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a b s t r a c t

The natural convection fluid flow and heat transfer in the annuli of two differentially-heated square
ducts filled with the TiO2-water nanofluid are investigated numerically. The outer duct is maintained
at a constant temperature Tc while the inner duct is kept at a differentially higher constant temperature
Th. The governing equations written in terms of the primitive variables are solved using the finite volume
method and the SIMPLER algorithm. Through a parametric study conducted, the effects of the Rayleigh
number, the aspect ratio of the annulus, and the volume fraction of the nanoparticles on the fluid flow
and heat transfer are investigated. To verify the numerical procedure, two different natural convection
simulations are conducted using the proposed code, and the results are found to be in good agreement
with the existing results already available in the literature. The numerical outcome of the present study
shows that, by increasing the width of the gap between the ducts and also the Rayleigh number, multiple
eddies are developed in the gap between the topwalls of the square ducts. The eddies formeddemonstrate
the characteristics of the Rayleigh–Bénard convective type. Moreover, it is observed from the results that,
the average Nusselt number increases by increasing the volume fraction of the nanoparticles.

© 2011 Elsevier Masson SAS. All rights reserved.
1. Introduction

Buoyancy-driven fluid flow and heat transfer in the annuli are
encountered in a number of industrial applications such as heat
exchangers, home ventilation, and electronic cooling devices. Low
thermal conductivity of conventional fluids such aswater and oil is
a heat transfer drawback in heat exchangers. Heat transfer in such
devices can be enhanced by using nanofluidmedia, for their higher
thermal conductivity. A comprehensive review of the nanofluid
heat transfer characteristics can be found in Godson et al. [1].

As far as natural convection transfer of heat utilizing nanofluids,
Buongiorno [2] conducted a property study of nanofluids to
develop an explanation for the abnormal conductive heat transfer
enhancement observed in them. Among his major findings, an
order-of-magnitude estimation for various terms of the energy
equation suggested that energy transfer by nanoparticle dispersion
is negligible contrary to what is commonly stated in the literature.
He also found that convective heat transfer enhancement can
be explained mainly with a reduction of viscosity within and
consequent thinning of the laminar sublayer. Khanafer et al. [3]
investigated the buoyancy-driven fluid flow and heat transfer
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in rectangular cavities filled with nanofluids numerically. They
concluded that, for the considered range of the Grashof numbers,
the Nusselt number increased with increasing the volume fraction
of the nanoparticles. Jou and Tzeng [4] studied the natural
convection fluid flow and heat transfer in rectangular cavities filled
with Cu–water nanofluid using the finite difference method. They
showed that the heat transfer coefficient increased by increasing
the Rayleigh number and the volume fraction of the nanoparticles.
In another study, Abu-Nada et al. [5] conducted numerical analyses
of the buoyancy-driven heat transfer in the horizontal annuli of
differentially-heated concentric cylinders filled with nanofluids
using the finite volume method. They examined different water
based nanofluids containing Cu, Ag, Al2O3, and TiO2 solid particles.
Based on their observations, for high Rayleigh numbers, the heat
transferwas significantly enhanced for the nanoparticleswith high
thermal conductivity, while for intermediate values of the Rayleigh
number, nanoparticles with low thermal conductivity showed
some reductions of heat transfer. Santra et al. [6] studied the
free convection of Cu–water nanofluid in a differentially-heated
square cavity. They observed that the heat transfer decreased with
increasing the volume fraction of the nanoparticles for Rayleigh
numbers between 104 and 107. Moreover, their results showed
that, the heat transfer increased with increasing the Rayleigh
number for some particular nanoparticles volume fractions they
had considered. Oztop and Abu-nada [7], using the finite volume
method, carried out a numerical study on the free convection heat
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Nomenclature

AR Aspect ratio
cp Heat capacity
g Gravitational acceleration, m/s2
h Height of inner square, m
H Height of outer square, m
k Thermal conductivity, W/m–K
Nu Nusselt number
p Pressure, kg/ms2
P Dimensionless pressure
Pr Prandtl number
Ra Rayleigh number
T Temperature, K
u, v Velocity components, m/s
U, V Dimensionless velocity components
x, y Cartesian coordinates, m
X, Y Dimensionless Cartesian coordinates

