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Abstract 

Mass based pellet model has been solved using least-squares formulation to describe the evolution of 
species composition, pressure, velocity, total concentration, mass diffusion flux in porous pellets for the 
steam methane reforming (SMR) process. The diffusion-reaction problems are computationally intensive, 
requiring efficient numerical methods for dealing with them. This paper presents formulation and 
algorithm of least-squares spectral element method (LS-SEM) for solving multicomponent mass diffusion 
pellet models. The mass diffusion flux is described according to the rigorous Maxwell Stefan model. The 
effectiveness factors have been calculated for the SMR process and compared with the literature data. The 
model evaluations revealed that the least-squares method is well suited for solving the multicomponent 
mass diffusion pellet models for the SMR process, achieving exponential convergence. 
 
© 2012 Published by Elsevier Ltd. Selection under responsibility of the Congress Scientific Committee 
(Petr Kluson) 
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1. Introduction 

The sustainable energy supply system of the future features electricity and hydrogen as the dominant 
energy carriers. Today, almost all hydrogen is produced via steam methane reforming of natural gas. 
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Hence, the steam methane reforming is one of the important processes by the Norwegian gas industry for 
utilization of natural gas. Steam methane reforming (SMR) is a heterogeneous catalyzed process where 
methane and steam react over a nickel-based catalyst at high temperatures to produce synthesis gas which 
is basically a gas mixture of H2, CO and CO2. The two reformer reactions (I), and (II) and the water-gas 
shift reaction (III) are the most important reactions when methane is converted in the presence of steam to 
yield synthesis gas. The three main reactions in a SMR are represented by following equations [1]: 

 
    4 2 2 298( ) ( ) ( ) 3 ( ) 206.2kJ/molCH g H O g CO g H g H                                        (I) 
 
    4 2 2 2 298( ) 2 ( ) ( ) 4 ( ) 164.7kJ/molCH g H O g CO g H g H                                   (II) 
 
     2 2 2 298( ) ( ) ( ) ( ) 41.5kJ/molCO g H O g CO g H g H                                       (III) 

 
In this study the kinetic expressions were taken from literature. The reforming and shift reaction kinetics 
for the SMR process were obtained using Langmuir-Hinshelwood methodology by Xu and Froment [1]. 
 

Mathematical modeling of intraparticle mass- and heat transfer in porous pellet has been studied by 
many researchers. Elnashaie and Abashar [2] developed a mathematical model to study the phenomena of 
diffusion and chemical reactions in porous catalyst pellets for steam methane reforming process. They 
have compared the rigorous dusty gas model to the simpler Wilke-Bosanquet model. However, in their 
model they have taken the assumptions of steady state, negligible viscous flow and isothermal condition. 
We have focused a mass based pellet model with Maxwell-Stefan kinetics. Following established practice 
for heterogeneous catalytic reaction systems, the internal - and overall  effectiveness factors were 
defined in our study [3]. 

 
In recent years, the work by Bochev [4] has shown the applicability of the least-squares spectral 

method (LSM) to solve engineering problem equations. Sporleder et al. [5] have solved fixed bed reactor 
model using the LS-SEM. Dorao and Jakobsen [6] applied least-squares method to solve population 
balance problems. This paper presents the formulation and the algorithm of the LS-SEM to solve the 
diffusion-reaction pellet model. The SMR is a very important process, known to be strongly diffusion 
limited. It has been studied extensively by many researchers and a variety of numerical methods applied 
to deal with the strong concentration gradients. Orthogonal collocation [7], in particular has been found to 
be an adequate method that is now routinely used in diffusion-reaction problems. But in this paper we 
have applied the LS-SEM method to solve the diffusion-reaction problem in a porous pellet to check the 
suitability of the method on the diffusion reaction problem. 

 
   The main goal of this paper is to check the suitability of LS-SEM for multicomponent mass diffusion 
pellet model. 

2. Mathematical Model Formulation 

   In this study we have used a general model for the pellet in which the reactions take place on active 
sites within the porous body which represents an assembly of individual grains or channels. A mean pore 
diameter is assumed and the ratio between the porosity and tortuosity is used to characterize the fixed 
structure of the pellet. Possible pellet structural changes are not considered. Time dependent mass based 
pellet model, containing the multicomponent Maxwell-Stefan diffusion flux and including convection 
times have been given by Rout et. al. [8]. The initial- and boundary conditions given by Rout et. al. [8] 
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have been applied in the model equations. A system of non-dimensionalized model equations is used in 
the simulations. 

