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In this analysis, the boundary layer flow and heat transfer over a permeable stretching sheet due to a
nanofluid with the effects of magnetic field, slip boundary condition and thermal radiation have been
investigated. The transport equations used in the analysis took into account the effect of Brownian
motion and thermophoresis parameters. The solution for the velocity, temperature and nanoparticle con-
centration depends on parameters viz. thermal radiation parameter R, Prandtl number Pr, Lewis number
Le, Brownian motion parameter Nb, thermophoresis parameter Nt, Eckert number Ec, magnetic parame-
ter M and slip parameters. Similarity transformation is used to convert the governing non-linear bound-
ary-layer equations into coupled higher order non-linear ordinary differential equations. These equations
are numerically solved using fourth order Runge–Kutta method along with shooting technique. An anal-
ysis has been carried out to elucidate the effects of governing parameters corresponding to various
physical conditions. Numerical results are obtained for distributions of velocity, temperature and concen-
tration, as well as, for the skin friction, local Nusselt number and local Sherwood number for several
values of governing parameters. The results indicate that the local Nusselt number decreases with an
increase in both Brownian motion parameter Nb and thermophoresis parameter Nt. However, the local
Sherwood number increases with an increase in both thermophoresis parameter Nt and Lewis number
Le, but it decreases as the values of Nb increase. Besides, it was found that the surface temperature of
a sheet increases with an increase in the Eckert number Ec. A comparison with previous studies available
in the literature has been done and we found an excellent agreement with it.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The boundary layer flow over a stretching sheet in a uniform
stream of fluid has been studied extensively in fluid mechanics.
A large number of research has been done on the area of the
boundary layer flow over a moving continuous stretching sheet
in the view of its numerous industrial and engineering applica-
tions. Some of the wide application areas we have come across
are in the aerodynamic extrusion of plastic sheet, in metallurgy,
cooling of an infinite metallic plate in a cooling bath, polymer
extrusion, cooling or drying of papers and in textile and glass fiber
production.

Flow and heat transfer characteristics over a stretching sheet
have important industrial applications, for instance, in the extru-
sion of a polymer sheet from a die. In the manufacturing of such
sheets, the melt issues from a slit and is subsequently stretched.
The rates of stretching and cooling have a significant influence
on the quality of the final product with desired characteristics.
The aforementioned processes involve cooling of a molten liquid
by drawing into a cooling system. The properties desired for the
product of such process mainly depend on two characteristics:the
first is the cooling liquid used and the other is the rate of stretch-
ing. Liquids of non-Newtonian characteristics with weak electrical
conductivity can be chosen for as a cooling liquid as their flow
and hence the heat transfer rate can be regulated through some
external means. Optimal rate of stretching is important, as rapid
stretching results in sudden solidification, thereby destroying the
properties expected from the product.

After the pioneering work of Sakiadis [1], a large number of re-
search papers on a stretching sheet have been published by consid-
ering various governing parameters such as suction/injection,
porosity, magnetic field parameter, and radiation with different
types of fluids such as Newtonian, non-Newtonian, polar, and cou-
ple stress fluids. However, the abundant literature on the boundary
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Nomenclature

A velocity slip parameter
B thermal slip parameter
C solutal slip parameter
cf skin friction coefficient
DB Brownian diffusion coefficient
DT thermophoresis diffusion coefficient
f dimensionless stream function
k thermal conductivity
Le Lewis number
M magnetic parameter
Nb Brownian motion parameter
Nt thermophoresis parameter
Nux local Nusselt number
Pr Prandtl number
R thermal radiation parameter
Rex local Reynolds number
T temperature of the fluid inside the boundary layer
Shx local Sherwood number
Tw uniform temperature over the surface of the sheet
T1 ambient temperature

u, v velocity component along x- and y-direction

Greek symbols
g dimensionless similarity variable
l dynamic viscosity of the fluid
t kinematic viscosity of the fluid
/ dimensionless concentration function
qf density of the fluid
(cq)f heat capacity of the fluid
(cq)p effective heat capacity of a nanoparticle
w stream function
a thermal diffusivity
h dimensionless temperature
s parameter defined by ðcqÞpðcqÞf

Subscripts
1 condition at the free stream
w condition at the surface
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layer flow over a stretching sheet is limited to Newtonian and
some non-Newtonian fluids flow with traditional no-slip flow
boundary condition over various stretching geometry such as lin-
ear and non-linear stretching sheet and a little attention was given
to stretching sheet with slip boundary condition. However, fluids
with micro-scale or nano-scale dimensions have flow behavior that
greatly differs from the traditional fluid flow characteristics and
belongs to the slip flow regime. For the flow in the slip regime,
the fluid motion still obeys the Navier–Stoke’s equations, but with
slip velocity, temperature and concentration boundary conditions.
For instance, the flow in many applications of micro/nano systems
such as hard disk drive, micro-pump, micro-valve and micro-noz-
zles is in slip transition regime, which is characterized by slip
boundary at the wall.