Greek letters

α Thermal diffusivity, m2/s
β Thermal expansion coefficient, 1/K
µ Viscosity, kg/m-s
υ Kinematics viscosity, m2/s
θ Dimensionless temperature
ρ Density, kg/m3

ϕ Volume fraction of nanoparticles

Subscript

avg Average
c Cold
f Fluid
h Hot
nf Nanofluid
p Particle

transfer in rectangular cavities. Their considered cavity comprises
a cold vertical wall, an embedded heater counterpart wall, and
insulated horizontal walls. They considered the effects of the
Rayleigh number, the cavity aspect ratio, the size and the location
of the heater on the wall, and the type of nanofluid on the heat
transfer within the cavity. Their results showed an increase in the
average Nusselt numberwith increasing the volume fraction of the
nanoparticles for Rayleigh numbers between 103 and 105.

More recently, Abu-nada and Oztop [8] used the finite volume
method to study the buoyancy-driven fluid flow and heat transfer
in an inclined square cavity filled with Cu–water nanofluid. They
showed that the inclination angle of the enclosure played an
important role on the cavity fluid flow and heat transfer. Their
results indicated that the addition of copper nanoparticles to the
base fluid resulted in a remarkable heat transfer enhancement.
Furthermore, it was observed that the effect of the inclination
angle on the heat transfer enhancement became insignificant at
lowRayleigh number. Ögüt [9] studied the natural convection in an
inclined square cavity with insulated top and bottom walls, a cold
right wall, and an embedded heater left wall. In his investigations
the cavity was filled with different water-based nanofluids. Using
polynomial differential quadrature method, he observed that
the average heat transfer rate increased significantly as the
nanoparticles volume fraction and the Rayleigh number increased.
Moreover, his results indicated that the average heat transfer
decreased with increasing the length of the heater. Aminossadati
and Ghasemi [10] used the finite volume method to investigate
the buoyancy-driven fluid flow and heat transfer in a square cavity
having a constant flux heater on its horizontal bottom wall. The
rest of the cavitywalls were kept at a relatively lower temperature.
The cavity was filled with different water-based nanofluids. They
investigated the effects of the Rayleigh number, the nanoparticles
volume fraction, the size and location of the heater, and the type
of the nanoparticles on the heat transfer inside the cavity. Their
results indicated that adding nanoparticles to purewater improved
the heat transfer performance especially at low Rayleigh numbers.
In another study, Ghasemi and Aminossadati [11] investigated
periodic buoyancy-driven fluid flow and heat transfer in a square
cavity filled with different water-based nanofluids. The cavity had
insulated top and bottom walls, a cold right vertical wall, and an
oscillating flux heat source on its left vertical wall. Their results
showed that addingnanoparticles, in particular Cu, to the base fluid
enhanced the heat transfer especially at low Rayleigh numbers.
Furthermore, they observed periodic profiles for the flow and
temperature fields due to the oscillating heat flux. Moreover, the
optimum position of the heat source on the left wall was found
to be a function of the Rayleigh number. Gumguma and Tezer-
Sezgin [12] used the dual reciprocity boundary element method
to investigate the unsteady natural convection flow of nanofluids
in square cavities having a heat source. Their results showed that
the average Nusselt number increased with increasing the volume
fraction of the nanoparticles and the Rayleigh number. It was also
observed that an increase in the heater length reduced the heat
transfer rate.