3. The least-squares spectral method (LSM) 

The basic idea in the LSM is to minimize the integral of the square of the residual over the 
computational domain. Consider the generalized formulation of an arbitrary set of partial differential 
equations and boundary conditions: 

 
      in    f gL                                                                                                                                 (1) 

 
      on    f fB                                                                                                                    (2)               

In which denotes the domain, indicates the boundaries of the domain and f  is the unknown 
function. Here, we assume that L is a linear operator which corresponds to the system of equations and 
B is the boundary condition operator determining the problem domain. 
 

Since the residual form of the equations (1) and (2) are R gfL and R ffB , the norm-
equivalent functional may be written as 

2 21 1( ) .
2 2N N N Nd df f g f fJ L B                                                                      (3)  

Furthermore, the function ( )xf can be approximated by a truncated series expansion adopting nodal basis 
like, 

0

( ) ( ) ( )
N

N j j
j

x x h xf f f                                                                                                                     (4) 

where jf  is the basis coefficient associated with the basis function h xj . In nodal base, the basis 
functions consist of Lagrangian polynomials through Gauss-Labatto-Legendre (GLL) collocation points. 
Due to nodal basis property, the basis coefficient jf is equal to the value of the discrete solution ( )N xf  
at the GLL points (nodes) x j , i. e., ( )j jxf f  
   Introducing solution function expansion and minimizing the norm-equivalent functional, we found: 

2 2

0 0

1 1 0,
2 2

N N

j j j j
j jk k

h d h d
f f

f g f fL B                                  (5) 

where [ , ] [ , ] [ , ]min max min max min maxx x y y z z  in three dimensional space. After differentiation, 
the equation (5) can be written as; 

0 0

0
N N

j j k j j k
j j

h h d h h df g f fL L B B                                                             (6) 

As our aim is to find the value of f j , the equation (6) can be represented on the form, 

0 0

N N

j j k j j k k k
j j

h h d h h d h d h df f g fL L B B L B                                          (7) 

This statement can be expressed in the inner product form as, 
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0 0

, , , ,
N N

j j k j j k k k
j j

h h h h h hf f g fL L B B L B                                             (8) 

In the matrix form, the equation 8 can be written on the form: 
[ ] [ ]kj kj k kA Bf f F F                                                                                                                     (9) 

[ ] , ,kj j kA h hL L [ ] , ,kj j kB h hB B k khgF L  and , .k khfF B Moreover, the 
matrix A

kj
 from the equation 9 can then be expressed in the point wise form by the Gaussian 

quadrature rule: 

0 0

[ ] ( ) ( ) [ ] [ ] [ ] [ ] [ ] 
q q q q q q q

q q

P P
T

kj i j i k i i k i i i j k j
i i

A w h x h xL L L L L L                                      (10) 

where the elements in the matrix L  is defined as, [ ] ( ).
q qi j j ih xL L  Here, it is noted that w

qi
and 

qi
x are the weights and points of quadrature [9], and is the diagonal matrix containing weights of the 
quadrature. Hence, the matrix A can be written in the compact matrix form as: 

TA L L                                                                                                                                               (11) 
Then, the source vector kF   from equation 9 can be written in the point wise form: 

0

( ) ( ) [ ] 
q q q

q

P
T

k i i k i k
i

w x h xg gF L L                                                                                             (12) 

So, the vector F  can be written in the compact matrix form as: 
T gF L                                                                                                                                             (13) 

 
3.2 Implementation of LSM to the mass based pellet model 
 

Figure 1 illustrates the algorithm for solving the dynamic pellet model by using the LS-SEM. It starts 
with initial guess tf  at simulation time, t 0 . Then, we have divided the whole computational domain 
into several sub-domains. Further, the non-linear flux expression demands a suitable linearization 
procedure. Hence, the Picard method is used to linearization procedure [10]. The Picard method, also 
known as successive approximation iteration, calculates the current value 1kf   from the previous 
value kf . 1 ( )k kGf f , where G  is a problem definition function which is the expression of the 
previous value of kf . Therefore, the initial guessed value of unknown kf has been divided for different 
elements with linearization. So, the initial guessed value for each element is

kt
ef . Together with initial 

guessed vale of each element
kt

ef , the linearized operator ( )
kt

e efL  for each element with their 
corresponding source vector ( )

kt
e eg f  are calculated. 