The no-slip boundary condition is known as the main manifes-
tation of the Navier–Stoke’s theory of fluid dynamics. But there are
situations wherein such condition is not appropriate. Especially
no-slip condition is inadequate for most non-Newtonian liquids
and nanofluids, as some polymer melt often shows microscopic
wall slip and that in general is governed by a non-linear and mono-
tone relation between the slip velocity and the traction. The liquids
exhibiting boundary slip find applications in technological prob-
lems such as polishing of artificial heart valves and internal
cavities.

The earlier studies that took into account the slip boundary con-
dition over a stretching sheet were conducted by Andersson [2]. He
gave a closed form solution of a full Navier–Stokes equations for a
magnetohydrodynamics flow over a stretching sheet. Following
Andersson, Wang [3] found the closed form similarity solution of
a full Navier–Stoke’s equations for the flow due to a stretching
sheet with partial slip. Furthermore, Wang [4] investigated stagna-
tion slip flow and heat transfer on a moving plate. Similarly, Fang
et al. [5] studied slip magnetohydrodynamics viscous flow over a
stretching sheet analytically. Still further, Hayat et al. [6] expanded
the problem of the previous researchers by incorporating thermal
slip condition and discussed unsteady magneto hydrodynamic
flow and heat transfer over a permeable stretching sheet with slip
condition. In a similar way, Aziz [7] studied hydrodynamic and
thermal slip boundary layer flow over a flat plate with constant
heat flux boundary condition. The above mentioned literature
discussed the slip boundary conditions when the first order veloc-
ity slip boundary conditions were used. However, Fang et al. [8]
found a closed form solution for viscous flow over a shrinking sheet
using the second order velocity slip flow model. Similarly, Mahan-
tesh et al. [9] studied flow and heat transfer over a stretching sheet
by considering second order velocity slip boundary condition.

Nanofluids are the suspension of nanometer-sized solid parti-
cles and fibers, which have been proposed as a means for enhanc-
ing the performance of heat transfer liquids currently available,
such as water, toluene, oil and ethylene glycol mixture. Nanofluids
have received the interest of many researchers recently because of
their greatly enhanced thermal conductivity property [10]. One can
refer the works of authors [11–13] regarding the thermal conduc-
tivity enhancement of the nanofluids available in the literature.
Nowadays, the study of convective heat transfer in nanofluids be-
come active research area due to its heat transfer enhancement
characteristics. Because of the fact that cooling is one of the tech-
nical challenges faced many industries including microelectronic,
transportation, solid-state lighting and manufacturing; the idea
of nanofluid has been proposed as a means of alleviating these
challenges.

The boundary layer flow and heat transfer due to nanofluids
over a stretching sheet are a thrust areas of current research. Such
investigations find applications over a broad spectrum of science
and engineering disciplines. An important aspect of boundary layer
flow of a nanofluid over a stretching sheet is the heat transfer char-
acteristics. It is crucial to understand the heat transfer characteris-
tics of the stretching sheet so that the finished product meets the
desired quality. This is due to the fact that the quality of a final
product depends on the rate of heat transfer at the stretching sur-
face. Accordingly, Kuznetsov and Nield [14] have studied the natu-
ral convective boundary-layer flow of a nanofluid past a vertical
plate analytically. They used a model in which Brownian motion
and thermophoresis effects were taken into account. Moreover,
Khan and Pop [15] used the same model to study the boundary
layer flow of a nanofluid past a stretching sheet with a constant
surface temperature. Very recently Ibrahim and Shanker [16] have
studied the boundary-layer flow and heat transfer of nanofluid
over a vertical Plate taking into account the convective surface
boundary condition. Recently, Haddad et al. [17] experimentally
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investigated natural convection in nanofluid by considering the
role of thermophoresis and Brownian motion in heat transfer
enhancement. They indicated that neglecting the role of Brownian
motion and thermophoresis deteriorate the heat transfer and this
deterioration elevates when the volume fraction of a nanoparticles
increases.