Very recently, Ni et al. [13] conducted an experimental
investigation of turbulent thermal convection in water-based
alumina nanofluid between two plates under the condition of
fixed temperature at the top plate and fixed input heat flux at
the bottom one. They observed that the convective heat transfer
coefficient, Nusselt number, and Rayleigh number decreased with
increasing the volume fraction of the nanoparticles. In contrast,
the velocity of the convective flow showed no significant change
over the range of the considered nanoparticle concentrations.
Free convection heat transfer enhancement in a square cavity
based on experimental measured conductivity was investigated
by Jahanshahi et al. [14]. The numerical simulation was subjected
to different side wall temperatures using water–SiO2 nanofluid
for the Rayleigh number of the base fluid, Ra = 105

− 107, and
the volumetric fraction of nanoparticle between 0% and 4%. An
experimental setup was used to extract the conductivity value of
the nanofluid. The study showed that the average Nusselt number
increasedwith the volume fraction for thewhole range of Rayleigh
numbers used.

Among very recent numerical works, Oztop et al. [15] investi-
gated a steady state natural convection in an inclined square en-
closure filled with a nanofluid subjected to heating and cooling
by sinusoidal temperature profiles on one side of the cavity us-
ing the finite volumemethod. The study reported an enhancement
in heat transfer rate for the whole range of considered Rayleigh
numbers. However, low Rayleigh numbers showedmore enhance-
ment compared to high Rayleigh numbers. In two different stud-
ies of free convection in partially-heated side walls square cavities
by Sheikhzadeh et al. [16,17], finite volume method was utilized
to solve the two-dimensional governing equations for both square
cavities with different boundary conditions filled with TiO2–water
nanofluid in one work and Cu–water nanofluid in the other. Their
results for the TiO2–water nanofluid show that by increasing the
volume fraction of the nanoparticles, the average Nusselt number
of the hotwall increases for the shallow cavities and a reverse trend
takes place for the tall ones. However, for the Cu–water nanofluid
the average Nusselt number increases with increasing both the
Rayleigh number and the volume fraction of the nanoparticles.

In an analytical–numerical work in 2011, Alloui et al. [18]
investigated the natural convection in a shallow rectangular
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cavity filled with nanofluids. Neumann boundary conditions
for temperature were applied to the horizontal walls of the
enclosure, while the two vertical ones were assumed insulated.
The stability of the convective motion, predicted by parallel
flow approximation, was investigated numerically on the basis
of the linear stability theory. Among the main conclusions, the
enhancement of heat transfer, due to presence of nanoparticles,
was found to depend on both the Rayleigh number and the
volume fraction of the nanofluid. In another work, Ghasemi and
Aminossadati [19] numerically investigated the natural convection
heat transfer in a right triangular enclosure having a heat source on
its vertical wall filled with CuO–water nanofluid. They considered
the effects of different parameters such as the Rayleigh number,
the nanoparticles volume fraction, the heat source location on
the wall, and the Brownian motion on the flow and temperature
fields. Their results showed that, the heat transfer rate increased
continuously with increasing the nanoparticles volume fraction
at low Rayleigh numbers. However, an optimum solid volume
fractionwas determined to existwhichwould result themaximum
heat transfer rate at high Rayleigh numbers.

A detailed review of the exciting literature reveals that, al-
though many studies have been conducted on natural convection
heat transfer within the annuli of many coaxial basic geometries
containing conventional fluids, no investigations devoting to the
fluid flow and natural convection analysis on a nanofluid within
many basic annuli geometries such as the annulus of two-square
duct have been reported. The present study, therefore, concen-
trates on the analysis of a nanofluid flow and buoyancy-driven heat
transferwithin a two-dimensional, differentially heated annulus of
two concentric square ducts.

2. Problem formulation

Consider the two concentric ducts depicted schematically in
Fig. 1. Each side of the inner square and also each side of
the outer square is denoted h and H , respectively. The aspect
ratio of the annulus is defined as AR = h/H . The length of
the inner and the outer ducts perpendicular to the plane of
the figure are long enough for the problem to be considered
two-dimensional. The inner and outer squares are maintained
at a differentially-different constant temperatures of Th and Tc ,
respectively, with Th > Tc . The annulus (the space between
the two-squares) is filled with a nanofluid composed of water
and TiO2 spherical nanoparticles. The nanofluid is assumed to
be incompressible, and the nanoparticles are presumed to be in
thermal equilibrium with the water. Moreover, there is no slip
between the nanoparticles and the base fluid. The thermophysical
properties of the base fluid and the nanoparticles are presented in
Table 1. The properties of the nanofluid are assumed to be constant
with the exception of its density which varies according to the
Boussinesq approximation [20].

