-
signs and reactor simulations. They claimed that it can be use-
ful for estimating the methane conversion, and C2+ selectivity

and yield under the considered conditions. In order to propose
a simple kinetic model over above mentioned nanocatalyst,
they surveyed the available mechanisms and four reaction
steps were chosen in which the most important reactions are

leading to OCM products and common among all the avail-
able mechanisms. The accuracy of the kinetic model was eval-
uated by its ability to predict experimental data. Their results

showed that the power law model can be used for kinetic mod-
eling of OCM. From this point of view, their model may be
used as a generic one for OCM nanocatalysts with similar

properties.
talysts.

CH4/O2 or CO2 % C2 Yield % C2 Selec. % CH4 Conv.

eous

mulsion

1/2 with CO2 81 0.5

ation 1/2 with CO2 4.79 83.6 5.73

precipitation 1/2 with CO2 88 0.6

eneous

mulsion

heating

1/2 with CO2 88.5 4.5

16/14 14.1 52 27.1

16/14 4.6 58.5 7.9

16/14 1.5 72.4 2.1

16/14 10.6 55.5 19.1

ation method 3.2/1 4.8 25.3 19

ation method 3.2/1 4.6 25 18.2

ation method 3.2/1 2.7 14.6 18.3

ation method 3.2/1 2.7 15.1 17.7

ation method 3.2/1 4.2 23 18.3

ation method 3.2/1 4.3 23.8 18.1

ation method 3.2/1 4.4 23.8 18.4

ation method 3.2/1 3.7 20.5 17.9

16/14 13.3 59.9 22.2

16/14 14.9 58.8 24.2

16/14 16.6 64.3 25.8

uence of nanocatalyst on oxidative coupling, steam and dry
istry (2012), doi:10.1016/j.arabjc.2011.08.001

http://dx.doi.org/10.1016/j.arabjc.2011.08.001


Influence of nanocatalyst on oxidative coupling, steam and dry reforming of methane 7
5. Conclusion

Regardless the type of catalyst used for the SRM, DRM and
OCM the achievements of high stability and high catalytic

activity low temperatures are the main targets to attain. The
increasing research on nanocatalysts is resulting in the produc-
tion of new and efficient nanocatalysts with promising results.

In this study, the catalytic performance of the nanocatalysts on
SRM, DRM and OCM was reviewed and compared to ordin-
ary catalysts. Using nanocatalyst, the conversion of methane,
C2+ selectivity and main products yield in many cases were

higher compared to the ordinary catalyst. Due to comparing
the result of nanocatalysts with other ordinary catalysts which
is given in the literature, the effect of nanocatalyst on catalyst

activity is elucidated to some extent.
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