Similarly, Bachok et al. [18] numerically studied steady bound-
ary layer flow of a nanofluid over a moving semi-infinite plate in a
uniform free stream. Further, Makinde and Aziz [19] conducted a
numerical study of boundary layer flow of a nanofluid past a
stretching sheet with convective boundary condition. Also, Vajrav-
elu et al. [20] discussed the convective heat transfer in a nanofluid
flow over a stretching surface using Ag–water or Cu–water nano-
fluid. Furthermore, Hamad and Ferdows [21] studied boundary
layer stagnation point flow towards a heated porous stretching
sheet saturated with a nanofluid with heat absorption/generation
and suction/blowing using Lie group analysis. Similarly, Mustafa
et al. [22] investigated stagnation point flow of a nanofluid towards
a stretching sheet. Wubshet et al. [23] were also numerically inves-
tigated the MHD stagnation point flow of a nanofluid towards a
stretching sheet. Moreover, magnetic effects on free convection
flow of a nanofluid past a vertical semi-infinite flat plate have been
discussed by Hamad et al. [24]. Still, Yacob et al. [25] have further
analyzed the boundary layer flow and heat transfer applying a con-
vective boundary condition to the problem of flow over flat plate.
MHD slip flow, heat and mass transfer in nanofluids over a perme-
able stretching/shrinking surface analytically studied by [26].
Moreover, Uddin et al. [27] analyzed scaling group transformation
for MHD boundary layer slip flow of a nanofluid over a convective-
ly heated stretching sheet with heat generation.

The comprehensive review of nanofluids about theoretical and
numerical investigation, experiments and applications were
described by Wang and Mujumdar [28,29]. They discussed the the-
oretical investigation, preparation and applications of the nanofl-
uids. An interested reader can refer to these reviews.

The aforesaid studies analyzed the boundary layer flow of nano-
fluids by neglecting the slip boundary condition in the flow analy-
sis. Very recently, Aminreza et al. [30] and Kalidas [31] numerically
investigated the effect of partial slip boundary condition on the
flow and heat transfer of a nanofluid past a stretching sheet. They
indicated that the reduced Nusselt number and Sherwood number
are strongly influenced by the slip parameter.

All the above studies considered the no-slip thermal and solutal
boundary condition. But, there might be a natural situation where
no-slip boundary condition may not be applicable. In such circum-
stances, we may be forced to consider slip boundary condi-
tion.Therefore, this study try to fulfil this gap. In this paper we
considered the slip boundary conditions in velocity, temperature
and concentration to study the boundary layer flow and heat trans-
fer analysis of a nanofluid. Hence, the purpose of this study is to fill
this felt out knowledge gap in the nanofluid. The study analyzes
magnetohydrodynamics boundary layer flow over a stretching
sheet in nanofluid with the inclusion of radiation effect. Moreover,
the combined effects of Brownian motion, thermophoresis param-
eter and nanoparticle fraction on boundary layer flow and heat
transfer due to nanofluid are examined.
2. Mathematical formulation

Consider a two-dimensional steady state boundary layer flow
of a nanofluid over stretching sheet with surface temperature Tw

and concentration Cw. The stretching velocity of the sheet is
uw = ax, with a being a constant. Let the wall mass transfer be
Vw, which will be determined later. The flow is assumed to be
generated by stretching sheet issuing from a thin slit at the ori-
gin. The sheet is then stretched in such a way that the speed at
any point on the sheet becomes proportional to the distance
from the origin. The ambient temperature and concentration,
respectively, are T1 and C1. The flow is subjected to the com-
bined effect of thermal radiation and a transverse magnetic field
of strength B0, which is assumed to be applied in the positive y-
direction, normal to the surface. The induced magnetic field is
also assumed to be small compared to the applied magnetic
field; so it is neglected. It is further assumed that the base fluid
and the suspended nanoparticles are in thermal equilibrium. It is
chosen that the coordinate system x-axis is along stretching
sheet and y-axis is normal to the sheet.

Under the above assumptions, the governing equation of the
conservation of mass, momentum, energy and nanoparticles frac-
tion in the presence of magnetic field and thermal radiation past
a stretching sheet can be expressed as:
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where qf, r, B0, qp, (cq)f, DB and DT are the density of the base fluid,
electrical conductivity, magnetic field, the density of the nanoparti-
cle, heat capacity of a fluid, the Brownian diffusion and thermopho-
resis diffusion coefficient respectively. The boundary conditions
are:

u ¼ uw þ L
@u
@y
; v ¼ Vw; T ¼ Tw þ K1

@T
@y

;

C ¼ Cw þ K2
@C
@y

; at y ¼ 0

u! U1 ¼ 0; T ! T1; C ! C1 as y!1 ð6Þ

where uw ¼ ax; Tw ¼ T1 þ b x
l

� �2
;Cw ¼ C1 þ C x

l

� �2, L, K1 and K2 are
the velocity, the thermal and concentration slip factor, respectively,
and when L = K1 = K2 = 0, the no-slip condition is recovered, l is ref-
erence length of a sheet. The above boundary condition is valid
when x� l which occurs very near to the slit.