The continuity, x- and y- components of momentum, and
energy equations for the two-dimensional steady and laminar
nanofluid flow are given in Eqs. (1)–(4), respectively. The natural
convection term through the Boussinesq approximation is incor-
porated into the y component of momentum (Eq. (3)).
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= 0, (1)
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Fig. 1. Schematic of the concentric squares with boundary conditions.

Table 1
Thermophysical properties of the base fluid and nanoparticles [7].

Physical properties Base fluid (water) Nanoparticles (TiO2)

Cp (J/kg-K) 4179 686.2
ρ (kg/m3) 997.1 4250
k (W/m–K) 0.613 8.9538
β × 105 (K−1) 21 0.9
µ (kg/m-s) 0.001003 –

and

u
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In order to cast the governing equations into a dimensionless
form, the following dimensionless variables are introduced:

X =
x
H

, Y =
y
H

, U =
uH
αf

, V =
vH
αf

,

P =
pH2

ρnf α2
f
, and θ =

T − Tc
Th − Tc

.

(5)

Substituting the above dimensionless variables into the continuity,
momentum, and energy equations results in the following dimen-
sionless form of the governing equations:
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= 0, (6)
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where the Rayleigh number Ra, and the Prandtl number Pr are de-
fined as follows:

Ra =
gβf ∆T H3

αf νf
, and Pr =

νf

αf
. (10)

The boundary conditions for Eqs. (6)–(9) are

U = V = 0, θ = 1 on the inner square,
and
U = V = 0, θ = 0 on the outer square.

(11)
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2.1. Thermophysical properties of the nanofluid

The effective viscosity,µnf , and the thermal conductivity, knf , of
the nanofluid are obtained from the following respective relations
proposed by He et al. based on their experimental results [21]

µnf = µf

199.21ϕ2

+ 4.62ϕ + 1.0

, (12)

and

knf = kf

125.62ϕ2

+ 4.82ϕ + 1.0

. (13)

The density, ρnf , the heat capacity, (ρcp)nf , and the thermal
expansion coefficient, (ρβ)nf , of the nanofluid are obtained from
the following respective equations [7–10]:

ρnf = (1 − ϕ) ρf + ϕ ρp, (14)
ρcp


nf = (1 − ϕ)


ρcp


f + ϕ


ρcp


p , (15)

and

(ρβ)nf = (1 − ϕ) (ρβ)f + ϕ (ρβ)p . (16)

The thermal diffusivity of the nanofluid αnf is evaluated from

αnf =
knf

ρcp

nf

. (17)

The Nusselt number based on the height (or width) of the outer
square is evaluated from the following relation:

Nu =
hnfH
kf

. (18)

The heat transfer coefficient for the nanofluid hnf is obtained from

hnf =
q

Th − Tc
, (19)

where the wall heat flux per unit area q can be written as

q = −knf
Th − Tc

H
∂θ

∂n


wall

. (20)

Substituting Eqs. (19) and (20) into Eq. (18) yields the following
relation for the Nusselt number

Nu = −


knf
kf


∂θ

∂n


wall

. (21)

3. Numerical implementation

Themass, momentum, and energy governing equationswritten
in terms of the primitive variables are discretized using the
finite volume approach and the SIMPLER algorithm. In this
method [22], a regular two-dimensional finite difference mesh is
generated in the computational domain. Subsequently, a square-
shaped control volume is generated around each nodal point. The
governing equations are then integrated over each control volume.
Subsequently, the derivatives of the dependent variables on the
faces of the control volume in the resulting equations are replaced
by finite difference formswritten in terms of the nodal values of the
dependent variables. A second-order central difference scheme is
used for the diffusion terms while a hybrid scheme, a combination
of upwind and central difference schemes, is employed for the
convective terms [22]. Carrying out the same procedure for all
the control volumes yields a system of algebraic equations with
nodal values of the dependent variables as unknowns. The set
of discretized equations are then solved iteratively yielding the
velocity, pressure, and temperature at the nodal points. An under-
relaxation scheme is employed to obtain converged solutions.
Fig. 2. Domain and boundary conditions for the buoyancy-driven heat transfer in
a square cavity filled with air.