 
Computation of system matrices ( )

kt
e eA f  and ( )

kt
e efF are carried out for each element by the LS-

SEM. We have assembled the matrices ( )
kt

e eA f and ( )
kt

e efF  for each element into global system 
matrices for the whole computational domain, i.e., ( )

ktA f  and ( )
ktfF . In the next step, we have 

solved the overall system matrices to get values of
1ktf . We did update 

ktf  with 
1ktf until specified 

convergence criteria is reached. We have defined two convergence criteria like: 
 

5( ) ( ), ( ) ( ) 10
k k k k k kt t t t t t

Residual g gf f f f f fL L                                                         (14) 
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1 1 10, 10
k k k kt t t t

iteration f f f f                                                                                              (15) 
 

The residual denotes a measure for the overall error obtained for the system of equations discretized by 
the least squares method. The iteration overall error denotes a measure of the difference in variable values 
between the second last- and the last preceding iterations. After we have received our specified 
convergence criteria, we went to next time step. We checked the current simulation time with the 
specified final simulation time, finalt . If both were not same, then, we did update tf with t tf . 
 

 
  Fig. 1. Integration algorithm for solving the dynamic pellet model by using LS-SEM. 

4. Results and Discussion 

The mass based dynamic model describes the evolution of species mass fraction, pressure, 
density, temperature, gas velocity, mass diffusion flux, heat flux and convection for the SMR process. 



1667  K. R. Rout et al.  /  Procedia Engineering   42  ( 2012 )  1662 – 1669 

The present paper focuses the algorithm of diffusion model using the LS-SEM and to check the suitability 
of the LS-SEM for solving diffusion-reaction problem. 
 

Figure 2(a) shows the dependence of the error with expansion order, N. It has been shown that 
the error is reduced with an exponential convergence rate. The norm of the residual, shown in the figure 
2(a) decreases until reaching a point of limiting accuracy, close to numerical precision. The convergence 
rate is strongly affected by the capability of the solver, which allows for the attainment of more accurate 
results. 

  
(a) Norm of the residual                        (b) Shape of the problem matrix 

  
                (c) Mass fractions                                    (d) Temperature  

  
                 (e) Pressure                                             (f) Velocity 
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                (g) Concentration                                      (h) Flux 
 
Fig. 2. The results of mass based Maxwell-Stefan model 
 
The shape of the problem matrix has been shown in the figure 2(b). When the equations involve an 
identity operator, the choice of the search affects appreciably the fill-in of the problem matrix, the 
Lagrange polynomials evaluated at the GLL quadrature points yields zeros and ones. Figure 2(c) shows 
the steady-state mole fraction profiles of different components across the pellet for the SMR process. In 
the case of the SMR simulations, the temperature variation between the surface and the center of the 
pellet is less than 1K which has been shown in the figure 2(d), which are in agreement with the literature 
[11]. Hence, there is uniform temperature across the pellet. Figure 2(e) shows that there is no variation of 
pressure from the surface to the center of the catalyst. This validates the assumption of the mass based 
model as there is no mass formation near the pellet surface. Since there is no pressure gradient, there is no 
viscous flow and as a consequence no convective flux. As an illustration the convective flux of H2 has 
been shown in figure 2(h). Figure 2(h) shows that close to external surface, the diffusion fluxes clearly 
dominate over the convective fluxes, hence neglecting the convective flux terms in the governing 
equations is a reasonable model approximation. Figure 2(g) shows that the density increases from the 
surface to the center as there is a net production of gases in the pellet. 
 
Table 1. Internal and overall effectiveness factors for the SMR process 
 
 
 
 
 
 
 
 

The internal effectiveness factors  and the overall effectiveness factors  for the reactions I, II and 
III have been given in table 1.  for the shift reaction  is sensitive to the gas composition and it may 
change the sign at the catalyst surface [3]. The effectiveness factor for the shift reaction may tend towards 
infinity [3]. For the other two reactions the internal effectiveness factors are in the range of 0.01 to 0.001, 
which are in agreement with the literature values [12]. 
 

Reaction                                      

I                      0.01                         0.0075 

II                    0.008                       0.0033 

III                  0.07                          -2.56 
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5. Conclusion  

   In this work, mass based mathematical model has been formulated for the SMR process and validated 
with literature data. The model results generally support the conventional model approximations like 
uniform temperature across the pellet as the temperature variation between the surface and the center of 
the pellet is less than 1K and constant pressure within the pellets. Moreover, the magnitude of the 
diffusion fluxes generally dominates over the convective fluxes. 
 
The LSM is well suited for the solution of the pellet model equations, achieving exponential convergence 
in the method order. This method has been described and can be applied for the solution of the transport 
and reactions problems constituting a pellet model. 
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