Using an order magnitude analysis of the y-direction momen-
tum equation (normal to the sheet) and the usual boundary layer
approximations, such as:
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After boundary-layer approximation, the governing equations
are reduced to:
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The boundary conditions are:

u ¼ uw þ L
@u
@y
; v ¼ Vw; T ¼ Tw þ K1

@T
@y

;

C ¼ Cw þ K2
@C
@y

; at y ¼ 0

u! U1 ¼ 0; T ! T1; C ! C1 as y!1 ð12Þ

where a ¼ k
ðcqÞf

; s ¼ ðcqÞpðcqÞf
; t ¼ l

qf
, x and y represent coordinate axes

along the continuous surface in the direction of motion and normal
to it, respectively. The velocity components along x and y-axis are u
and v respectively. t is the kinematic viscosity, T is the temperature
inside the boundary layer, (cq)p effective heat capacity of a nano-
particle, q is the density, T1 is the temperature far away from the
sheet.

Introducing the following dimensionless quantities, the mathe-
matical analysis of the problem is simplified by using similarity
transforms:
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The equation of continuity is satisfied if a stream function
w(x,y) is chosen as:
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@x

ð14Þ

The radiative heat flux in the x-direction is considered negligi-
ble as compared to y-direction. Hence, by using Rosseland approx-
imation for radiation, the radiative heat flux qr is given by

qr ¼ �
4r�

3k�
@T4

@y
ð15Þ

where r⁄ and k⁄ are the Stefan–Boltzmann constant and the mean
absorption coefficient, respectively. We assume that the tempera-
ture difference with in the flow is sufficiently small such that the
term T4 may be expressed as a linear function of temperature. This
is done by expanding T4 in a Taylor series about a free stream tem-
perature T1 as follows:

T4 ¼ T4
1 þ 4T3

1ðT � T1Þ þ 6T2
1ðT � T1Þ2 þ � � � ð16Þ

Neglecting higher-order terms in the above Eq. (16) beyond the
first order in (T � T1), we get:

T4 ffi 4T3
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1 ð17Þ

Thus, substituting Eq. (17) into Eq. (15), we get:
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Using the similarity transformation quantities, the governing
Eqs. (8)–(11) are transformed to the ordinary differential equation
as follows:
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where f0, h and / are the dimensionless velocity, temperature and
nanoparticle concentration, respectively. g is the similarity vari-
ables, the prime denotes differentiation with respect to g. Pr, R, M,
Ec, Nb, Nt, Le denote a Prandtl number, a radiation parameter, a
magnetic parameter, Eckert number, a Brownian motion parameter,
a thermophoresis parameter, and a Lewis number, respectively. A, B,
C are velocity, thermal and concentration slip parameters,
respectively.

The important physical quantities of interest in this problem are
local skin friction coefficient cf, the local Nusselt number Nux and
the local Sherwood number Shx are defined as:

cf ¼
sw

qu2
w
; Nux ¼

xqw

kðTw � T1Þ
; Shx ¼

xhm

DBð/w � /1Þ
ð24Þ

Where the wall heat flux qw and mass flux hm are given by:
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By using the above equations, we get:

cf

ffiffiffiffiffiffiffiffi
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p
¼ �f 00ð0Þ; Nuxffiffiffiffiffiffiffiffi

Rex
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Rex
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where cf, Rex, Nux, Shx are the skin friction, local Reynolds number,
local Nusselt number and local Sherwood number, respectively.