3.1. Benchmarking of the code

In order to validate the numerical procedure, two simulations of
a buoyancy-driven fluid flow and heat transfer in a differentially-
heated square cavity filled with air, and a natural convection heat
transfer in a partially-heated square cavity filledwith theCu–water
nanofluid are performed using the proposed code, and the results
are compared with the existing results in the literature.

The domain and the boundary conditions for the natural
convection heat transfer in a differentially-heated square cavity
are shown in Fig. 2. The left and the right side walls of the cavity
are maintained at constant temperatures Th and Tc , respectively,
with Th > Tc . The cavity’s top and bottom walls are insulated.
The cavity is filled with air (Pr = 0.72), and the simulations are
performed for a range of Rayleigh numbers from103 to 106. Table 2
shows comparisons between the average Nusselt numbers of the
hot wall obtained by the present simulation with the results of
other investigations [3,23–26] for different Rayleigh numbers. As
the table shows, very good agreements exist between the results
of the current simulation and those of other investigators for the
considered range of Rayleigh numbers.

The domain and the boundary conditions for the buoyancy-
driven heat transfer in a partially-heated square cavity filled with
Cu–water nanofluid are shown in Fig. 3. A heat source of constant
temperature Th, whose length is equal to half of the cavity’s height,
is placed symmetrically along the left wall of the cavity. The right
side wall of the cavity is maintained at a constant temperature Tc
with Tc < Th. The top and bottom walls as well as the remaining
portion of the left side wall are kept insulated. The simulations
are performed for different volume fractions of the nanoparticles
including ϕ = 0 (pure water), for Ra = 103, 104, and 105. Table 3
shows comparisons between the average Nusselt number of the
heat source obtained by the present simulation with the results
of Oztop and Abu-Nada [7] for different volume fractions of the
nanoparticles at different Rayleigh numbers. As it is observed from
the table, very good agreements exist between the two results
for the considered ranges of the Rayleigh numbers and volume
fractions of the nanoparticles.

3.2. Grid independence study

In order to determine a proper grid for the numerical simu-
lations, a grid independence study is conducted for the natural
convection heat transfer in the space between concentric squares
shown in Fig. 1. The considered aspect ratio is AR = 1/2, and
the calculations are performed for TiO2–water nanofluid with
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Table 2
Average Nusselt number for differentially-heated square cavity filled with air, comparisons with the
results of other investigators.

Ra = 103 Ra = 104 Ra = 105 Ra = 106

Present study 1.113 2.254 4.507 8.802
Barakos and Mitsoulis [23] 1.114 2.245 4.510 8.806
Davis [24] 1.118 2.243 4.519 8.799
Faseqi et al. [25] 1.105 2.302 4.646 9.012
Khanafer et al. [3] 1.118 2.245 4.522 8.826
Markatos and Pericleous [26] 1.108 2.201 4.430 8.754
Fig. 3. Domain and boundary conditions for the buoyancy-driven heat transfer in
a square cavity with a partially-heated wall filled with Cu–water nanofluid.

Table 3
Average Nusselt number of the heat source, comparison with Oztop and Abu-
Nada [7] for the partially-heated square cavity filled with Cu–water nanofluid.