3. Numerical solution

An efficient fourth order Runge–Kutta method along with
shooting technique has been employed to study the flow model
for the above coupled non-linear ordinary differential equations
Eqs. (19)–(21) for different values of governing parameters viz.
Prandtl number Pr, radiation parameter R, a Brownian motion
parameter Nb, a thermophoresis parameter Nt, Eckert number Ec
and a Lewis number Le. The non-linear differential equations are
first decomposed into a system of first order differential equation.
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The coupled ordinary differential Eqs. (19)–(21) are third order in f
and second order in h and / which have been reduced to a system
of seven simultaneous equations for seven unknowns. In order to
numerically solve this system of equations using Runge–Kutta
method, the solution requires seven initial conditions but two ini-
tial conditions in f one initial condition in each of h and / are
known. However, the values of f0, h and / are known at g ?1.
These end conditions are utilized to produce unknown initial con-
ditions at g = 0 by using shooting technique. The most important
step of this scheme is to choose the appropriate finite value of
g1. Thus to estimate the value of g1, we start with some initial
guess value and solve the boundary value problem consisting of
Eqs. (19)–(21) to obtain f00(0), h0(0) and /0(0). The solution process
is repeated with another larger value of g1 until two successive
values of f00(0), h0(0) and /0(0) differ only after desired significant di-
git. The last value g1 is taken as the finite value of the limit g1 for
the particular set of physical parameters for determining velocity,
temperature and concentration, respectively, are f(g), h(g) and /(g)
in the boundary layer. After getting all the initial conditions we
solve this system of simultaneous equations using fourth order
Runge–Kutta integration scheme. The value of g1 is selected to
vary from 5 to 20 depending on the physical parameters governing
the flow so that no numerical oscillation would occur. Thus, the
coupled boundary value problem of third-order in f, second-order
in h and / has been reduced to a system of seven simultaneous
equations of first-order for seven unknowns as follows:

The Eqs. (19)–(21) can be expressed as:
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System of equations
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A prime denote the differentiation with respect to g and the
boundary conditions are:

f1ð0Þ ¼ 0; f 2ð0Þ ¼ 1þ Af3ð0Þ; f 4ð0Þ ¼ 1þ Bf5ð0Þ;
f 6ð0Þ ¼ 1þ Cf7ð0Þ f2ð1Þ ¼ 0; f 4ð1Þ ¼ 0; f 6ð1Þ ¼ 0 ð32Þ

In this study, the boundary value problem is first converted into
an initial value problem (IVP). Then the IVP is solved by appropri-
ately guessing the missing initial value using the shooting method
for several sets of parameters. The step size h = 0.1 is used for the
computational purpose. The error tolerance of 10�7 is also being
used. The results obtained are presented through tables and
graphs, and the main features of the problems are discussed and
analyzed.
4. Results and discussion

The numerical solutions are obtained for velocity, temperature
and concentration profiles for different values of governing param-
eters. The obtained results are displayed through graphs Figs. 1–16
for velocity, temperature and concentration profiles, respectively.
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Fig. 4. Temperature graph for different values of Pr when Nb = Nt = R = 0.5, Le = 5,
A = B = M = S = 1, Ec = 0.2.
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Fig. 5. Temperature graph for different values of thermal slip parameter B when
Nb = Nt = 0.5, Ec = 0.2, R = 0.5, M = Pr = S = A = 1.
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Fig. 6. Temperature graph for different values of Radiation parameter R when
Nt = Nb = 0.5, M = S = B = A = 1, Pr = 10, Ec = 0.2.
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Fig. 7. Temperature graph for different values of Eckert number Ec when
Nb = Nt = 0.5, R = 0.5, M = Pr = S = A = B = 1.
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Fig. 8. Temperature graph for different values of suction parameter S when
Nb = Nt = 0.5, R = 0.5, M = Pr = Ec = A = B = 1.
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Fig. 9. Temperature graph for different values of Nb = Nt when
M = Pr = S = A = B = 1, R = 0.5, Ec = 0.2.
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Figs. 1–16 show that the far field boundary conditions are satis-
fied asymptotically, hence it supports the accuracy of the numeri-
cal result obtained. Moreover, the graphs for local Nusselt number
and local Shrewood number are displayed through Figs. 17 and 18.

The velocity profile f0 for different values of the magnetic field
parameter M, mass suction parameter S and velocity slip parame-
ter A are shown in Figs. 1–3, respectively.

Fig. 1 reveals the influences of magnetic field on the flow field.
The presence of transverse magnetic field sets in Lorentz force ef-
fect, which results in the retarding effect on the velocity field. As
the values of magnetic parameter M increase, the retarding force
increases and consequently the velocity decreases. The graph also
reveals that the boundary layer thickness reduces as magnetic
parameter M increases. Figs. 2 and 3 display the distinction of
velocity profile with respect to the variation in suction parameter
S and velocity slip parameters A. On observing these figures, as
the values of ‘S’ increase, the velocity profile graph decreases. Sim-
ilarly, the velocity graph decreases as the values of velocity slip
parameter A increase.

Figs. 4–11 present the variation of temperature with respect to
the governing parameters, viz. Prandtl number Pr, thermal slip
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Fig. 10. Temperature graph for different values of M when Nb = N = 0.5t,
M = Pr = S = A = B = 1, R = 0.5, Ec = 0.2.
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Fig. 11. Concentration graph for different values of Le when M = S = Ec = -
Pr = A = B = C = 1, Nt = Nb = 0.5, R = 0.5.
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Fig. 12. Concentration graph for different values of Nb when Nt = 0.5, Le = 5,
M = S = Ec = Pr = A = B = C = 1, R = 0.5.
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Fig. 13. Concentration graph for different values of Nt when M = S = Ec = -
Pr = A = B = C = 1, Nb = 0.5, Le = 5, R = 0.5.
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Fig. 14. Concentration graph for different values of solutal slip parameter when
M = S = Ec = Pr = A = B = 1, Le = 10, Nt = Nb = 0.5, R = 0.5.

S = 0.0
S = 1.0
S = 2.0

η

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

0 5  10  15  20

φ 
(η

)

Fig. 15. Concentration graph for different values of suction parameter S when
M = Ec = Pr = A = B = C = 1, Le = 5, Nt = Nb = 0.5, R = 0.5.
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parameter B, radiation parameter R, Eckert number Ec, suction
parameter S, thermophoresis parameter Nt and magnetic parame-
ter M, respectively.

The effect of Prandtl number Pr on the heat transfer process is
shown by the Fig. 4. This figure reveals that an increase in Prandtl
number Pr results in a decrease in the temperature distribution,
because, thermal boundary layer thickness decreases with an in-
crease in Prandtl number Pr. In short, an increase in the Prandtl
number means slow rate of thermal diffusion. The graph also
shows that as the values of Prandtl number Pr increase, the wall
temperature decreases. The effect of Prandtl on a nanofluid is sim-
ilar to what has already been observed in common fluids qualita-
tively but they are different quantitatively. Therefore, these
properties are inherited by nanofluids.

Fig. 5 shows the variation of temperature with respect to ther-
mal slip parameter B. The graph reveals that the wall temperature
h(0) and thermal boundary layer thickness decreases when the
values of B increases. However, the opposite effect is true with
the radiation parameter R as shown in Fig. 6. As the values of R
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Fig. 16. Concentration graph for different values of radiation parameter R when
S = M = Ec = Pr = A = B = C = 1, Le = 5, Nt = Nb = 0.5.
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increase, the thermal boundary layer thickness increases. This may
be due to the reduction of rate of heat transfer at the surface as re-
vealed in Table 4.

Fig. 7 illustrates the influence of Eckert number Ec on tempera-
ture in the boundary layer. On observing the temperature graph,
the wall temperature of the sheet increases as the values of Ec in-
crease. Moreover, when the values of Ec increase, the thermal
boundary layer thickness increases. This is due to the fact that
the heat transfer rate at the surface decrease as Ec increases as
shown in Table 4.
Fig. 8 displays the variation of temperature with suction param-
eter S. As the values of suction parameter S increase, the tempera-
ture graph is decreasing. Moreover, the thermal boundary layer
thickness and surface temperature is also decreasing.

Fig. 9 shows the influence of the change of Brownian motion
parameter Nb and thermophoresis parameter Nt on temperature
profile when (Nb = Nt). It is noticed that as thermophoesis param-
eter increases the thermal boundary layer thickness increases and
the temperature gradient at the surface decrease (in absolute va-
lue) as both Nb and Nt increase. Therefore, the local Nusselt num-
ber �h0(0), which represents the heat transfer rate at the surface,
decreases. Consequently, temperature on the surface of a sheet in-
creases. This is due to the fact that the thermophoresis Parameter
Nt is directly proportional to the heat transfer coefficient associ-
ated with the fluid.

Fig. 10 shows the influence of magnetic field parameter M on
the thermal field. Transverse magnetic field has increased the ther-
mal boundary layer thickness. However, an increment in thermal
boundary layer is not significant amount. Similar to other common
fluids, the nanofluid shows similar characteristics regarding the
influences of magnetic field on thermal field.

Figs. 11–15 demonstrate the variation of nanoparticle concen-
tration with respect to the change in governing parameters, viz. Le-
wis number Le, Brownian motion parameter Nb, thermophoresis
parameter Nt, concentration slip parameter, suction and radiation
parameters.

As it is noticed from Fig. 11, as Lewis number increases the con-
centration graph decreases and the concentration boundary layer
thickness decreases. This is probably due to the fact that mass
transfer rate increases as Lewis number increases. It also reveals
that the concentration gradient at surface of the sheet increases.
Moreover, the concentration at the surface of a sheet decreases
as the values of Le increase.