Ra ϕ Present study Oztop and Abu–Nada [7]

103

0.00 1.045 1.004
0.05 1.131 1.122
0.10 1.255 1.251
0.15 1.450 1.423
0.20 1.665 1.627

104

0.00 2.001 2.010
0.05 2.098 2.122
0.10 2.155 2.203
0.15 2.276 2.283
0.20 2.355 2.363

105

0.00 3.973 3.983
0.05 4.266 4.271
0.10 4.352 4.440
0.15 4.651 4.662
0.20 4.865 4.875

ϕ = 0.02 at Ra = 106. Six different uniform grids, namely,
21 × 21, 41 × 41, 61 × 61, 81 × 81, 100 × 100, and 121 ×

121 are employed for the numerical simulations. Fig. 4 shows the
vertical velocity component along the horizontal centreline of the
annulus (Y = H/2, Fig. 1) for these grids. The results for the
average Nusselt number of the inner square for the above uniform
grids are also presented in Table 4. It is observed from Fig. 4
and Table 4 that an 81 × 81 uniform grid is sufficiently fine to
capture the temperature and velocity variations in the boundary
layers adjacent to the wall. Therefore, based on these results, an
81× 81 uniform grid is employed to perform all of the subsequent
numerical calculations. Moreover, in these numerical simulations,
the convergence criterion for temperature, pressure, and velocity is

Error =

m
j=1

n
i=1

ξ t+1
i,j − ξ t

i,j


m
j=1

n
i=1

ξ t+1
i,j

 ≤ 10−7, (22)
Fig. 4. Vertical velocity component along the horizontal centreline of the annulus
(Y = H/2, Fig. 1) for different uniform grids, AR = 1/2, ϕ = 0.02, and Ra = 106 .

wherem and n are the number of grid points in x- and y-directions,
respectively, ξ is any of the computed field variables, and t is the
iteration number.

4. Results and discussions

Having verified the numerical procedure via performing
two simulations, the proposed code is employed to study the
buoyancy-driven fluid flow and heat transfer in the space between
two concentric squares, (Fig. 1), filled with TiO2–water nanofluid.
The results discussed here are for three aspect ratios of 1/4, 1/2,
and 3/4, a range of Rayleigh numbers from 103 to 106, and three
volume fractions of the nanoparticles, namely, 0, 0.02, and 0.04.

Fig. 5 shows the streamlines and the isotherms in the annulus
for the aspect ratio AR = 1/4, for different Rayleigh numbers
and nanoparticles volume fractions. For this aspect ratio, the fluid
is heated by the two sides of the inner square and expands as it
moves upward. Subsequently, the fluid is cooled by the sides of
the outer square and contracts as it moves downward. Hence, as
Fig. 5-a shows, two counter-rotating eddies, a counterclockwise
and a clockwise, are established in the left and the right halves
of the annulus, respectively. These counter-rotating eddies are
symmetric with respect to the vertical centreline of the squares
(Fig. 5-a). The heat convection taking place from the central portion
of the hot top surface of the inner square forms a streamline plume
rising due to the flow of the fluid in the counter-rotating eddies in
this region (Fig. 5-a).

For low Rayleigh numbers, i.e. a conduction-dominated heat
transfer regime, the streamlines are, to some extent, evenly dis-
tributed within the two counter-rotating eddies. With increas-
ing the Rayleigh number, the streamlines become more densely
packed adjacent to the sides of the inner and the outer squares.
Also, as Fig. 5-a indicates, the eyes of the counter-rotating eddies
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Table 4
Average Nusselt number of the inner square for different uniform grids, AR = 1/2, ϕ = 0.02, and Ra = 106 .

Number of nodes 21 × 21 41 × 41 61 × 61 81 × 81 101 × 101 121 × 121

Nuavg 12.9555 13.02521 13.03912 13.04295 13.0430 13.0431
a

b

Fig. 5. Streamlines and isotherms in the space between concentric squares filled with TiO2–water nanofluid for AR = 1/4: (a) streamlines, (b) isotherms.
move upwards as the Rayleigh number increases resulting in a
more densely packed streamlines at the top portion of the annulus
compared to its bottom. This further increase of the Rayleigh num-
ber also brings the two eyes of the counter-rotating eddies closes to
each other so that the two counter eddies meet within the annulus
top portion (Fig. 5-a).
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a

b

Fig. 6. Streamlines and isotherms in the space between concentric squares filled with TiO2–water nanofluid for AR = 1/2: (a) streamlines, (b) isotherms.
As far as the isotherms are concerned, for Ra = 103 and
104, they are, in some ways, evenly distributed within the entire
annulus demonstrating a conduction-dominated heat transfer
regime (Fig. 5-b). For higher Rayleigh numbers,Ra > 104, when the
natural convection effect become dominant, some distinct thermal
boundary layers are formed around the inner square as well as
along the sides of the outer square (Fig. 5-b). Furthermore, a thin
thermal layer develops on the top surface of the inner square due
to the two counter-rotating eddies and a strong plume rising above
the inner square (Fig. 5-b). As it can be observed from Fig. 5-b, the
core regions of the counter-rotating eddies are stratified for these
cases. Moreover, the heat transfer in the bottom of the annulus is
suppressed due to diminishing the conduction effect (Fig. 5-b). As
far as the volume fraction of the nanoparticles, for high Rayleigh
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a

b

Fig. 7. Streamlines and isotherms in the space between concentric squares filled with TiO2–water nanofluid for AR = 3/4: (a) streamlines, (b) isotherms.
numbers, the thermal boundary layers thicken, and the natural
convection weakens due to increasing the nanofluid viscosity with
increasing the volume fraction of the nanoparticles.

The streamlines and isotherms for AR = 1/2, different Rayleigh
numbers, and nanoparticles volume fractions are presented in
Fig. 6. For low Rayleigh numbers, Ra ≤ 104, the streamlines and
isotherms are quite similar to those shown in Fig. 5. However, as
the gap between the squares gets narrower, the streamlines and
isotherms become more densely packed inside the annulus. With
increasing the Rayleigh number, two counter-rotating secondary
eddies (similar to the Bénard cells) start to develop in the upper
portion of the annulus above the inner square (Fig. 6-a). With
further increase of the Rayleigh number, the secondary vortices
start to die out, and the primary eddies move further inside the
gap in the upper portion of the annulus. It must be mentioned
here that, for a fluid layer between two sufficiently long horizontal
plates heated frombelow, the condition for the onset of convection
is expressed by the critical Rayleigh number, Ra = 1708, defined
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based on the distance between the plates. For Ra < 1708, the
fluid is quiescent and thermally stratified, while for Ra > 1708,
cellular flow pattern develops in the fluid. For the cases shown in
Fig. 6, the secondary eddies start to develop at a Rayleigh number
defined based on the gapwidth approximately equal to 1200which
is lower than the critical Rayleigh number for long horizontal
plates. The lower Rayleigh number for the onset of the cellular flow
pattern is attributed to the fluid flow in the upper portion of the
annulus due to the primary counter-rotating eddies.

As far as the volume fraction of the nanoparticles, for Ra ≤ 104,
the primary counter-rotating eddies weaken with increasing the
volume fraction of the nanoparticles due to the viscosity increase
of the nanofluid (Fig. 6-a). For Ra = 105, the secondary eddies start
to die out with increasing the volume fraction of the nanoparticles
and the resulting viscosity increase (Fig. 6-a). For higher Rayleigh
numbers, e.g. Ra = 106, the primary eddies grow weaker in the
upper portion of the annulus with increasing the viscosity of the
nanofluid, and the secondary eddies begin to develop in this region.
These eddies grow weaker with increasing the volume fraction of
the nanoparticles (Fig. 6-a).

For Ra ≤ 104, the isotherms in Fig. 6-b are evenly distributed in
the annulus showing conduction-dominatedheat transfer regimes.
Contrary to the results in Fig. 5-b, for Ra = 105, the isotherms in
Fig. 6-b still show a conduction-dominated heat transfer regime in
the main portion of the annulus except in its top part where the
secondary eddies are present. This is due to a reduction in the local
Rayleigh number defined based on the gap width with increasing
the aspect ratio AR. In the region above the top of the inner square,
the isotherms get densely packed in the regions where a primary
and its adjacent secondary eddies, or two secondary eddies move
towards a wall. By moving away from the wall, the isotherms
become separated (Fig. 6-b). For Ra = 105, the isotherms above the
inner square become more evenly distributed with increasing the
volume fraction of the nanoparticles and the resulting suppression
of the secondary eddies (Fig. 6-b). For Ra = 106, distinct thermal
boundary layers are formed around the inner square, and along the
sides and the top of the outer square. The rest of the annulus is
nearly thermally stratified (Fig. 6-b).