Graph Fig. 12 reveals the variation of concentration in response
to a change in Brownian motion parameter Nb. As the values of
Brownian motion parameter increase, the concentration boundary
layer thickness is decreasing. Furthermore, the magnitude of con-
centration gradient on the surface of a sheet increases as the values
of Nb increase. Thus, the local Sherwood number �/0(0), which
represents the mass transfer rate at the surface increases when
Nb increases. This may be due to the fact that as a Brownian mo-
tion parameter Nb decreases the mass transfer of a nanofluid; con-
sequently, mass transfer rate at a surface increases.

Graph Fig. 13 reveals variation of concentration graph in re-
sponse to a change in thermophoresis parameter Nt. The influence
of thermophoresis parameter on concentration profile graph is
monotonic, i.e. as the values of Nt parameter increase, the concen-
tration boundary layer thickness is also increasing. Moreover, it is
possible to recognize from the graph that the magnitude of concen-
tration gradient on the surface of a sheet decreases as the values Nt
increase. Thus, the local Sherwood number �/0(0), which repre-
sents the mass transfer rate at the surface decreases when Nt in-
creases. This may be due to the fact that thermophoresis
parameter Nt increases the mass transfer of a nanofluids; conse-
quently, mass transfer rate at a surface decreases.

Fig. 14 illustrates the variation of concentration with respect to
concentration slip parameter C. As it can be seen from the graph,
the concentration slip parameter does not have any influences on
concentration profile graph. On the other hand the suction param-
eter ‘S’ has a strong influence on the concentration profile as it is
shown in Fig. 15. As the values of suction parameter S increase,
concentration graph decreases and the concentration boundary
layer thickness decreases.

Fig. 16 illustrates the variation of radiation on concentration
graph. The influences of radiation parameter on concentration is
not this much significant. As the values of radiation parameter R



Table 3
Comparison of local Nusselt number �h0(0) at Nt = 0, Nb ? 0, M = R = A = B = 0 for
different values of Pr and S with previously published data when the power of x

l

� �
is

equal to 1.

S Pr Hayat et al. [6] Present result

�1.5 0.72 0.4570273 0.4570
1 0.5000000 0.5000
10 0.6451648 0.6542

0 0.72 0.8086314 0.8686
1 1.0000000 1.0000
3 1.9235913 1.9237
10 3.7215968 3.7207

1.5 0.72 1.4943687 1.4944
1 2.0000621 2.0000
10 16.096248 16.0842

Table 4
Computation showing the values local Nusselt number �h0(0) and Sherwood number
�/0(0) at Le = 5, M = S = 1, Nb = Nt = 0.5 for different values of Pr, R, B, C, Ec.

Pr R Ec B C �h0(0) �/0(0)

1 0.2 0.2 1 1 0.3616 0.6786
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increase, the concentration boundary layer thickness is not chang-
ing much. It can be observed from Table 4 that, as radiation param-
eter R increases, mass transfer rate is almost constant.

Fig. 17 shows that the influence of both the Brownian motion
parameter Nb and thermophoresis parameter Nt on local Nusselt
number �h0(0). As both parameters increase, the heat transfer rate
on the surface of a sheet decreases. This indicates that an incre-
ment in thermophoresis parameter induces resistance to the diffu-
sion of mass. This results in the reduction of concentration gradient
on the surface.

Fig. 18 also depicts the variation of local Sherwood number
�/0(0) in response to a change in Brownian motion parameter
Nb. The graph shows that the local Sherwood number increases
as Nb parameters increase but it decreases with an increase
in Nt.

Finally, a comparison with previously published papers avail-
able in the literature has been done in order to check the accuracy
of the present results. As it is shown in Tables 1 and 2, the numer-
ical values of the skin friction coefficient �f00(0) and local Nusselt
number �h0(0) in this paper for different values of A, S and Pr,
are in excellent agreement with the result published in Andersson
[2] and Hayat et al. [6]. Therefore, we are confident that our results
are highly accurate to analyze this flow problem.

Table 2 presents the variation of the skin friction coefficient in
relation to magnetic field, suction and velocity slip parameters.
On observing this table, as both the values of magnetic field and
suction parameters increase, the values of skin friction coefficient
increase. However, the skin friction coefficient decreases as the
values of velocity slip parameter increase. Table 3 shows the com-
parison of local Nusselt number �h0(0) for different values of Pra-
ndtl number Pr and suction parameter S. It is possible to see that
as both the values of Prandtl number Pr and suction parameter S
increase, the heat transfer rate (local Nusselt number) is increas-
ing. Table 4 elucidates the variation of the local Nusselt number
and local Sherwood number with thermal and concentration slip
Table 1
Comparison of skin friction coefficient-f00(0) for different values of A when S = M = 0.

A Andersson [2] Hayat et al. [6] Present result

0.0 1.0000 1.000000 1.0000
0.1 0.8721 0.872082 0.8721
0.2 0.7764 0.776377 0.7764
0.5 0.5912 0.591195 0.5912
2.0 0.2840 0.283981 0.2840
5.0 0.1448 0.144841 0.1448

10.0 0.0812 0.081249 0.0812
20.0 0.0438 0.043782 0.0438
50.0 0.0186 0.018634 0.0186

Table 2
Computed values of skin friction coefficient �f00(0) for various values of M, S and A.

M S A �f00(0)

0 0.5 0 1.2808
0.5 1.5000
1.0 1.6861
1.5 1.8508
2.0 2.0000
1.0 0 1.4142

0.2 1.5177
0.7 1.8069
1.0 2.0000
0.2 1 0.5656

1.2 0.5055
1.3 0.4801
parameters by fixing other governing parameters. As the values
of thermal slip parameter B increase, the local Nusselt number
�h0(0) decreases, however, the local Sherwood number �/0(0) in-
creases and opposite effect is observed as the values of concentra-
tion slip parameter C increase. Table 5 represents the variation of
both the heat transfer rate �h0(0) and mass transfer rate �/0(0)
for different values of the parameters Nt, Nb and Le. As the values
of Lewis number Le increase, both the values of �h0(0) and �/0(0)
increase, but, opposite effect is observed as the values of Nt in-
crease. As the values of Nb parameter increase, the values of
�h0(0) decrease but �/0(0) decrease.
5 0.5473 0.6482
7 0.5696 0.6443

10 0.5869 0.6417
5 0.5 0.5246 0.6522

0.7 0.5106 0.6546
1.0 0.4139 0.6580

1 0.3857 0.6870
2 0.2513 0.7238
3 0.1141 0.7609
0.2 0 0.8872 0.6058

1 0.4913 0.6580
2 0.3295 0.6807
1 0 0.4011 2.4949

1 0.4913 0.6580
2 0.5054 0.3788
3 0.5111 0.2659

Table 5
Computation showing the local Nusselt �h0(0) and Sherwood number �/0(0) when
M = R = S = 0.5, A = B = C = 1, Pr = 1, Ec = 0.2 for different values of Pr, Nt and Nb.

Le Nt Nb �h0(0) �/0(0)

5 0.2 0.2 0.3980 0.7448
10 0.3993 0.8427
15 0.4001 0.8847
20 0.4005 0.9085

5 0.1 0.4012 0.7679
0.3 0.3947 0.7223
0.4 0.3915 0.7002
0.5 0.3884 0.6787
0.2 0.1 0.4002 0.6971

0.3 0.3957 0.7607
0.4 0.3935 0.7687
0.5 0.3913 0.7735
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5. Conclusions

It has been theoretically analyzed the influence of various gov-
erning parameters viz. magnetic parameter M, thermal radiation
parameter R, Prandtl number Pr, Brownian motion parameter Nb,
suction parameter S, slip parameters (A,B,C), thermophoresis
parameter Nt and Lewis number Le on flow field and heat transfer
characteristics of the MHD boundary layer flow of a stretching
sheet over a nanofluid. The numerical results obtained are in excel-
lent agreement with the previously published data in limiting con-
dition and for some particular cases of the present study. It is found
that the magnitude of the local Nusselt number �h0(0) decreases
with both Le and Nt. Furthermore, the surface temperature h(0) de-
creases with an increase in both Pr and B and the opposite effect is
observed as the values of R and Ec increase. Similarly, the mass
transfer rate at the surface �/0(0) increases with an increase in
Le and Nb.

The main findings of the study are summarized as follows:

1. Velocity profiles decrease with an increase in M.
2. The thickness of velocity boundary layer decreases with an

increase in magnetic field parameter M.
3. The velocity at the surface of a sheet decreases as the values

of A increase.
4. Thermal boundary layer thickness decreases with an

increase in values of slip parameter B and Prandtl number Pr.
5. The thickness of thermal boundary layer increases with an

increase in radiation parameter R, magnetic field parameter
M and thermophoresis parameter Nt when Nt = Nb.

6. An increase in parameter Nb decreases the local Nusslet
number �h0(0) but the opposite is true in local Sherwood
number �/0(0).

7. The wall temperature gradient increases with an increase in
Lewis Number Le and Prandtl number Pr.

8. The surface temperature of a sheet increases with radiation
parameter R but it decreases with an increase in Prandtl
number Pr.

9. Concentration boundary layer thickness decreases with an
increase in parameter V2, Lewis number Le and Nb but
increases with an increase in Nt.

10. The skin friction coefficient decreases as the values of veloc-
ity slip parameter A increases.
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