The streamlines and the isotherms in the annulus for the aspect
ratio AR = 3/4, and different Rayleigh numbers and nanoparticles
volume fractions are shown in Fig. 7. As it can be observed from
this figure, with decreasing the width of the gap between the
concentric squares, and the resulting decrease of the local Rayleigh
number, the conduction-dominated heat transfer regime persists
within the entire gap for up to Ra = 105 (Fig. 7-a, b). This is
clearly observed from the evenly distributed isotherms of Fig. 7-b
for Ra ≤ 105. The primary counter-rotating eddies are quite weak
for Ra ≤ 105. For Ra = 106, the local Rayleigh number defined
based on the gap width is sufficiently high so that the Bénard
cells, four counter-rotating two-dimensional rolls, develop in the
relatively long and narrow gap in the top portion of the annulus
(Fig. 7-a). These secondary eddies begin to die out with increasing
the volume fraction of the nanoparticles and the viscosity of the
nanofluid. As it can be observed from Fig. 7-b, for Ra = 106, the
isotherms above the inner square become evenly distributed with
increasing the nanoparticles volume fraction.

Fig. 8 shows the variation of the average Nusselt number of
the outer square with respect to the Rayleigh number for various
volume fractions of the nanoparticles, and the aspect ratios of 1/4,
1/2, and 3/4. As it can be seen from this figure, for AR = 1/4
and 1/2, the average Nusselt number of the cold square generally
increases with increasing the Rayleigh number, i.e. as the heat
transfer regime becomes convection-dominated. For AR = 1/4,
the average Nusselt number remains nearly constant for Ra ≤

104, while for AR = 1/2, it remains practically constant if the
Rayleigh number is less than or equal to 105. In both of these
Fig. 8. Average Nusselt number variation for the outer square for (a) AR = 1/4, (b)
AR = 1/2, (c) AR = 3/4.

cases, the heat transfer regime is conduction-dominated (Fig. 8-
a, b). Moreover, the average Nusselt number of the cold square,
in general, increases with increasing the volume fractions of the
nanoparticles. For AR = 3/4, the Rayleigh number has negligible
effects on the average Nusselt number up to Ra = 105. This is
due to the fact that for AR = 3/4 the width of the gap between
the squares is quite small, and the heat transfer occurs basically
through conduction.

5. Conclusions

Heat transfer and fluid flow analysis of the TiO2–water nano-
fluid flow within two-square duct annuli are conducted to deter-
mine the implication of a number of the natural convection heat
transfer characteristics.

The finite volumemethod togetherwith the SIMPLER algorithm
is implemented to solve the governing equations written in terms
of the primitive variables. The numerical procedure is verified via
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two different simulations, a buoyancy-driven fluid flow and heat
transfer in a differentially-heated square cavity filled with air, and
a buoyancy-driven heat transfer in a partially-heated square cavity
with the Cu–water nanofluid.

A parametric study involving the effects of the Rayleigh
number, annulus aspect ratio, and the TiO2 volume fraction on the
annuli fluid flow and heat transfer are conducted. The results, in
general, show that high Rayleigh number is eminently an effective
parameter causing the formation of the multiple vortices of the
Rayleigh–Bénard convective type within the top portion of the
annuli. Larger widths of the annulus, however, seem to strengthen
these developed vortices.

Although the general trend of the average Nusselt number pro-
files versus the Rayleigh number for both the traditional fluid and
the TiO2–water nanofluid follow the samepattern, the distribution,
however, clearly distinguish the natural convection heat transfer
much improvements in the presence of the nanoparticles.
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